Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = alkali metal cell temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2249 KiB  
Article
Cellulolytic Potential of Newly Isolated Alcohol-Tolerant Bacillus methylotrophicus
by Anna Choińska-Pulit, Justyna Sobolczyk-Bednarek and Wojciech Łaba
Materials 2025, 18(14), 3256; https://doi.org/10.3390/ma18143256 - 10 Jul 2025
Viewed by 279
Abstract
Reprocessing lignocellulosic waste to obtain new products for industrial purposes is a vital part of circular economy. This paper reports the cellulase production by newly isolated Bacillus methylotrophicus cultured on lignocellulosic agro-industrial by-products, out of which brewer’s spent grain (BSG) was selected as [...] Read more.
Reprocessing lignocellulosic waste to obtain new products for industrial purposes is a vital part of circular economy. This paper reports the cellulase production by newly isolated Bacillus methylotrophicus cultured on lignocellulosic agro-industrial by-products, out of which brewer’s spent grain (BSG) was selected as most beneficial. Plackett–Burman design was used for screening medium components, while Box–Behnken design was further applied to model the impact of the three most influential variables. The maximum approximated cellulase activity was 0.469 U/mL (1 U = 1 µmol of reducing sugars/1 min), at 48.6 g/L substrate, 5.3 g/L ammonium sulfate, pH 6.1. The partially purified cellulase was characterized, which demonstrated broad range of optimal pH (6.5–9.4), temperature (50–60 °C), and sensitivity to metals. Changes in lignin and pentosans content was demonstrated as a result of BSG hydrolysis with a cell-free cellulase preparation. The produced enzyme was used for hydrolysis of various chemically pretreated (NaOH and H2SO4) cellulosic substrates, where for reused alkali-pretreated BSG (after microbial enzyme production) the saccharification efficiency was at a level of 25%. The cellulolytic potential of the bacterial strain, along with its resistance to ethanol, present a beneficial combination, potentially applicable to aid saccharification of lignocellulosic by-products for biofuel production. Full article
(This article belongs to the Special Issue Biomass Materials Recycling: Utilization and Valorisation)
Show Figures

Figure 1

13 pages, 1097 KiB  
Article
Research on the Application of Silver Nanowire-Based Non-Magnetic Transparent Heating Films in SERF Magnetometers
by Yi Ge, Yuhan Li, Yang Li, Xuejing Liu, Xiangmei Dong and Xiumin Gao
Sensors 2025, 25(1), 234; https://doi.org/10.3390/s25010234 - 3 Jan 2025
Viewed by 3164
Abstract
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable [...] Read more.
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application. By employing high-frequency AC heating, we effectively minimize associated magnetic noise. The experimental results demonstrate that the proposed heating film, utilizing a surface heating method, can achieve temperatures exceeding 140 °C, which is sufficient to vaporize alkali metal atoms. The average magnetic flux coefficient of the heating film is 0.1143 nT/mA. Typically, as the current increases, a larger magnetic field is generated. When integrated with the heating system discussed in this paper, this characteristic can effectively mitigate low-frequency magnetic interference. In comparison with traditional flexible printed circuits (FPC), the Ag-NWs heating film exhibits a more uniform temperature distribution. This magnetically transparent heating film, leveraging Ag-NWs, enhances atomic magnetometry and presents opportunities for use in chip-level gyroscopes, atomic clocks, and various other atomic devices. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

