Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (296)

Search Parameters:
Keywords = alkali-activated slag cement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2645 KiB  
Article
Carbon Footprint and Uncertainties of Geopolymer Concrete Production: A Comprehensive Life Cycle Assessment (LCA)
by Quddus Tushar, Muhammed A. Bhuiyan, Ziyad Abunada, Charles Lemckert and Filippo Giustozzi
C 2025, 11(3), 55; https://doi.org/10.3390/c11030055 - 28 Jul 2025
Viewed by 756
Abstract
This study aims to estimate the carbon footprint and relative uncertainties for design components of conventional and geopolymer concrete. All the design components of alkaline-activated geopolymer concrete, such as fly ash, ground granulated blast furnace slag, sodium hydroxide (NaOH), sodium silicate (Na2 [...] Read more.
This study aims to estimate the carbon footprint and relative uncertainties for design components of conventional and geopolymer concrete. All the design components of alkaline-activated geopolymer concrete, such as fly ash, ground granulated blast furnace slag, sodium hydroxide (NaOH), sodium silicate (Na2SiO3), superplasticizer, and others, are assessed to reflect the actual scenarios of the carbon footprint. The conjugate application of the life cycle assessment (LCA) tool SimPro 9.4 and @RISK Monte Carlo simulation justifies the variations in carbon emissions rather than a specific determined value for concrete binders, precursors, and filler materials. A reduction of 43% in carbon emissions has been observed by replacing cement with alkali-activated binders. However, the associative uncertainties of chemical admixtures reveal that even a slight increase may cause significant environmental damage rather than its benefit. Pearson correlations of carbon footprint with three admixtures, namely sodium silicate (r = 0.80), sodium hydroxide (r = 0.52), and superplasticizer (r = 0.19), indicate that the shift from cement to alkaline activation needs additional precaution for excessive use. Therefore, a suitable method of manufacturing chemical activators utilizing renewable energy sources may ensure long-term sustainability. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

17 pages, 2470 KiB  
Article
Correlation Between Packing Voids and Fatigue Performance in Sludge Gasification Slag-Cement-Stabilized Macadam
by Yunfei Tan, Xiaoqi Wang, Hao Zheng, Yingxu Liu, Juntao Ma and Shunbo Zhao
Sustainability 2025, 17(14), 6587; https://doi.org/10.3390/su17146587 - 18 Jul 2025
Viewed by 356
Abstract
The fatigue resistance of cement-stabilized macadam (CSM) plays a vital role in ensuring the long-term durability of pavement structures. However, limited cementitious material (CM) content often leads to high packing voids, which significantly compromise fatigue performance. Existing studies have rarely explored the coupled [...] Read more.
The fatigue resistance of cement-stabilized macadam (CSM) plays a vital role in ensuring the long-term durability of pavement structures. However, limited cementitious material (CM) content often leads to high packing voids, which significantly compromise fatigue performance. Existing studies have rarely explored the coupled mechanism between pore structure and fatigue behavior, especially in the context of solid-waste-based CMs. In this study, a cost-effective alkali-activated sludge gasification slag (ASS) was proposed as a sustainable CM substitute for ordinary Portland cement (OPC) in CSM. A dual evaluation approach combining cross-sectional image analysis and fatigue loading tests was employed to reveal the effect pathway of void structure optimization on fatigue resistance. The results showed that ASS exhibited excellent cementitious reactivity, forming highly polymerized C-A-S-H/C-S-H gels that contributed to a denser microstructure and superior mechanical performance. At a 6% binder dosage, the void ratio of ASS–CSM was reduced to 30%, 3% lower than that of OPC–CSM. The 28-day unconfined compressive strength and compressive resilient modulus reached 5.7 MPa and 1183 MPa, representing improvements of 35.7% and 4.1% compared to those of OPC. Under cyclic loading, the ASS system achieved higher energy absorption and more uniform stress distribution, effectively suppressing fatigue crack initiation and propagation. Moreover, the production cost and carbon emissions of ASS were 249.52 CNY/t and 174.51 kg CO2e/t—reductions of 10.9% and 76.2% relative to those of OPC, respectively. These findings demonstrate that ASS not only improves fatigue performance through pore structure refinement but also offers significant economic and environmental advantages, providing a theoretical foundation for the large-scale application of solid-waste-based binders in pavement engineering. Full article
Show Figures

