Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (862)

Search Parameters:
Keywords = alkali metal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3220 KiB  
Review
Integrated Technology of CO2 Adsorption and Catalysis
by Mengzhao Li and Rui Wang
Catalysts 2025, 15(8), 745; https://doi.org/10.3390/catal15080745 - 5 Aug 2025
Abstract
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and [...] Read more.
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and absorbent loss, while the integrated technology realizes the adsorption, conversion, and catalyst regeneration of CO2 in a single reaction system, avoiding complex desorption steps. Through micropore confinement and surface electron transfer mechanism, the technology improves the reactant concentration and mass transfer efficiency, reduces the activation energy, and realizes the low-temperature and high-efficiency conversion of CO2. In terms of materials, MOF-based composites, alkali metal modified oxides, and carbon-based hybrid materials show excellent performance, helping to efficiently adsorb and transform CO2. However, the design and engineering of reactors still face challenges, such as the development of new moving bed reactors. This technology provides a new idea for CO2 capture and resource utilization and has important environmental significance and broad application prospects. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

16 pages, 6440 KiB  
Article
Effect of Calcium Sulfate and Silica Gel on Vanadium Leaching Characteristics from Vanadium Titanomagnetite via Calcification Roasting–Sulfuric Acid Leaching: Formation Mechanism and Process Enhancement
by Jianli Chen, Yu Zheng, Benliu He, Shuzhong Chen, Shuai Wang, Feng Chen, Shiyuan Cui, Jing Liu, Lingzhi Yang, Yufeng Guo and Guanzhou Qiu
Metals 2025, 15(8), 870; https://doi.org/10.3390/met15080870 (registering DOI) - 3 Aug 2025
Viewed by 147
Abstract
Compared with vanadium extraction by sodium roasting followed by water leaching, the calcification roasting–sulfuric acid leaching method is considered a promising approach for the comprehensive utilization of vanadium titanomagnetite, as it avoids the introduction of alkali metals. However, during vanadium extraction by sulfuric [...] Read more.
Compared with vanadium extraction by sodium roasting followed by water leaching, the calcification roasting–sulfuric acid leaching method is considered a promising approach for the comprehensive utilization of vanadium titanomagnetite, as it avoids the introduction of alkali metals. However, during vanadium extraction by sulfuric acid heap leaching, the diffusion of leaching reagents and leaching products was hindered by the deposition of leaching solid products. To address this issue, this study systematically investigated the leaching kinetics and the mechanisms underlying the deposition of leaching solid products. The results indicated that vanadium leaching was governed by a combination of liquid film diffusion and internal diffusion through solid-phase products during days 0–2, and by internal diffusion alone from day 2 to day 9. The primary solid products formed during leaching were calcium sulfate and silica gel. Calcium sulfate precipitated and grew within the pore via two-dimensional nucleation, while silicates formed silica gel through dehydration. By optimizing the sulfuric acid leaching conditions—specifically, maintaining an H+ concentration of 2 mol/L, a leaching temperature of 40 °C, and a liquid-to-solid ratio of 5:1—the formation of calcium sulfate and silica gel was effectively suppressed. Under these conditions, the vanadium leaching efficiency reached 75.82%. Full article
(This article belongs to the Section Extractive Metallurgy)
18 pages, 3224 KiB  
Article
Design of Experiments Approach for Efficient Heavy Metals Stabilization Using Metakaolin-Based Geopolymers
by Raffaele Emanuele Russo, Elisa Santoni, Martina Fattobene, Mattia Giovini, Francesco Genua, Cristina Leonelli, Isabella Lancellotti, Ana Herrero and Mario Berrettoni
Molecules 2025, 30(15), 3235; https://doi.org/10.3390/molecules30153235 - 1 Aug 2025
Viewed by 211
Abstract
Alkali-activated aluminosilicate matrices are increasingly studied for their ability to stabilize hazardous metal contaminants via alkali activation at room temperature. In this study, metakaolin-based geopolymers were used to immobilize chromium and nickel salts, with systematic variation of key synthesis parameters, Na/Al molar ratio, [...] Read more.
Alkali-activated aluminosilicate matrices are increasingly studied for their ability to stabilize hazardous metal contaminants via alkali activation at room temperature. In this study, metakaolin-based geopolymers were used to immobilize chromium and nickel salts, with systematic variation of key synthesis parameters, Na/Al molar ratio, metal concentration, anion type, and alkaline solution aging time, which have not been previously studied. A Design of Experiments approach was employed to study the effect of factors on metal leaching behavior and to better understand the underlying immobilization mechanisms. The analysis revealed that higher Na/Al ratios significantly enhance geopolymerization and reduce metal release, as supported by FTIR spectral shifts and decreased shoulder intensity. Notably, aging time had an influence on chromium behavior due to its effect on early silicate network formation, which can hinder the incorporation of chromium species. All tested formulations achieved metal immobilization rates of 98.8% or higher for both chromium and nickel. Overall, this study advances our understanding of geopolymer-based heavy metal immobilization. Full article
(This article belongs to the Special Issue Green Chemistry Approaches to Analysis and Environmental Remediation)
Show Figures