33 pages, 3665 KiB  
Review
Role of Sintering Aids in Electrical and Material Properties of Yttrium- and Cerium-Doped Barium Zirconate Electrolytes
by Shivesh Loganathan, Saheli Biswas, Gurpreet Kaur and Sarbjit Giddey
Processes 2024, 12(10), 2278; https://doi.org/10.3390/pr12102278 - 18 Oct 2024
Cited by 4 | Viewed by 2250
Abstract
Ceramic proton conductors have the potential to lower the operating temperature of solid oxide cells (SOCs) to the intermediate temperature range of 400–600 °C. This is attributed to their superior ionic conductivity compared to oxide ion conductors under these conditions. However, prominent proton-conducting [...] Read more.
Ceramic proton conductors have the potential to lower the operating temperature of solid oxide cells (SOCs) to the intermediate temperature range of 400–600 °C. This is attributed to their superior ionic conductivity compared to oxide ion conductors under these conditions. However, prominent proton-conducting materials, such as yttrium-doped barium cerates and zirconates with specified compositions like BaCe1−xYxO3−δ (BCY), BaZr1−xYxO3−δ (BZY), and Ba(Ce,Zr)1−yYyO3−δ (BCZY), face significant challenges in achieving dense electrolyte membranes. It is suggested that the incorporation of transition and alkali metal oxides as sintering additives can induce liquid phase sintering (LPS), offering an efficient method to facilitate the densification of these proton-conducting ceramics. However, current research underscores that incorporating these sintering additives may lead to adverse secondary effects on the ionic transport properties of these materials since the concentration and mobility of protonic defects in a perovskite are highly sensitive to symmetry change. Such a drop in ionic conductivity, specifically proton transference, can adversely affect the overall performance of cells. The extent of variation in the proton conductivity of the perovskite BCZY depends on the type and concentration of the sintering aid, the nature of the sintering aid precursors used, the incorporation technique, and the sintering profile. This review provides a synopsis of various potential sintering techniques, explores the influence of diverse sintering additives, and evaluates their effects on the densification, ionic transport, and electrochemical properties of BCZY. We also report the performance of most of these combinations in an actual test environment (fuel cell or electrolysis mode) and comparison with BCZY. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

13 pages, 9098 KiB  
Article
Porous Ruthenium–Tungsten–Zinc Nanocages for Efficient Electrocatalytic Hydrogen Oxidation Reaction in Alkali
by Xiandi Sun, Zhiyuan Cheng, Hang Liu, Siyu Chen and Ya-Rong Zheng
Nanomaterials 2024, 14(9), 808; https://doi.org/10.3390/nano14090808 - 6 May 2024
Viewed by 1616
Abstract
With the rapid development of anion exchange membrane technology and the availability of high-performance non-noble metal cathode catalysts in alkaline media, the commercialization of anion exchange membrane fuel cells has become feasible. Currently, anode materials for alkaline anion-exchange membrane fuel cells still rely [...] Read more.
With the rapid development of anion exchange membrane technology and the availability of high-performance non-noble metal cathode catalysts in alkaline media, the commercialization of anion exchange membrane fuel cells has become feasible. Currently, anode materials for alkaline anion-exchange membrane fuel cells still rely on platinum-based catalysts, posing a challenge to the development of efficient low-Pt or Pt-free catalysts. Low-cost ruthenium-based anodes are being considered as alternatives to platinum. However, they still suffer from stability issues and strong oxophilicity. Here, we employ a metal–organic framework compound as a template to construct three-dimensional porous ruthenium–tungsten–zinc nanocages via solvothermal and high-temperature pyrolysis methods. The experimental results demonstrate that this porous ruthenium–tungsten–zinc nanocage with an electrochemical surface area of 116 m2 g−1 exhibits excellent catalytic activity for hydrogen oxidation reaction in alkali, with a kinetic density 1.82 times and a mass activity 8.18 times higher than that of commercial Pt/C, and a good catalytic stability, showing no obvious degradation of the current density after continuous operation for 10,000 s. These findings suggest that the developed catalyst holds promise for use in alkaline anion-exchange membrane fuel cells. Full article
Show Figures