Figure 1

18 pages, 4996 KiB  
Article
Mechanical Properties and Microstructures of Solid Waste Composite-Modified Lateritic Clay via NaOH/Na2CO3 Activation: A Sustainable Recycling Solution of Steel Slag, Fly Ash, and Granulated Blast Furnace Slag
by Wei Qiao, Bing Yue, Zhihua Luo, Shengli Zhu, Lei Li, Heng Yang and Biao Luo
Materials 2025, 18(14), 3307; https://doi.org/10.3390/ma18143307 - 14 Jul 2025
Viewed by 310
Abstract
The utilization of steel slag (SS), fly ash (FA), and ground granulated blast furnace slag (GGBFS) as soil additives in construction represents a critical approach to achieving resource recycling of these industrial by-products. This study aims to activate the SS-FA-GGBFS composite with a [...] Read more.
The utilization of steel slag (SS), fly ash (FA), and ground granulated blast furnace slag (GGBFS) as soil additives in construction represents a critical approach to achieving resource recycling of these industrial by-products. This study aims to activate the SS-FA-GGBFS composite with a NaOH solution and Na2CO3 and employ the activated solid waste blend as an admixture for lateritic clay modification. By varying the concentration of the NaOH solution and the dosage of Na2CO3 relative to the SS-FA-GGBFS composite, the effects of these parameters on the activation efficiency of the composite as a lateritic clay additive were investigated. Results indicate that the NaOH solution activates the SS-FA-GGBFS composite more effectively than Na2CO3. The NaOH solution significantly promotes the depolymerization of aluminosilicates in the solid waste materials and the generation of Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate gels. In contrast, Na2CO3 relies on its carbonate ions to react with calcium ions in the materials, forming calcium carbonate precipitates. As a rigid cementing phase, calcium carbonate exhibits a weaker cementing effect on soil compared to Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate gels. However, excessive NaOH leads to inefficient dissolution of the solid waste and induces a transformation of hydration products in the modified lateritic clay from Calcium-Silicate-Hydrate and Calcium-Aluminate-Hydrate to Sodium-Silicate-Hydrate and Sodium-Aluminate-Hydrate, which negatively impacts the strength and microstructural compactness of the alkali-activated solid waste composite-modified lateritic clay. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 6254 KiB  
Article
Cleaner Production of Metallurgical-Grade Iron from High-Iron Bauxite Residue via Smelting Reduction: Thermodynamic Control, Industrial Application Potential, and Slag Utilization Strategy
by Kun Wang, Ting-An Zhang, Zhi-He Dou, Yan Liu and Guo-Zhi Lv
Materials 2025, 18(14), 3288; https://doi.org/10.3390/ma18143288 - 11 Jul 2025
Viewed by 276
Abstract
Iron-rich bauxite residue (red mud) is a hazardous alkaline solid waste produced during the production of alumina from high-iron bauxite, which poses severe environmental challenges due to its massive stockpiling and limited utilization. In this study, metallic iron was recovered from high-iron red [...] Read more.
Iron-rich bauxite residue (red mud) is a hazardous alkaline solid waste produced during the production of alumina from high-iron bauxite, which poses severe environmental challenges due to its massive stockpiling and limited utilization. In this study, metallic iron was recovered from high-iron red mud using the smelting reduction process. Thermodynamic analysis results show that an increase in temperature and sodium oxide content, along with an appropriate mass ratio of Al2O3 to SiO2 (A/S) and mass ratio of CaO to SiO2 (C/S), contribute to the enhancement of the liquid phase mass fraction of the slag. During the smelting reduction process of high-iron red mud, iron recoveries for low-alkali high-iron red mud and high-alkali high-iron red mud under optimal conditions were 98.14% and 98.36%, respectively. The metal obtained through reduction meets the industrial standard for steel-making pig iron, which is also confirmed in the pilot-scale experiment. The smelting reduction process of high-iron red mud can be divided into two stages, where the reaction is predominantly governed by interfacial chemical reaction and diffusion control, respectively. The apparent activation energy of high-alkali high-iron red mud is lower than that observed for low-alkali high-iron red mud. The reduced slag can be used as a roadside stone material or cement clinker. This proposed method represents a sustainable process for the comprehensive utilization of high-iron red mud, which also promotes the minimization of red mud. Full article
(This article belongs to the Special Issue Advances in Efficient Utilization of Metallurgical Solid Waste)
Show Figures