Figure 1

23 pages, 9108 KiB  
Article
COx-Free Hydrogen Production via CH4 Decomposition on Alkali-Incorporated (Mg, La, Ca, Li) Ni-Al Catalysts
by Morgana Rosset, Yan Resing Dias, Liliana Amaral Féris and Oscar William Perez-Lopez
Nanoenergy Adv. 2025, 5(3), 10; https://doi.org/10.3390/nanoenergyadv5030010 - 30 Jul 2025
Viewed by 225
Abstract
The catalytic decomposition of CH4 is a promising method for producing high-purity COx-free hydrogen. A Ni-Al-LDH catalyst synthesized via coprecipitation was modified with alkali metals (Mg, La, Ca, or Li) through reconstruction to enhance catalytic activity and resistance to deactivation [...] Read more.
The catalytic decomposition of CH4 is a promising method for producing high-purity COx-free hydrogen. A Ni-Al-LDH catalyst synthesized via coprecipitation was modified with alkali metals (Mg, La, Ca, or Li) through reconstruction to enhance catalytic activity and resistance to deactivation during catalytic methane decomposition (CMD). The catalysts were evaluated by two activation methods: H2 reduction and direct heating with CH4. The MgNA-R catalyst achieved the highest CH4 conversion (65%) at 600 °C when reduced with H2, attributed to a stronger Ni-Al interaction. Under CH4 activation, LaNA-C achieved a 55% conversion at the same temperature, associated with a smaller crystallite size and higher reducibility due to La incorporation. Although all catalysts deactivated due to carbon deposition and/or sintering, LaNA-C was the only sample that could resist deactivation for a longer period, as La appears to have a protective effect on the active phase. Post-reaction characterizations revealed the formation of graphitic and filamentous carbon. Raman spectroscopy exhibited a higher degree of graphitization and structural order in LaNA-C, whereas SEM showed a more uniform distribution of carbon filaments. TEM confirmed the presence of multi-walled carbon nanotubes with encapsulated Ni particles in La-promoted samples. These results demonstrate that La addition improves the catalytic performance under CH4 activation and carbon structure. This finding offers a practical advantage for CMD processes, as it reduces or eliminates the need to use hydrogen during catalyst activation. Full article
(This article belongs to the Special Issue Novel Energy Materials)
Show Figures