Figure 1

23 pages, 4036 KiB  
Article
Structural Investigation of Orthoborate-Based Electrolytic Materials for Fuel Cell Applications
by Jarosław Milewski, Piotr Ryś, Anna Krztoń-Maziopa, Grażyna Żukowska, Karolina Majewska, Magdalena Zybert, Jacek Kowalczyk and Maciej Siekierski
Energies 2024, 17(9), 2097; https://doi.org/10.3390/en17092097 - 27 Apr 2024
Cited by 2 | Viewed by 1392
Abstract
The paper presented delivers the proof for one of the possible solutions to the so-called medium-temperature gap—the lack of electrolytic systems able to efficiently work in a temperature range spanning from 200 to 450 °C. Regardless of the progress made in this field, [...] Read more.
The paper presented delivers the proof for one of the possible solutions to the so-called medium-temperature gap—the lack of electrolytic systems able to efficiently work in a temperature range spanning from 200 to 450 °C. Regardless of the progress made in this field, the commercially available systems are still operating either at close to ambient temperatures, where hydrogen purity requirements are a significant limit, or above ca. 600 °C, where they suffer from increased corrosion and excessive thermal stresses occurring during startup and shutdown. Alkali metal orthoborates (M3BO3 M = Li, Na, K, or the mixture of these), in contrast to commercially used tetra-(M2B4O7) and meta-(MBO2) borates of these metals, are compounds with relatively poorly understood structure and physicochemical properties. The possibility of their application as an electrolyte in a fuel cell is a relatively new idea and has been preliminary reported. Therefore, an extended phase-focused analysis of the materials applied was needed to re-optimize both the synthetic strategy and the application route. Results of PXRD and FT-IR investigations showed, on the one hand, a complicated multi-phase structure, including the main orthoborate phase, as well as the presence of additional borate-based phases, including boric oxoacid. On the other hand, DTA tests proved not only that their melting temperatures are lower than these characteristics for the tetra- and meta-counterparts, but also that cation mixing leads to a subsequent decrease in this important functional parameter of the materials studied. Full article
(This article belongs to the Collection Batteries, Fuel Cells and Supercapacitors Technologies)
Show Figures

Figure 1

13 pages, 1203 KiB  
Article
Enhancing Dynamic Performance in K-Rb-21Ne Co-Magnetometers through Atomic Density Optimization
by Lv Yang, Haoying Pang and Wei Quan
Photonics 2024, 11(2), 182; https://doi.org/10.3390/photonics11020182 - 16 Feb 2024
Cited by 1 | Viewed by 1556
Abstract
The K-Rb-21Ne co-magnetometer exhibits poorer dynamic performance due to the larger equivalent magnetic field generated by alkali metal atoms. In this study, the impact of the atomic number density of alkali metal atoms and noble gas atoms in the cell on [...] Read more.
The K-Rb-21Ne co-magnetometer exhibits poorer dynamic performance due to the larger equivalent magnetic field generated by alkali metal atoms. In this study, the impact of the atomic number density of alkali metal atoms and noble gas atoms in the cell on the dynamic performance of the atomic ensemble is investigated quantitatively. Relationships between the slow-decay term in the transient response attenuation of the Spin-Exchange Relaxation-Free (SERF) co-magnetometer to interference magnetic fields and the number densities of noble gas atoms as well as alkali metal atoms are established. Based on the established model, the relationship between the number density of 21Ne atoms and dynamic performance is investigated using cells with five different noble gas pressures. Then, we investigate the impact of the number density of alkali metal atoms using a cell with a pressure of 2.1 atm at different temperatures. The results indicate that, as the number density of alkali metal atoms or noble gas atoms in the cell increases, the dynamic performance of the system improves, which provides a theoretical basis for the design of cell parameters for SERF co-magnetometers. Full article
Show Figures