Figure 1

24 pages, 9084 KiB  
Article
Early-Strength Controllable Geopolymeric CLSM Derived by Shield Tunneling Muck: Performance Optimization and Hydration Mechanism of GGBFS–CS Systems
by Jiguo Liu, Jun Zhang, Xiaohui Sun, Shutong Dong and Silin Wu
Buildings 2025, 15(13), 2373; https://doi.org/10.3390/buildings15132373 - 6 Jul 2025
Viewed by 361
Abstract
The large-scale reuse of shield tunneling muck remains a major challenge in urban construction. This study proposes a geopolymeric-controlled low-strength material (GC-CLSM) utilizing shield tunneling muck as the primary raw material and a novel alkali-activated binder composed of ground granulated blast-furnace slag (GGBFS) [...] Read more.
The large-scale reuse of shield tunneling muck remains a major challenge in urban construction. This study proposes a geopolymeric-controlled low-strength material (GC-CLSM) utilizing shield tunneling muck as the primary raw material and a novel alkali-activated binder composed of ground granulated blast-furnace slag (GGBFS) and carbide slag (CS). Emphasis is placed on early-age strength development and its underlying mechanisms, which were often overlooked in previous CLSM studies. Among the tested mixtures, a GGBFS:CS ratio of 80:20 yielded the best balance between early and long-term strength. Its 1-day UCS reached 1.18–1.75 MPa, representing a 6.3–23.6-fold increase over the low-CS reference (90:10), which achieved only 0.05–0.31 MPa. However, excessive CS content (e.g., 60:40) led to a significant reduction in the 28-day strength—up to nearly 50% compared with the 90:10 mix—due to impaired microstructural densification. Microstructural analyses (pore-solution pH, SEM, EDS, XRD, FTIR, LF-NMR) confirmed that higher CS levels enhanced early C–A–S–H gel formation by increasing OH and Ca2+ availability while compromising long-term structure. Additionally, the GC-CLSM system reduced carbon emissions by 68.6–70.3% per ton of treated shield tunneling muck compared with conventional cement-based CLSM. Overall, this study offers a sustainable and performance-driven approach for the valorization of shield tunneling muck, enabling the development of early-strength controllable, low-carbon CLSM for infrastructure applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 2699 KiB  
Article
Sunflower Shells Biomass Fly Ash as Alternative Alkali Activator for One-Part Cement Based on Ladle Slag
by Aleksandar Nikolov, Vladislav Kostov, Nadia Petrova, Liliya Tsvetanova, Stanislav V. Vassilev and Rositsa Titorenkova
Ceramics 2025, 8(3), 79; https://doi.org/10.3390/ceramics8030079 - 20 Jun 2025
Viewed by 541
Abstract
This study explores the synergistic potential of ladle slag (LS) and sunflower shell fly ash (SSFA) in alkali-activated binder systems, focusing on their chemical and mineralogical characteristics and the influence of SSFA addition on the mechanical performance of LS-based pastes. X-ray fluorescence and [...] Read more.
This study explores the synergistic potential of ladle slag (LS) and sunflower shell fly ash (SSFA) in alkali-activated binder systems, focusing on their chemical and mineralogical characteristics and the influence of SSFA addition on the mechanical performance of LS-based pastes. X-ray fluorescence and XRD analysis revealed that LS is rich in CaO and latent hydraulic phases such as γ-belite and mayenite, while SSFA is dominated by K2O, SO3, and KCl/K2SO4 phases, reflecting its biomass origin. Infrared spectroscopy and thermal analysis confirmed the presence of carbonate, hydroxide, and hydrate phases, with SSFA exhibiting more complex thermal behavior due to volatile-rich composition. When used alone, LS produced weak binders; however, a 10 wt% SSFA addition tripled compressive strength to nearly 30 MPa, indicating a significant activation effect. Further increases in SSFA content led to strength reduction, likely due to increased porosity and excess salts. Microstructural analysis showed that SSFA promotes the formation of AFm phases such as Friedel’s salt and hydrocalumite, altering hydration pathways and enhancing early strength through chemical activation and carbonation processes. The findings highlight the potential of combining LS and SSFA as a sustainable binder system, offering a waste-derived alternative for low-carbon construction materials. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