Graphical abstract

18 pages, 4680 KiB  
Article
Preparation of Glass-Ceramics Using Zinc-Containing Smelting Slag: Structure, Properties and Solidification of Zinc
by Nannan Wu, Junhui Huang, Junxi Qiu, Zonghang Li, Xiaofan Li, Bohan Li, Nianzhe Li, Yuxuan Zhang and Shunli Ouyang
Materials 2025, 18(15), 3555; https://doi.org/10.3390/ma18153555 - 29 Jul 2025
Viewed by 165
Abstract
The stabilization of heavy metal elements, such as zinc, in the form of ions within the glass-ceramics represents a valuable approach to addressing environmental pollution caused by heavy metals. This study investigates the feasibility and physicochemical properties of diopside-based glass-ceramics synthesized from zinc-containing [...] Read more.
The stabilization of heavy metal elements, such as zinc, in the form of ions within the glass-ceramics represents a valuable approach to addressing environmental pollution caused by heavy metals. This study investigates the feasibility and physicochemical properties of diopside-based glass-ceramics synthesized from zinc-containing smelting slag. The zinc-rich smelting slag is abundant in SiO2, Al2O3, CaO, and other constituents, thereby providing cost-effective and efficient raw materials for glass-ceramic production. The conversion of zinc-containing smelting slag into glass-ceramics was achieved through a melting process. We analyzed the effects of varying doping levels on the properties of the resulting glass-ceramics. The results indicated that as the doping level of smelting slag increases, the crystallization temperature of the glass-ceramics decreases while the crystal phases of diopside and anorthite progressively increase, significantly enhancing both mechanical strength and chemical stability. Notably, when the doping level reaches 60%, these glass-ceramics exhibit remarkable physical properties, including high density (3.12 g/cm3), Vickers hardness (16.60 GPa), and excellent flexural strength (150.75 MPa). Furthermore, with increasing amounts of doped smelting slag, there are substantial improvements in acid resistance, alkali resistance, and corrosion resistance in these materials. Raman spectroscopy and EDS analysis further verified a uniform distribution of the crystal phase and effective immobilization of heavy metal zinc. Full article
Show Figures

Figure 1

30 pages, 7246 KiB  
Article
Linear Dependence of Sublimation Enthalpy on Young’s Elastic Modulus: Implications for Thermodynamics of Solids
by Anne M. Hofmeister
Materials 2025, 18(15), 3535; https://doi.org/10.3390/ma18153535 - 28 Jul 2025
Viewed by 380
Abstract
Classical thermodynamics omits rigidity, which property distinguishes solids from gases and liquids. By accounting for rigidity (i.e., Young’s elastic modulus, ϒ), we recently amended historical formulae and moreover linked heat capacity, thermal expansivity, and ϒ. Further exploration is motivation by the importance of [...] Read more.
Classical thermodynamics omits rigidity, which property distinguishes solids from gases and liquids. By accounting for rigidity (i.e., Young’s elastic modulus, ϒ), we recently amended historical formulae and moreover linked heat capacity, thermal expansivity, and ϒ. Further exploration is motivation by the importance of classical thermodynamics to various applied sciences. Based on heat performing work, we show here, theoretically, that density times sublimation enthalpy divided by the molar mass (ρΔHsub/M, energy per volume), depends linearly on ϒ (1 GPa = 109 J m−3). Data on diverse metals, non-metallic elements, chalcogenides, simple oxides, alkali halides, and fluorides with cubic structures validate this relationship at ambient conditions. Furthermore, data on hcp metals and molecular solids show that ρΔHsub/M is proportional to ϒ for anisotropic materials. Proportionality constants vary only from 0.1 to 0.7 among these different material types (>100 substances), which shows that the elastic energy reservoir of solids is large. Proportionality constants depend on whether molecules or atoms are sublimated and are somewhat affected by structure. We show that ductility of refractory, high-ϒ metals affect high-temperature determinations of their ΔHsub. Our results provide information on sublimation processes and subsequent gas phase reactions, while showing that elasticity of solids is the key parameter needed to assessing their energetics. Implications are highlighted. Full article
Show Figures