Figure 1

14 pages, 4175 KiB  
Article
Quantifying and Reducing Ion Migration in Metal Halide Perovskites through Control of Mobile Ions
by Saivineeth Penukula, Rodrigo Estrada Torrejon and Nicholas Rolston
Molecules 2023, 28(13), 5026; https://doi.org/10.3390/molecules28135026 - 27 Jun 2023
Cited by 12 | Viewed by 4475
Abstract
The presence of intrinsic ion migration in metal halide perovskites (MHPs) is one of the main reasons that perovskite solar cells (PSCs) are not stable under operation. In this work, we quantify the ion migration of PSCs and MHP thin films in terms [...] Read more.
The presence of intrinsic ion migration in metal halide perovskites (MHPs) is one of the main reasons that perovskite solar cells (PSCs) are not stable under operation. In this work, we quantify the ion migration of PSCs and MHP thin films in terms of mobile ion concentration (No) and ionic mobility (µ) and demonstrate that No has a larger impact on device stability. We study the effect of small alkali metal A-site cation additives (e.g., Na+, K+, and Rb+) on ion migration. We show that the influence of moisture and cation additive on No is less significant than the choice of top electrode in PSCs. We also show that No in PSCs remains constant with an increase in temperature but μ increases with temperature because the activation energy is lower than that of ion formation. This work gives design principles regarding the importance of passivation and the effects of operational conditions on ion migration. Full article
(This article belongs to the Special Issue Design, Synthesis and Properties of Perovskite Solar Cells Materials)
Show Figures

Figure 1

11 pages, 2836 KiB  
Article
Laser Heating Method for an Alkali Metal Atomic Cell with Heat Transfer Enhancement
by Yang Li, Guoqing Zhou, Shencheng Tian, Xuejing Liu, Xiangmei Dong and Xiumin Gao
Photonics 2023, 10(6), 637; https://doi.org/10.3390/photonics10060637 - 1 Jun 2023
Cited by 6 | Viewed by 2468
Abstract
Alkali metal atomic cells are crucial components of atomic instruments, such as atomic magnetometers, atomic gyroscopes, and atomic clocks. A highly uniform and stable heating structure can ensure the stability of the alkali metal atom density. The vapor cell of an atomic magnetometer [...] Read more.
Alkali metal atomic cells are crucial components of atomic instruments, such as atomic magnetometers, atomic gyroscopes, and atomic clocks. A highly uniform and stable heating structure can ensure the stability of the alkali metal atom density. The vapor cell of an atomic magnetometer that uses laser heating has no magnetic field interference and ease of miniaturization, making it superior to hot air heating and AC electric heating. However, the current laser heating structure suffers from low heating efficiency and uneven temperature distribution inside the vapor cell. In this paper, we designed a non-magnetic heating structure based on the laser heating principle. We studied the temperature distribution of the heating structure using the finite element method (FEM) and analyzed the conversion and transfer of laser energy. We found that the heat conduction between the vapor cell and the heating chips (colored filters) is poor, resulting in uneven temperature distribution and low heating efficiency in the vapor cell. Therefore, the addition of graphite film to the four surfaces of the vapor cell was an important improvement. This addition helped to balance the temperature distribution and improve the conduction efficiency of the heating structure. It was measured that the power of the heating laser remained unchanged. After the addition of the graphite film, the temperature difference coefficient (CVT) used to evaluate the internal temperature uniformity of the vapor cell was reduced from 0.1308 to 0.0426. This research paper is crucial for improving the heating efficiency of the non-magnetic heating structure and the temperature uniformity of the vapor cell. Full article
(This article belongs to the Special Issue Optically Pumped Magnetometer and Its Application)
Show Figures

Figure 1

12 pages, 3335 KiB  
Article
Internal Dynamic Temperature Measurement of Alkali Metal Vapor Cell by Kalman Filter
by Yang Li, Shencheng Tian, Junpeng Zhao, Guoqing Zhou, Xiangmei Dong, Xiumin Gao and Xuejing Liu
Photonics 2023, 10(5), 492; https://doi.org/10.3390/photonics10050492 - 24 Apr 2023
Cited by 2 | Viewed by 2072
Abstract
Measuring the internal dynamic temperature of alkali metal vapor cells is crucial for enhancing the performance of numerous atomic devices. However, conventional methods of measuring the internal dynamic temperature of the cell are prone to errors. To obtain a more accurate internal dynamic [...] Read more.
Measuring the internal dynamic temperature of alkali metal vapor cells is crucial for enhancing the performance of numerous atomic devices. However, conventional methods of measuring the internal dynamic temperature of the cell are prone to errors. To obtain a more accurate internal dynamic temperature of the alkali metal vapor cell, a temperature measuring method based on the data fusion of the Kalman filter has been proposed. This method combines the indirect temperature measurement signal from a resistance temperature detector with the atomic absorption spectrometric temperature measurement signal. This provides a high-accuracy set of internal dynamic temperatures in the cell. The atomic vapor density calculated from the final fusion results is 37% average lower than that measured by external wall temperature measurements, which is in line with the conclusions reached in many previous studies. This study is highly beneficial to measure the temperature of alkali metal vapor cells. Full article
(This article belongs to the Special Issue Optically Pumped Magnetometer and Its Application)
Show Figures