28 pages, 3461 KiB  
Article
The Plasticization of Alkali-Activated Cement System Na2O-CaO-Al2O3-SiO2-H2O: Problems and Decisions
by Pavlo Kryvenko, Igor Rudenko and Oleksandr Konstantynovskyi
Appl. Sci. 2025, 15(12), 6928; https://doi.org/10.3390/app15126928 - 19 Jun 2025
Viewed by 373
Abstract
The paper is devoted to the plasticization mechanisms of alkali-activated cement system Na2O-CaO-Al2O3-SiO2-H2O. The fundamentals and basic factors determining the effectiveness of plasticizing surfactants for alkali-activated cement materials are discussed. The factors under [...] Read more.
The paper is devoted to the plasticization mechanisms of alkali-activated cement system Na2O-CaO-Al2O3-SiO2-H2O. The fundamentals and basic factors determining the effectiveness of plasticizing surfactants for alkali-activated cement materials are discussed. The factors under consideration in the study were alkali-activated cement basicity (the content of granulated blast furnace slag), the anion of the alkaline component or activator, and the degree of dispersing of the cement particles in the system. The action effect of plasticizers was determined by finding the interrelation between the stability of its molecular structure, degree of adsorption, and molecular weight depending on mentioned basic factors. A systematic approach to the systematization of surfactants and their choice to be taken into consideration to control technology-related and physico-mechanical properties of alkali-activated cement-based heavyweight concretes, building mortars, and lightened grouts has been proposed. Full article
Show Figures