Graphical abstract

17 pages, 11097 KiB  
Article
Experimental Study on Single-Particle Combustion Characteristics of Large-Sized Wheat Straw in a Drop Tube Furnace
by Haoteng Zhang, Lihui Yu, Cuina Qin, Shuo Jiang and Chunjiang Yu
Energies 2025, 18(15), 3968; https://doi.org/10.3390/en18153968 - 24 Jul 2025
Viewed by 200
Abstract
Co-firing large-sized straw biomass in pulverized coal boilers is a potential pathway for carbon emission reduction in China’s thermal power plants. However, experimental data on large-sized straw combustion under pulverized coal boiler combustion conditions are critically lacking. This study selected typical large-sized wheat [...] Read more.
Co-firing large-sized straw biomass in pulverized coal boilers is a potential pathway for carbon emission reduction in China’s thermal power plants. However, experimental data on large-sized straw combustion under pulverized coal boiler combustion conditions are critically lacking. This study selected typical large-sized wheat straw particles. Employing a two-mode experimental setup in a drop tube furnace (DTF) system simulating pulverized coal boiler conditions, we systematically investigated the combustion behavior and alkali metal release characteristics of this large-sized straw biomass, with combustion processes summarized for diverse particle types. The findings reveal asynchronous combustion progression across particle surfaces due to heterogeneous mass transfer and gas diffusion; unique behaviors distinct from denser woody biomass, including bending deformation, fiber branching, and fragmentation, occur; significant and morphology-specific deformations occur during devolatilization; fragmentation universally produces particles of varied shapes (needle-like, flaky, blocky, semi-tubular) during char combustion; and potassium release exceeds 35% after complete devolatilization and surpasses 50% at a burnout degree exceeding 80%. This work provides essential experimental data on the fundamental combustion characteristics and alkali metal release of large-sized wheat straw particles under pulverized coal boiler combustion conditions, offering engineering application guidance for the direct co-firing of large-sized flexible straw biomass in pulverized coal boilers. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

19 pages, 3112 KiB  
Article
Durable Superhydrophobic Composite Coating Based on Hydrangea-like SiO2 Nanoparticles with Excellent Performance in Anticorrosion, Drag Reduction, and Antifouling
by Yuhao Xue, Yamei Zhao, Xiaoqi Gu, Mengdan Huo, Kunde Yang, Mingyu Liu, Sixian Fan and Maoyong Zhi
Materials 2025, 18(15), 3443; https://doi.org/10.3390/ma18153443 - 23 Jul 2025
Viewed by 276
Abstract
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic [...] Read more.
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic coating featuring a hierarchical, hydrangea-like micro/nanostructure was successfully fabricated on an aluminum alloy substrate via a simple one-step cold-spraying technique. The coating consisted of hydrangea-shaped SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDT) to produce multiscale roughness, while epoxy resin (EP) served as the binding matrix to enhance mechanical integrity. The hydrangea-like SiO2 nanostructures were characterized by solid cores and wrinkled, petal-like outgrowths. This unique morphology not only increased the surface roughness but also provided more active sites for air entrapment, thereby enhancing the coating’s overall performance. The h-SiO2@PFDT-EP composite coating exhibited excellent superhydrophobicity, with a WCA of 170.1° ± 0.8° and a SA of 2.7° ± 0.5°. Durability was evaluated through sandpaper abrasion, tape peeling, acid and alkali immersion, artificial weathering, and salt spray tests. The results demonstrated that the coating retained stable superhydrophobic performance under various environmental stresses. Compared with bare 6061 aluminum and EP coatings, its corrosion current density was reduced by four and three orders of magnitude, respectively. Furthermore, the coating achieved a maximum drag-reduction rate of 31.01% within a velocity range of 1.31–7.86 m/s. The coating also displayed excellent self-cleaning properties. Owing to its outstanding durability, corrosion resistance, and drag-reducing capability, this one-step fabricated superhydrophobic coating showed great promise for applications in marine engineering and defense. Full article
Show Figures