Figure 1

11 pages, 6708 KiB  
Article
Design of a Measuring Device and Experimental Study into the Relationship between Temperature and the Density of Alkali Metal-Vapor
by Huining Shang, Sheng Zou, Wei Quan, Binquan Zhou, Shun Li, Weiyong Zhou and Fengwen Zhao
Photonics 2023, 10(2), 112; https://doi.org/10.3390/photonics10020112 - 21 Jan 2023
Cited by 1 | Viewed by 2268
Abstract
The temperature of the alkali metal cell, which affects the density of the alkali-metal vapor and the gas pressure, is usually difficult to measure directly. However, the temperature of the alkali-metal cell and the density of the alkali-metal vapor are important parameters that [...] Read more.
The temperature of the alkali metal cell, which affects the density of the alkali-metal vapor and the gas pressure, is usually difficult to measure directly. However, the temperature of the alkali-metal cell and the density of the alkali-metal vapor are important parameters that affect the performance of the atomic sensor. In this paper, a device that can directly measure the internal temperature of an alkali metal cell in real time is designed for the first time to explore the relationship between alkali-metal vapor density and temperature. Alkali-metal vapor density is measured using the absorption spectrum. The pressure broadening model, combined with the transition of four hyperfine levels, was used to fit the absorption line of 87Rb D1 under the action of 700 Torr N2, and a good fitting effect was obtained. The experimental results show that the density of 87Rb is less than the value calculated by the empirical formula. Based on the experimental results, we give the calculation formula of 87Rb density with an uncertainty of only 4% and obtain the temperature dependence index of the line width and linear displacement of 87Rb in N2 by analyzing the absorption spectrum. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

9 pages, 1830 KiB  
Article
Front Transparent Passivation of CIGS-Based Solar Cells via AZO
by He Zhang, Fei Qu and Hui Li
Molecules 2022, 27(19), 6285; https://doi.org/10.3390/molecules27196285 - 23 Sep 2022
Cited by 4 | Viewed by 2417
Abstract
We report a novel strategy for the front passivation of solar cells via aluminum-doped zinc oxide (AZO) films in the case of CIGS solar cells, leading to the highest efficiency of 15.07% without alkali metal post treatment and anti−reflective layer. The good passivation [...] Read more.
We report a novel strategy for the front passivation of solar cells via aluminum-doped zinc oxide (AZO) films in the case of CIGS solar cells, leading to the highest efficiency of 15.07% without alkali metal post treatment and anti−reflective layer. The good passivation of CIGS solar cells via AZO films is attributed to the field passivation simulated by the SCAPS−1D software. The AZO films also exhibit high optical transparency both in visible and near infrared wavelength region, high conductivity, and cost−effective fabrication advantage. Importantly, the AZO films are deposited at room temperature via radio−frequency magnetron sputtering, showing that the AZO films are also applicable to other solar cells such as perovskite solar cells. Our work is of significance for advancing the development of CIGS−based photovoltaics devices by the well front passivation of AZO. The wide application of AZO in other solar cells such as perovskite solar cells and related tandem solar cells may also accelerate the development of these solar cells because of potential passivation of AZO, low deposition temperature, and high optical transparency of AZO. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