Figure 1

23 pages, 4661 KiB  
Article
Microstructural, Mechanical and Fresh-State Performance of BOF Steel Slag in Alkali-Activated Binders: Experimental Characterization and Parametric Mix Design Method
by Lucas B. R. Araújo, Daniel L. L. Targino, Lucas F. A. L. Babadopulos, Heloina N. Costa, Antonio E. B. Cabral and Juceline B. S. Bastos
Buildings 2025, 15(12), 2056; https://doi.org/10.3390/buildings15122056 - 15 Jun 2025
Viewed by 520
Abstract
Alkali-activated binders (AAB) are a suitable and sustainable alternative to ordinary Portland cement (OPC), with reductions in natural resource usage and environmental emissions in regions where the necessary industrial residues are available. Despite its potential, the lack of mix design methods still limits [...] Read more.
Alkali-activated binders (AAB) are a suitable and sustainable alternative to ordinary Portland cement (OPC), with reductions in natural resource usage and environmental emissions in regions where the necessary industrial residues are available. Despite its potential, the lack of mix design methods still limits its applications. This paper proposes a systematic parametric validation for AAB mix design applied to pastes and concretes, valorizing steel slag as precursors. The composed binders are based on coal fly ash (FA) and Basic Oxygen Furnace (BOF) steel slag. These precursors were activated with sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) alkaline solutions. A parametric investigation was performed on the mix design parameters, sweeping the (i) alkali content from 6% to 10%, (ii) silica modulus (SiO2/Na2O) from 0.75 to 1.75, and (iii) ash-to-slag ratios in the proportions of 75:25 and 50:50, using parametric intervals retrieved from the literature. These variations were analyzed using response surface methodology (RSM) to develop a mechanical model of the compressive strength of the hardened paste. Flowability, yield stress, and setting time were evaluated. Statistical analyses, ANOVA and the Duncan test, validated the model and identified interactions between variables. The concrete formulation design was based on aggregates packing analysis with different paste contents (from 32% up to 38.4%), aiming at self-compacting concrete (SCC) with slump flow class 1 (SF1). The influence of the curing condition was evaluated, varying with ambient and thermal conditions, at 25 °C and 65 °C, respectively, for the initial 24 h. The results showed that lower silica modulus (0.75) achieved the highest compressive strength at 80.1 MPa (28 d) for pastes compressive strength, densifying the composite matrix. The concrete application of the binder achieved SF1 fluidity, with 575 mm spread, 64.1 MPa of compressive strength, and 26.2 GPa of Young’s modulus in thermal cure conditions. These findings demonstrate the potential for developing sustainable high-performance materials based on parametric design of AAB formulations and mix design. Full article
(This article belongs to the Special Issue Advances in Cementitious Materials)
Show Figures

Figure 1

18 pages, 7005 KiB  
Article
Influence of an Alkaline Activator and Mineral Admixture on the Properties of Alkali-Activated Recycled Concrete Powder-Foamed Concrete
by Yongfan Gong, Chao Liu, Zhihui Zhao, Zhengguang Wu and Bangwei Wu
Materials 2025, 18(11), 2567; https://doi.org/10.3390/ma18112567 - 30 May 2025
Viewed by 431
Abstract
Alkali-activated recycled concrete powder-foamed concrete (ARCP-FC) is a new type of insulation architectural material, which is prepared using recycled concrete powders (RCPs), slag powders, fly ash, and sodium silicate. In this study, the influence of the water-to-cement (W/C) ratio, the Na2O [...] Read more.
Alkali-activated recycled concrete powder-foamed concrete (ARCP-FC) is a new type of insulation architectural material, which is prepared using recycled concrete powders (RCPs), slag powders, fly ash, and sodium silicate. In this study, the influence of the water-to-cement (W/C) ratio, the Na2O content, and the mineral admixture content on the mechanical strength, physical properties, and thermal conductivity of ARCP-FC were investigated. The results showed that the compressive strength and dry apparent density of ARCP-FC decreased with the increase in the W/C ratio. In contrast, the water absorption rate increased as the W/C ratio increased. Fewer capillaries were formed due to the rapid setting property, and the optimal W/C ratio was 0.45. The compressive strength and dry apparent density first decreased and then increased with the increase in Na2O content. Too high Na2O addition was not conducive to the thermal insulation of ARCP-FC, and the optimal Na2O content was 6%. The compressive strength and dry shrinkage gradually decreased, while the water absorption gradually increased as the fly ash content increased. Fly ash improved deformation, and the pore was closed to the sphere, reducing the shrinkage and thermal conductivity. The optimal mixture of ARCP-FC consisted of 60% recycled concrete powders, 20% slag, and 20% fly ash. The density, porosity, compressive strength, and thermal conductivity of ARCP-FC were 800 kg/m3, 59.1%, 4.1 MPa, and 0.1036 W/(m·K), respectively. ARCP-FC solved the contradiction between compressive strength and dry apparent density, making it a promising building material for external insulation boards and insulation layers. Full article
Show Figures