Figure 1

50 pages, 33914 KiB  
Article
Radiation Assessment and Geochemical Characteristics of 238U, 226Ra, 232Th, and 40K of Selected Specialized Granitic Occurrences, Saudi Arabia, Arabian Shield
by Mohamed Tharwat S. Heikal, Aya S. Shereif, Árpád Csámer and Fatma Deshesh
Toxics 2025, 13(8), 612; https://doi.org/10.3390/toxics13080612 - 22 Jul 2025
Viewed by 333
Abstract
Between approximately 725 and 518 Ma, a suite of specialized felsic plutons and granitic stocks were emplaced across the Arabian Shield, many of which are now recognized as highly mineralized prospects enriched in rare earth elements (REEs), rare metals, and radioactive elements bearing [...] Read more.
Between approximately 725 and 518 Ma, a suite of specialized felsic plutons and granitic stocks were emplaced across the Arabian Shield, many of which are now recognized as highly mineralized prospects enriched in rare earth elements (REEs), rare metals, and radioactive elements bearing mineralizations. The current investigation focused on the radiological and geochemical characterization of naturally occurring radionuclides, specifically 238U, 226Ra, 232Th, and 40K, within three strategically selected granitic prospects, namely, J. Tawlah albite granite (TW), J. Hamra (HM), and J. Abu Al Dod alkali feldspar syenite and granites (AD). Concerning the radioactivity levels of the investigated granitic stocks, specifically the activity concentrations of 238U, 226Ra, 232Th, and 40K, the measured average values demonstrate significant variability across the TW, HM, and AD stocks. The average 238U concentrations are 195 (SD = 38.7), 88.66 (SD = 25.6), and 214.3 (SD = 140.8) Bq/kg for TW, HM, and AD granitic stocks, respectively. Corresponding 226Ra levels are recorded at 172.4 (SD = 34.6), 75.62 (SD = 25.9), and 198.4 (SD = 139.5) Bq/kg. For 232Th, the concentrations are markedly elevated in TW at 5453.8 (SD = 2182.9) Bq/kg, compared to 77.16 (SD = 27.02) and 160.2 (SD = 103.8) Bq/kg in HM and AD granitic stocks, respectively. Meanwhile, 40K levels are reported at 1670 (SD = 535.9), 2846.2 (SD = 249.9), and 3225 (SD = 222.3) Bq/kg for TW, HM, and AD granitic plutons, respectively. Notably, these values exceed the global average background levels, indicating an anomalous enrichment of the studied granitic occurrences. The mean radiological hazard indices for each granitic unit generally exceed global benchmarks, except for AEDEout in the HM and AD stocks, which remain below international limits. The geochemical disparities observed are indicative of post-magmatic alteration processes, as substantiated by the interpretation of remote sensing datasets. In light of the significant radiological burden presented by these granitic stocks, it is essential to implement a rigorous precautionary framework for any future mining. These materials must be categorically excluded from uses that entail direct human exposure, especially in residential construction or infrastructure projects. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