27 pages, 9193 KiB  
Review
Recent Progress on Micro-Fabricated Alkali Metal Vapor Cells
by Xuelei Wang, Mao Ye, Fei Lu, Yunkai Mao, Hao Tian and Jianli Li
Biosensors 2022, 12(3), 165; https://doi.org/10.3390/bios12030165 - 6 Mar 2022
Cited by 15 | Viewed by 6877
Abstract
Alkali vapor cells are the core components of atomic sensing instruments such as atomic gyroscopes, atomic magnetometers, atomic clocks, etc. Emerging integrated atomic sensing devices require high-performance miniaturized alkali vapor cells, especially micro-fabricated vapor cells. In this review, bonding methods for vapor cells [...] Read more.
Alkali vapor cells are the core components of atomic sensing instruments such as atomic gyroscopes, atomic magnetometers, atomic clocks, etc. Emerging integrated atomic sensing devices require high-performance miniaturized alkali vapor cells, especially micro-fabricated vapor cells. In this review, bonding methods for vapor cells of this kind are summarized in detail, including anodic bonding, sacrificial micro-channel bonding, and metal thermocompression bonding. Compared with traditional through-lighting schemes, researchers have developed novel methods for micro-fabricated vapor cells under both single- and double-beam schemes. In addition, emerging packaging methods for alkali metals in micro-fabricated vapor cells can be categorized as physical or chemical approaches. Physical methods include liquid transfer and wax pack filling. Chemical methods include the reaction of barium azide with rubidium chloride, ultraviolet light decomposition (of rubidium azide), and the high-temperature electrolysis of rubidium-rich glass. Finally, the application trend of micro-fabricated alkali vapor cells in the field of micro-scale gyroscopes, micro-scale atomic clocks, and especially micro-scale biomagnetometers is reviewed. Currently, the sensing industry has become a major driving force for the miniaturization of atomic sensing devices, and in the near future, the micro-fabricated alkali vapor cell technology of atomic sensing devices may experience extensive developments. Full article
(This article belongs to the Special Issue Micro/Nano and Electromagnetic Sensors)
Show Figures

Figure 1

9 pages, 3068 KiB  
Article
Synthesis and Characterizations of Barium Zirconate–Alkali Carbonate Composite Electrolytes for Intermediate Temperature Fuel Cells
by Gilles Taillades, Ismahan Hachemi, Paul Pers, Julian Dailly and Mathieu Marrony
J. Compos. Sci. 2021, 5(7), 183; https://doi.org/10.3390/jcs5070183 - 10 Jul 2021
Cited by 3 | Viewed by 3185
Abstract
Composite ionic conductors for intermediate temperature fuel cells (ITFC) were produced by a combination of yttrium-substituted barium zirconate (BaZr0.9Y0.1 O2.95, BZY) and eutectic compositions of alkali carbonates (Li2CO3, Na2CO3, and [...] Read more.
Composite ionic conductors for intermediate temperature fuel cells (ITFC) were produced by a combination of yttrium-substituted barium zirconate (BaZr0.9Y0.1 O2.95, BZY) and eutectic compositions of alkali carbonates (Li2CO3, Na2CO3, and K2CO3, abbreviated L, N, K). These materials were characterized by X-ray diffraction, scanning electron microscopy, and impedance spectroscopy. The combination of BZY with alkali metal carbonate promotes the densification and enhances the ionic conductivity, which reaches 87 mS·cm−1 at 400 °C for the BZY–LNK40 composite. In addition, the increase of the conductivity as a function of hydrogen partial pressure suggests that protons are the main charge carriers. The results are interpreted in terms of the transfer of protons from the ceramic component to the carbonate phase in the interfacial region. Full article
Show Figures