Figure 1

23 pages, 12220 KiB  
Article
Investigation on the Properties of Alkali-Activated Industrial Solid Waste and Excavated-Soil-Based Controlled Low-Strength Materials
by Chen Xu, Xiaolei Wang, Libo Liu and Yancang Li
Materials 2025, 18(11), 2474; https://doi.org/10.3390/ma18112474 - 25 May 2025
Viewed by 438
Abstract
This study aims to address the challenge of backfill compaction in the confined spaces of municipal utility tunnel trenches and to develop an environmentally friendly, zero-cement-based backfill material. The research focuses on the excavation slag soil from a utility tunnel project in Handan. [...] Read more.
This study aims to address the challenge of backfill compaction in the confined spaces of municipal utility tunnel trenches and to develop an environmentally friendly, zero-cement-based backfill material. The research focuses on the excavation slag soil from a utility tunnel project in Handan. An alkali-activated industrial-solid-waste-excavated slag-soil-based controllable low-strength material (CLSM) was developed, using NaOH as the activator, a slag–fly ash composite system as the binder, and steel slag-excavated slag as the fine aggregate. The effects of the water-to-solid ratio (0.40–0.45) and the binder-to-sand ratio (0.20–0.40) on CLSM fluidity were studied to determine optimal values for these parameters. Additionally, the influence of excavated soil content (45–65%), slag content (30–70%), and NaOH content (1–5%) on fluidity (flowability and bleeding rate) and mechanical properties (3-day, 7-day, and 28-day unconfined compressive strength (UCS)) was investigated. The results showed that when the water-to-solid ratio is 0.445 and the binder-to-sand ratio is 0.30, the material meets both experimental and practical requirements. CLSM fluidity was mainly influenced by the excavated soil and slag contents, while NaOH content had minimal effect. The unconfined compressive strength at different curing ages was negatively correlated with the excavated soil content, while it was positively correlated with slag and NaOH content. Based on these findings, the preparation of “zero-cement” CLSM using industrial solid waste and excavation slag is feasible. For trench backfill projects, a mix of 50–60% excavated soil, 40–60% slag, and 3–5% NaOH is recommended for optimal engineering performance. CLSM is a new type of green backfill material that uses excavated soil and industrial solid waste to prepare alkali-activated materials. It can effectively increase the amount of excavated soil and alleviate energy consumption. This is conducive to the reuse of resources, environmental protection, and sustainable development. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

35 pages, 12789 KiB  
Article
Strength Development and Microscopic Characterization of Slag-like Powder Materials Activated by Sodium Carbonate and Sodium Hydroxide
by Donghui Li, Wenzhong Zheng and Ying Wang
Materials 2025, 18(10), 2313; https://doi.org/10.3390/ma18102313 - 15 May 2025
Viewed by 444
Abstract
Alkali-activated slag-like powder (AASP) materials are a novel type of binder prepared by activating slag-like powder (SP) with alkaline activators, providing a sustainable alternative to traditional cement for construction in remote mountainous regions, as well as on islands and reefs far from the [...] Read more.
Alkali-activated slag-like powder (AASP) materials are a novel type of binder prepared by activating slag-like powder (SP) with alkaline activators, providing a sustainable alternative to traditional cement for construction in remote mountainous regions, as well as on islands and reefs far from the inland, reducing transportation costs, shortening construction timelines, and minimizing energy consumption. SP is locally produced from siliceous and calcareous materials through calcining, water quenching, and grinding, exhibiting reactivity similar to that of ground granulated blast-furnace slag. In this study, siliceous sand and ground calcium carbonate powder were utilized to produce SP, with sodium carbonate (Na2CO3), sodium hydroxide (NaOH), and their mixture serving as activators. The results indicated that the Ca/Si ratio in SP, along with the dosage of Na2CO3 (Dsc) and Na2O content (Nc) in the activator, significantly affected the compressive strength of AASP materials at both early and late stages. The 28-day compressive strength reached up to 78.95 MPa, comparable to that of alkali-activated slag (AAS) materials. The optimum mix ratio for Na2CO3-NaOH based AASP materials was also determined to be 80% Dsc and 8% Nc (C8N2-8). Microscopic analyses were employed to investigate the changes in the macroscopic properties of AASP materials driven by hydration products, chemical group composition, and microstructure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