17 pages, 1579 KiB  
Article
Mechanical Behavior of Fly-Ash Geopolymer Under Stray-Current and Soft-Water Coupling
by Ran Tang, Fang Liu, Baoming Wang, Xiaojun Wang, Cheng Hua and Xiaosa Yuan
Buildings 2025, 15(14), 2514; https://doi.org/10.3390/buildings15142514 - 17 Jul 2025
Viewed by 232
Abstract
Stray-current and soft-water leaching can induce severe corrosion in reinforced concrete structures and buried metal pipelines within subway environments. The effects of water-to-binder ratio (W/C), modulus of sodium silicate (Ms), and alkali content (AC) on the mechanical properties of fly-ash-based geopolymer (FAG) at [...] Read more.
Stray-current and soft-water leaching can induce severe corrosion in reinforced concrete structures and buried metal pipelines within subway environments. The effects of water-to-binder ratio (W/C), modulus of sodium silicate (Ms), and alkali content (AC) on the mechanical properties of fly-ash-based geopolymer (FAG) at various curing ages were investigated. The influence of curing temperature and high-temperature curing duration on the development of mechanical performance were examined, and the optimal curing regime was determined. Furthermore, based on the mix design of FAG resistant to coupled erosion from stray-current and soft-water, the effects of stray-current intensity and erosion duration on the coupled erosion behavior were analyzed. The results indicated that FAG exhibited slow strength development under ambient conditions. However, thermal curing at 80 °C for 24 h markedly improved early-age strength. The compressive strength of FAG exhibited an increase followed by a decrease with increasing W/B, Ms, and AC, with optimal ranges identified as 0.28–0.34, 1.0–1.6, and 4–7%, respectively. Soft-water alone caused limited leaching, while the presence of stray-current significantly accelerated degradation, with corrosion rates increasing by 4.1 and 7.2 times under 20 V and 40 V, respectively. The coupled corrosion effect was found to weaken over time and with increasing current intensity. Under coupled leaching conditions, compressive strength loss of FAG was primarily influenced by AC, with lesser contributions from W/B and Ms. The optimal mix proportion for corrosion resistance was determined to be W/B of 0.30, Ms of 1.2, and AC of 6%, under which the compressive strength after corrosion achieved the highest value, thereby significantly improving the durability of FAG in harsh environments such as stray-current zones in subways. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 6254 KiB  
Article
Cleaner Production of Metallurgical-Grade Iron from High-Iron Bauxite Residue via Smelting Reduction: Thermodynamic Control, Industrial Application Potential, and Slag Utilization Strategy
by Kun Wang, Ting-An Zhang, Zhi-He Dou, Yan Liu and Guo-Zhi Lv
Materials 2025, 18(14), 3288; https://doi.org/10.3390/ma18143288 - 11 Jul 2025
Viewed by 276
Abstract
Iron-rich bauxite residue (red mud) is a hazardous alkaline solid waste produced during the production of alumina from high-iron bauxite, which poses severe environmental challenges due to its massive stockpiling and limited utilization. In this study, metallic iron was recovered from high-iron red [...] Read more.
Iron-rich bauxite residue (red mud) is a hazardous alkaline solid waste produced during the production of alumina from high-iron bauxite, which poses severe environmental challenges due to its massive stockpiling and limited utilization. In this study, metallic iron was recovered from high-iron red mud using the smelting reduction process. Thermodynamic analysis results show that an increase in temperature and sodium oxide content, along with an appropriate mass ratio of Al2O3 to SiO2 (A/S) and mass ratio of CaO to SiO2 (C/S), contribute to the enhancement of the liquid phase mass fraction of the slag. During the smelting reduction process of high-iron red mud, iron recoveries for low-alkali high-iron red mud and high-alkali high-iron red mud under optimal conditions were 98.14% and 98.36%, respectively. The metal obtained through reduction meets the industrial standard for steel-making pig iron, which is also confirmed in the pilot-scale experiment. The smelting reduction process of high-iron red mud can be divided into two stages, where the reaction is predominantly governed by interfacial chemical reaction and diffusion control, respectively. The apparent activation energy of high-alkali high-iron red mud is lower than that observed for low-alkali high-iron red mud. The reduced slag can be used as a roadside stone material or cement clinker. This proposed method represents a sustainable process for the comprehensive utilization of high-iron red mud, which also promotes the minimization of red mud. Full article
(This article belongs to the Special Issue Advances in Efficient Utilization of Metallurgical Solid Waste)
Show Figures