Figure 1

12 pages, 2858 KiB  
Article
Expanding the Averievite Family, (MX)Cu5O2(T5+O4)2 (T5+ = P, V; M = K, Rb, Cs, Cu; X = Cl, Br): Synthesis and Single-Crystal X-ray Diffraction Study
by Ilya V. Kornyakov, Victoria A. Vladimirova, Oleg I. Siidra and Sergey V. Krivovichev
Molecules 2021, 26(7), 1833; https://doi.org/10.3390/molecules26071833 - 24 Mar 2021
Cited by 16 | Viewed by 3090
Abstract
Averievite-type compounds with the general formula (MX)[Cu5O2(TO4)], where M = alkali metal, X = halogen and T = P, V, have been synthesized by crystallization from gases and structurally characterized for six different [...] Read more.
Averievite-type compounds with the general formula (MX)[Cu5O2(TO4)], where M = alkali metal, X = halogen and T = P, V, have been synthesized by crystallization from gases and structurally characterized for six different compositions: 1 (M = Cs; X = Cl; T = P), 2 (M = Cs; X = Cl; T = V), 3 (M = Rb; X = Cl; T = P), 4 (M = K; X = Br; T = P), 5 (M = K; X = Cl; T = P) and 6 (M = Cu; X = Cl; T = V). The crystal structures of the compounds are based upon the same structural unit, the layer consisting of a kagome lattice of Cu2+ ions and are composed from corner-sharing (OCu4) anion-centered tetrahedra. Each tetrahedron shares common corners with three neighboring tetrahedra, forming hexagonal rings, linked into the two-dimensional [O2Cu5]6+ sheets parallel to (001). The layers are interlinked by (T5+O4) tetrahedra (T5+ = V, P) attached to the bases of the oxocentered tetrahedra in a “face-to-face” manner. The resulting electroneutral 3D framework {[O2Cu5](T5+O4)2}0 possesses channels occupied by monovalent metal cations M+ and halide ions X. The halide ions are located at the centers of the hexagonal rings of the kagome nets, whereas the metal cations are in the interlayer space. There are at least four different structure types of the averievite-type compounds: the P-3m1 archetype, the 2 × 2 × 1 superstructure with the P-3 space group, the monoclinically distorted 1 × 1 × 2 superstructure with the C2/c symmetry and the low-temperature P21/c superstructure with a doubled unit cell relative to the high-temperature archetype. The formation of a particular structure type is controlled by the interplay of the chemical composition and temperature. Changing the chemical composition may lead to modification of the structure type, which opens up the possibility to tune the geometrical parameters of the kagome net of Cu2+ ions. Full article
(This article belongs to the Special Issue Crystallography and Crystal Chemistry)
Show Figures

Figure 1

11 pages, 4883 KiB  
Article
Adhesion Effect on the Hyperfine Frequency Shift of an Alkali Metal Vapor Cell with Paraffin Coating Using Peak-Force Tapping AFM
by Jiuyan Wei, Zongmin Ma, Huanfei Wen, Hao Guo, Jun Tang, Jun Liu, Yanjun Li and Yasuhiro Sugawara
Coatings 2020, 10(1), 84; https://doi.org/10.3390/coatings10010084 - 19 Jan 2020
Cited by 5 | Viewed by 4114
Abstract
We have investigated the adhesion effect on the hyperfine frequency shift of an alkali metal vapor cell with paraffin coating using the peak-force tapping AFM (atomic force microscopy) technique by developing a uniform and high-quality paraffin coating method. We observed a relatively uniform [...] Read more.
We have investigated the adhesion effect on the hyperfine frequency shift of an alkali metal vapor cell with paraffin coating using the peak-force tapping AFM (atomic force microscopy) technique by developing a uniform and high-quality paraffin coating method. We observed a relatively uniform temperature field on the substrate can be obtained theoretically and experimentally with the closed-type previse temperature-controlled evaporation method. The roughness and adhesion of the coating surface as low as 0.8 nm and 20 pN were successfully obtained, respectively. Furthermore, the adhesion information dependence of the topography was investigated from the force spectroscopy, which indicates that the adhesion force jumped on the edge of the particles and stepped but remained constant above the particles and steps regardless of their height for paraffin coating. Finally, we can evaluate the relaxation and the hyperfine frequency shift of an alkali metal vapor cell through accurately calculating the surface adsorption energy of the paraffin coating from peak-force tapping information. This finding is crucial for improving the sensitivity of the atomic sensors through directly analyzing the adhesion effect of the paraffin coating films instead of measuring the relaxation times. Full article
Show Figures

Figure 1

Back to TopTop