11 pages, 5414 KiB  
Article
Alkali-Activated Slag Repair Mortar for Old Reinforced Concrete Structures Based on Ordinary Portland Cement
by Danutė Vaičiukynienė, Agnė Liudvinavičiūtė, Reda Bistrickaitė, Olha Boiko and Vilimantas Vaičiukynas
Materials 2025, 18(10), 2272; https://doi.org/10.3390/ma18102272 - 14 May 2025
Viewed by 443
Abstract
In this study, alkali-activated mortars were prepared using two different types of fine aggregates: natural sand and biomass bottom ash. These mortars were used as a repair material for structures constructed using old reinforced concrete structures based on Ordinary Portland cement (OPC). Experimental [...] Read more.
In this study, alkali-activated mortars were prepared using two different types of fine aggregates: natural sand and biomass bottom ash. These mortars were used as a repair material for structures constructed using old reinforced concrete structures based on Ordinary Portland cement (OPC). Experimental studies have shown that the alkali-activated slag mortar with biomass bottom ash (BBA) from the bubbling fluid bed meets the repair mortar class R1 according to EN 1504-3. The suitability of such repair mortar is determined by the good adhesion properties of the alkali-activated slag binder to old OPC concrete. The adhesion after 28 days was 0.31 MPa and the samples broke off at the repair matrix. The AAC/BBA repair mortar had a compressive strength of 18.69 MPa, the shrinkage due to drying deformations consisted of 0.1903% after 28 days. Alkali-activated slag mortars are effective in repairing, renewing and rebuilding damaged OPC concrete structures. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

16 pages, 5125 KiB  
Article
A Study on the Effect of Different Cementitious Materials on the Mechanical Properties and Microscopic Characteristics of Alkali-Activated Green Ultra-High Performance Concrete (GUHPC)
by Zhiling Liao, Wanwen Xue, Lin Liao, Ruiqing Hao, Litao Shen and Dongxia Cui
Materials 2025, 18(9), 2163; https://doi.org/10.3390/ma18092163 - 7 May 2025
Cited by 1 | Viewed by 501
Abstract
This study investigates the influence of various cementitious materials on the performance of alkali-activated green ultra-high performance concrete (GUHPC). Alkali-activated GUHPC was prepared by substituting cement, quartz powder, and limestone powder with slag powder and fly ash. The mechanical properties, durability, hydration products, [...] Read more.
This study investigates the influence of various cementitious materials on the performance of alkali-activated green ultra-high performance concrete (GUHPC). Alkali-activated GUHPC was prepared by substituting cement, quartz powder, and limestone powder with slag powder and fly ash. The mechanical properties, durability, hydration products, and microstructure were systematically analyzed. The results demonstrate that, with a cement dosage of 264 kg/m3, the alkali-activated GUHPC incorporating 40% slag powder and 28% fly ash as cement replacements exhibited superior mechanical performance, achieving compressive and tensile strengths of 165.3 MPa and 7.7 MPa, respectively, after curing. The GUHPC displayed a dense internal structure with an extremely low porosity of 6.76%, along with superior impermeability and frost resistance compared to conventional UHPC. Slag powder exhibited high pozzolanic reactivity under alkali activation, enabling effective cement replacement. These findings provide valuable insights for the formulation of alkali-activated GUHPC. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 21489 KiB  
Article
Study on Mechanical Strength and Chloride Corrosion Resistance of Composite Mortars Mixed with Steel Slag, Bayer Red Mud, and Phosphogypsum
by Cheng Hu, Qijie Wang, Weiheng Xiang, Tao Zhang, Yanguang Li and Ruhua Chen
Buildings 2025, 15(9), 1510; https://doi.org/10.3390/buildings15091510 - 30 Apr 2025
Viewed by 300
Abstract
Utilizing supplementary cementitious materials is an effective way to fabricate low-carbon cement-based materials. In this paper, the composite mortars with good properties were prepared by mixing them with basic oxygen furnace slag (BOFS), Bayer red mud (BRM), and phosphogypsum (PG). The influences of [...] Read more.
Utilizing supplementary cementitious materials is an effective way to fabricate low-carbon cement-based materials. In this paper, the composite mortars with good properties were prepared by mixing them with basic oxygen furnace slag (BOFS), Bayer red mud (BRM), and phosphogypsum (PG). The influences of the replacement amounts of BRM and PG on the mechanical properties, hydration characteristic, chloride corrosion resistance, and microstructure of the materials were investigated. The results showed that simply adding 10 wt% BRM slightly modified the properties of the composite mortars. With the increase in PG, the mechanical strength and corrosion resistance coefficient KC of the mortars first increased and then decreased, in contrast to the chloride migration coefficient DRCM and electric flux Q. Among the samples, sample S3, with 6 wt% BRM and 4 wt% PG, had the best properties, a flexural strength of 6.6 MPa, and a compressive strength of 43.5 MPa at a curing age of 28 d. And the values of DRCM and Q of the sample, respectively, decreased by 44.06% and 22.83% compared with the control sample, along with the value of KC corroded after 120 d increasing by 16.33%. The microstructure analysis indicated that the alkali activation of BRM promoted the generation of lamellar portlandite and reticular and granular C-S-H gel. The free aluminum in BRM could dissolve into C-S-H gel to induce the generation of C-A-S-H gel. Furthermore, the generated amount of ettringite increased by adding PG. The aforementioned improvement in mechanical properties is primarily attributed to BRM promoting the hydration of the composite mortars and inducing the transformation of the C-S-H gel into C-A-S-H gel, and PG promoting the generation of ettringite. Moreover, the filling effects of BRM and PG decreased the porosity and number of harmful pores. It increased the compactness of the microstructure to endow the composite mortars with excellent chloride corrosion resistance. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

28 pages, 1939 KiB  
Article
Durable Mortar Mixes Using 50% of Activated Volcanic Ash as A Binder
by Andrés Játiva, Andreu Corominas and Miren Etxeberria
Materials 2025, 18(8), 1777; https://doi.org/10.3390/ma18081777 - 13 Apr 2025
Viewed by 516
Abstract
Volcanic ash (VA) is an abundant resource in many world regions that can be used as a supplementary cementitious material (SCM). However, its low reactivity limits its applications as a replacement for Portland cement. In this study, the improvement of its reactivity was [...] Read more.
Volcanic ash (VA) is an abundant resource in many world regions that can be used as a supplementary cementitious material (SCM). However, its low reactivity limits its applications as a replacement for Portland cement. In this study, the improvement of its reactivity was evaluated through the calcination of VA (CVA) at 700 °C, alkali activation with Na2SiO3, CaCl2, and Na2CO3, as well as its combination with other SCMs (lime, fly ash, and blast-furnace slags). Additionally, the effect of curing was analysed under different regimes: standard moist curing and heat curing. The use of alkaline activators, especially 2% Na2SiO3 and 1% CaCl2, along with thermal curing (70 °C for 3 days) in mortars containing 50% VA, resulted in compressive strengths at 28 days, significantly higher than those obtained for mortars with non-activated VA or those cured under moist conditions. Furthermore, the addition of 10% fly ash (FA) and 5% slag (EC) to the mortars also led to the largest improvements in compressive strength. In addition, mortars cured at 70 °C exhibited lower shrinkage and improved resistance to acid attacks, particularly in those manufactured with CVA and 1% CaCl2. This study concludes that it is possible to optimise the design of mortars with 50% VA in replacement of ordinary cement based on activation and curing methods. These methods improve early-age strength, reduce shrinkage and water absorption, and enhance acid resistance. Full article
Show Figures

Figure 1

Back to TopTop