Figure 1

20 pages, 2249 KiB  
Article
Cellulolytic Potential of Newly Isolated Alcohol-Tolerant Bacillus methylotrophicus
by Anna Choińska-Pulit, Justyna Sobolczyk-Bednarek and Wojciech Łaba
Materials 2025, 18(14), 3256; https://doi.org/10.3390/ma18143256 - 10 Jul 2025
Viewed by 279
Abstract
Reprocessing lignocellulosic waste to obtain new products for industrial purposes is a vital part of circular economy. This paper reports the cellulase production by newly isolated Bacillus methylotrophicus cultured on lignocellulosic agro-industrial by-products, out of which brewer’s spent grain (BSG) was selected as [...] Read more.
Reprocessing lignocellulosic waste to obtain new products for industrial purposes is a vital part of circular economy. This paper reports the cellulase production by newly isolated Bacillus methylotrophicus cultured on lignocellulosic agro-industrial by-products, out of which brewer’s spent grain (BSG) was selected as most beneficial. Plackett–Burman design was used for screening medium components, while Box–Behnken design was further applied to model the impact of the three most influential variables. The maximum approximated cellulase activity was 0.469 U/mL (1 U = 1 µmol of reducing sugars/1 min), at 48.6 g/L substrate, 5.3 g/L ammonium sulfate, pH 6.1. The partially purified cellulase was characterized, which demonstrated broad range of optimal pH (6.5–9.4), temperature (50–60 °C), and sensitivity to metals. Changes in lignin and pentosans content was demonstrated as a result of BSG hydrolysis with a cell-free cellulase preparation. The produced enzyme was used for hydrolysis of various chemically pretreated (NaOH and H2SO4) cellulosic substrates, where for reused alkali-pretreated BSG (after microbial enzyme production) the saccharification efficiency was at a level of 25%. The cellulolytic potential of the bacterial strain, along with its resistance to ethanol, present a beneficial combination, potentially applicable to aid saccharification of lignocellulosic by-products for biofuel production. Full article
(This article belongs to the Special Issue Biomass Materials Recycling: Utilization and Valorisation)
Show Figures

Figure 1

11 pages, 2099 KiB  
Article
Biocompatible Composite Protective Thin Layer Containing Cellulose Fibers and Silica Cryogel
by Marius Horvath and Katalin Sinkó
Gels 2025, 11(7), 522; https://doi.org/10.3390/gels11070522 - 5 Jul 2025
Viewed by 283
Abstract
The aim of the present research was to synthesize protective composite layers from biodegradable cellulose and biocompatible, sol–gel-derived silica cryogel. An important task in the present work was to achieve good applicability on distinct (smooth and rough) surfaces of various materials (from metallic [...] Read more.
The aim of the present research was to synthesize protective composite layers from biodegradable cellulose and biocompatible, sol–gel-derived silica cryogel. An important task in the present work was to achieve good applicability on distinct (smooth and rough) surfaces of various materials (from metallic to ceramic). The aim was to utilize the composite layers as thermal and electric insulation coating. The investigation put some effort into the enhancement of mechanical strength and the elasticity of the thin layer as well as a reduction in its water solubility. The removal of the alkali content leads successfully to a significant reduction in water solubility (97 wt% → 1–3 wt%). Adhesion properties were measured using a specialized measurement technique developed in our laboratory. Treatments of the substrate surface, such as alkaline or acidic etching (i.e., Na2CO3, HF, water glass), mechanical roughening, or the application of a thin alkali-containing primer layer, strongly increase adhesion. SEM analyses revealed the interactions between the matrix and the reinforcement phase and their morphology. Full article
(This article belongs to the Special Issue Advances and Current Applications in Gel-Based Membranes)
Show Figures

Figure 1

31 pages, 6211 KiB  
Review
Unlocking the Potential of MBenes in Li/Na-Ion Batteries
by Zixin Li, Yao Hu, Haihui Lan and Huicong Xia
Molecules 2025, 30(13), 2831; https://doi.org/10.3390/molecules30132831 - 1 Jul 2025
Cited by 1 | Viewed by 408
Abstract
MBenes, an emerging family of two-dimensional transition metal boride materials, are gaining prominence in alkali metal-ion battery research owing to their distinctive stratified architecture, enhanced charge transport properties, and exceptional electrochemical durability. This analysis provides a comprehensive examination of morphological characteristics and fabrication [...] Read more.
MBenes, an emerging family of two-dimensional transition metal boride materials, are gaining prominence in alkali metal-ion battery research owing to their distinctive stratified architecture, enhanced charge transport properties, and exceptional electrochemical durability. This analysis provides a comprehensive examination of morphological characteristics and fabrication protocols for MBenes, with particular focus on strategies for optimizing energy storage metrics through controlled adjustment of interlayer distance and tailored surface modifications. The discussion highlights these materials’ unique capability to host substantial alkali metal ions, translating to exceptional longevity during charge–discharge cycling and remarkable high-current performance in both lithium and sodium battery systems. Current obstacles to materials development are critically evaluated, encompassing precision control in nanoscale synthesis, reproducibility in large-scale production, enhancement of thermodynamic stability, and eco-friendly processing requirements. Prospective research pathways are proposed, including sustainable manufacturing innovations, atomic-level structural tailoring through computational modeling, and expansion into hybrid energy storage-conversion platforms. By integrating fundamental material science principles with practical engineering considerations, this work seeks to establish actionable frameworks for advancing MBene-based technologies toward next-generation electrochemical storage solutions with enhanced energy density and operational reliability. Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Figure 1

22 pages, 3230 KiB  
Article
Study on Soil Nutrients and Microbial Community Diversity in Ancient Tea Plantations of China
by Jiaxin Li, Wei Huang, Xinyuan Lin, Waqar Khan, Hongbo Zhao, Binmei Sun, Shaoqun Liu and Peng Zheng
Agronomy 2025, 15(7), 1608; https://doi.org/10.3390/agronomy15071608 - 30 Jun 2025
Viewed by 236
Abstract
Ancient tea plantations possess extremely important economic and cultivation value. In China, ancient tea plantations with trees over 100 years old have been preserved. However, the status of soil microorganisms, soil fertility, and soil heavy metal pollution in these ancient tea plantations remains [...] Read more.
Ancient tea plantations possess extremely important economic and cultivation value. In China, ancient tea plantations with trees over 100 years old have been preserved. However, the status of soil microorganisms, soil fertility, and soil heavy metal pollution in these ancient tea plantations remains unclear. This study took four Dancong ancient tea plantations in Fenghuang, Chaozhou City, and Guangdong Province as the research objects. Soil samples were collected from the surface layer (0–20 cm) and subsurface layer (20–40 cm) of the ancient tea trees. The rhizosphere soil microbial diversity and soil nutrients were determined. On this basis, the soil fertility was evaluated by referring to the soil environmental quality standards so as to conduct a comprehensive evaluation of the soil in the Dancong ancient tea plantations. This study found that Proteobacteria, Acidobacteriota, Chloroflexi, and Actinobacteria were the dominant bacteria in the rhizosphere soil of the Dancong ancient tree tea plantation. Ascomycota and Mortierellomycota are the dominant fungal phyla. Subgroup_2, AD3, Acidothermus, and Acidibacter were the dominant bacterial genera. Saitozyma, Mortierella, and Fusarium are the dominant fungal genera. The redundancy analysis (RDA) revealed that at the bacterial phylum level, Verrucomicrobia showed positive correlations with alkali-hydrolyzable nitrogen (AN), available potassium (AK), and total nitrogen (TN); Proteobacteria exhibited a positive correlation with available phosphorus (AP); and Gemmatimonadetes was positively correlated with total potassium (TK). At the fungal phylum level, Ascomycota demonstrated a positive correlation with TK. TN, AN, and TK were identified as key physicochemical indicators influencing soil bacterial diversity, while TN, AN, AP, and AK were the key physicochemical indicators affecting soil fungal diversity. This study revealed that the soil of Dancong ancient tea plantations has reached Level I fertility in terms of TN, TP, SOM, and AP. TK and AN show Level I or near-Level I fertility, but AK only meets Level III fertility for tea planting, serving as the main limiting factor for soil fertility quality. Considering the relatively abundant TK content in the tea plantations, potassium-solubilizing bacteria should be prioritized over blind potassium fertilizer application. Meanwhile, it is particularly noteworthy that AN and SOM are at extremely high levels. Sustained excess of AN and SOM may lead to over-proliferation of dominant microorganisms, inhibition of other functional microbial communities, and disruption of ecological balance. Therefore, optimizing nutrient input methods during fertilization is recommended. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop