Unlocking the Potential of MBenes in Li/Na-Ion Batteries
Abstract
1. Introduction
2. Structure, Synthesis, and Physicochemical Properties of MBenes
2.1. Structural Characteristics
2.2. Synthesis Methods
2.3. Physicochemical Properties
3. MBenes’ Applications in Lithium-Ion Batteries
3.1. MBene as Electrode Materials: Capacity, Stability and Performance
3.2. MBene-Based Composite Systems: Synergy and Engineering
3.3. Lithium Storage Mechanisms in MBene Electrodes
4. MBenes Applications in Sodium-Ion Batteries
4.1. Structural Advantages of MBene for Accommodating Larger Sodium Ions
4.2. Performance Comparison: MBene vs. Other Anode Materials
4.3. Sodium Storage and Migration Mechanisms in MBenes
4.4. MBene-Based Composite Materials: Enhancing Sodium-Ion Battery Performance
5. Challenges and Development Trends
- (I)
- Synthetic controllability and scale-up bottlenecks
- (II)
- Interlayer structure regulation and interface optimization
- (III)
- Structural instability during operation
- (IV)
- Material dispersion and aggregation
- (V)
- Gap between theoretical and practical performance
- (VI)
- Cost, environmental, and sustainability concerns
6. Future Prospects
- (I)
- Advanced and green synthetic strategies
- (II)
- Structural engineering and surface functionalization
- (III)
- Multi-component and composite electrode architectures
- (IV)
- Synergy between theory, simulation, and advanced characterization
- (V)
- Elucidating battery mechanisms and performance enhancement
- (VI)
- Broadening MBene applications beyond lithium and sodium storage
- (VII)
- Sustainability, commercialization, and societal impact
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nieto, K.; Windsor, D.S.; Vishnugopi, B.S.; Mukherjee, P.P.; Prieto, A.L. Performance metrics and mechanistic considerations for the development of 3D batteries. Nat. Rev. Chem. 2025, 9, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Huang, Z.; Li, L.; Zhang, W.; Guo, R.; Zhang, R.; Fa, W.; Han, C.; Cao, Y.; Yu, S.; et al. Modulating Photogenerated Electron Density of Pr Single-Atom Sites by Coordination Environment Engineering for Boosting Photoreduction of CO2 to CH3OH. Appl. Catal. B 2023, 330, 122626. [Google Scholar] [CrossRef]
- Su, T.; Zhao, J.; Gomez-Exposito, A.; Chen, Y.; Terzija, V.; Gentle, J.P. Grid-enhancing technologies for clean energy systems. Nat. Rev. Clean Technol. 2025, 1, 16–31. [Google Scholar] [CrossRef]
- Kong, Z.J.; Wu, J.C.; Liu, Z.J.; Yan, D.F.; Wu, Z.P.; Zhong, C.J. Advanced electrocatalysts for fuel cells: Evolution of active sites and synergistic properties of catalysts and carrier materials. Exploration 2025, 5, 20230052. [Google Scholar] [CrossRef]
- Li, T.; Jing, T.; Rao, D.; Mourdikoudis, S.; Zuo, Y.; Wang, M. Two-dimensional materials for electrocatalysis and energy storage applications. Inorg. Chem. Front. 2022, 9, 6008–6046. [Google Scholar] [CrossRef]
- Liu, X.; Dong, X.; Adenusi, H.; Wu, Y.; Passerini, S. Co-solvent strategy for rechargeable post-lithium metal batteries. Nat. Rev. Chem. 2025, 9, 415–426. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Pan, H.; He, P.; Zhou, H. Lithium extraction from low-quality brines. Nature 2024, 636, 309–321. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.M. Building Better Batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Service, R.F. Sodium batteries power up. Science 2025, 387, 813–814. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, S.; Huang, Y.; Wang, H.; Zhang, R.; Wang, Q.; Sun, D.; Tang, Y.; Wang, H. Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na-Ion Batteries: Origins, Solutions, and Perspectives. Electrochem. Energy Rev. 2023, 6, 8. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Song, Z.; Huang, Y.; Li, F.; Cheng, S.; Li, F. Insights into chemical-mechanical degradation and modification strategies of layered oxide cathode materials of sodium ion batteries. J. Energy Chem. 2025, 103, 294–315. [Google Scholar] [CrossRef]
- Zheng, Y.; Meng, Y.; Hu, X.; Peng, H.; Feng, L.; Wang, Y.; Li, B. Synthesis-Structure-Property of High-Entropy Layered Oxide Cathode for Li/Na/K-Ion Batteries. Adv. Mater. 2024, 37, 2413202. [Google Scholar] [CrossRef]
- Javed, M.S.; Zhang, X.; Ahmad, T.; Usman, M.; Shah, S.S.A.; Ahmad, A.; Hussain, I.; Majeed, S.; Khawar, M.R.; Choi, D.; et al. to MBenes: Latest development and opportunities for energy storage devices. Mater. Today 2024, 74, 121–148. [Google Scholar] [CrossRef]
- Liu, Z.H.; Liu, C.; Chen, Z.T.; Huang, H.L.; Liu, Y.F.; Xue, L.; Sun, J.W.; Wang, X.; Xiong, P.; Zhu, J.W. Recent advances in two-dimensional materials for hydrovoltaic energy technology. Exploration 2023, 3, 20220061. [Google Scholar] [CrossRef] [PubMed]
- Nisar, S.; Dastgeer, G.; Shazad, Z.M.; Zulfiqar, M.W.; Rasheed, A.; Iqbal, M.Z.; Hussain, K.; Rabani, I.; Kim, D.-k.; Irfan, A.; et al. 2D materials in advanced electronic biosensors for point-of-care devices. Adv. Sci. 2024, 11, 2401386. [Google Scholar] [CrossRef]
- Tan, C.; Lai, Z.; Zhang, H. Ultrathin Two-Dimensional Multinary Layered Metal Chalcogenide Nanomaterials. Adv. Mater. 2017, 29, 1701392. [Google Scholar] [CrossRef]
- Zhu, J.; Ha, E.; Zhao, G.; Zhou, Y.; Huang, D.; Yue, G.; Hu, L.; Sun, N.; Wang, Y.; Lee, L.Y.S.; et al. advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 2017, 352, 306–327. [Google Scholar] [CrossRef]
- Rabiei Baboukani, A.; Khakpour, I.; Drozd, V.; Wang, C. Liquid-Based Exfoliation of Black Phosphorus into Phosphorene and Its Application for Energy Storage Devices. Small Struct. 2021, 2, 2000148. [Google Scholar] [CrossRef]
- Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A.S.; Su, H.; Castro Neto, A.H. Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061. [Google Scholar] [CrossRef]
- Xu, T.; Wang, Y.; Xiong, Z.; Wang, Y.; Zhou, Y.; Li, X. A Rising 2D Star: Novel MBenes with Excellent Performance in Energy Conversion and Storage. Nano-Micro Lett. 2022, 15, 6. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Wang, C.; Liu, J.; Wu, H.; Liu, N.; Wang, Q.; Shang, Y.; Zheng, J. Novel 2D Material of MBenes: Structures, Synthesis, Properties, and Applications in Energy Conversion and Storage. Small 2024, 20, 2405870. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhou, J.; Sun, Z. New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 2017, 5, 23530–23535. [Google Scholar] [CrossRef]
- Wang, J.; Ye, T.-N.; Gong, Y.; Wu, J.; Miao, N.; Tada, T.; Hosono, H. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB. Nat. Commun. 2019, 10, 2284. [Google Scholar] [CrossRef] [PubMed]
- Bo, T.; Liu, P.-F.; Xu, J.; Zhang, J.; Chen, Y.; Eriksson, O.; Wang, F.; Wang, B.-T. Hexagonal Ti2B2 monolayer: A promising anode material offering high rate capability for Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 2018, 20, 22168–22178. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zhou, Z.; Shen, P. Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2×2 (X = F, OH) Monolayer. J. Am. Chem. Soc. 2012, 134, 16909–16916. [Google Scholar] [CrossRef]
- Xie, Y.; Dall’Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M.W.; Zhuang, H.L.; Kent, P.R.C. Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries. ACS Nano 2014, 8, 9606–9615. [Google Scholar] [CrossRef]
- Wang, X.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 2015, 6, 6544. [Google Scholar] [CrossRef]
- Persson, K.; Sethuraman, V.A.; Hardwick, L.J.; Hinuma, Y.; Meng, Y.S.; van der Ven, A.; Srinivasan, V.; Kostecki, R.; Ceder, G. Lithium Diffusion in Graphitic Carbon. J. Phys. Chem. Lett. 2010, 1, 1176–1180. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, W.; Liu, X.; Mei, Y.; Huang, Y. Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 2015, 44, 2376–2404. [Google Scholar] [CrossRef]
- Peng, H.; Miao, W.; Zeng, J.; Wang, Z.; Yan, C.; Ma, G.; Lei, Z. Electronic Modulation and Built-in Electric Field Strategies in Heterostructures Together Induce 1T-Rich MoS2 Conversion for Advanced Sodium Storage. Adv. Sci. 2025, 12, 2417288. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Xin, S.; Chuang, C.; Li, W.; Wang, H.; Zhu, J.; Xie, H.; Zhang, T.; Wan, Y.; Qi, Z.; et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 2020, 370, 192–197. [Google Scholar] [CrossRef]
- Kansara, S.; Gupta, S.K.; Sonvane, Y.; Pajtler, M.V.; Ahuja, R. Inquisitive Geometric Sites in h-BN Monolayer for Alkali Earth Metal Ion Batteries. J. Phys. Chem. C 2019, 123, 19340–19346. [Google Scholar] [CrossRef]
- Shi, L.; Xu, A.; Zhao, T. First-Principles Investigations of the Working Mechanism of 2D h-BN as an Interfacial Layer for the Anode of Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2017, 9, 1987–1994. [Google Scholar] [CrossRef]
- Yang, X.; Peng, J.; Zhao, L.; Zhang, H.; Li, J.; Yu, P.; Fan, Y.; Wang, J.; Liu, H.; Dou, S. Insights on advanced g-C3N4 in energy storage: Applications, challenges, and future. Carbon Energy 2024, 6, e490. [Google Scholar] [CrossRef]
- Pan, H. Graphitic Carbon Nitride Nanotubes As Li-Ion Battery Materials: A First-Principles Study. J. Phys. Chem. C 2014, 118, 9318–9323. [Google Scholar] [CrossRef]
- Liu, P.; Xu, H.; Wang, X.; Tian, G.; Yu, X.; Wang, C.; Zeng, C.; Wang, S.; Fan, F.; Liu, S.; et al. 2D MXene/MBene superlattice with narrow bandgap as superior electrocatalyst for high-performance lithium-oxygen battery. Small 2024, 20, 2404483. [Google Scholar] [CrossRef]
- Si, J.; Lan, H.; An, J.; Ge, S.; Liu, W.; Zhang, Y.; Mao, X.; He, W. Emerging reactive oxygen and nitrogen species regulators for biomedical therapy: 2D MXenzymes. Mater. Today 2025, 85, 112–140. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, T.; Li, L.; Huang, R.; Wen, Y. Computational evaluation of ScB and TiB MBenes as promising anode materials for high-performance metal-ion batteries. Phys. Rev. Mater. 2022, 6, 045801. [Google Scholar] [CrossRef]
- Lv, X.; Han, T.; Liu, R.; Li, F.; Gong, J.; Chen, Z. High-throughput theoretical exploration of multifunctional planar MBenes: Magnetism, topology, superconductivity, and anode applications. Adv. Powder Mater. 2025, 4, 100297. [Google Scholar] [CrossRef]
- Si, J.; Yu, J.; Lan, H.; Niu, L.; Luo, J.; Yu, Y.; Li, L.; Ding, Y.; Zeng, M.; Fu, L. Chemical Potential-Modulated Ultrahigh-Phase-Purity Growth of Ultrathin Transition-Metal Boride Single Crystals. J. Am. Chem. Soc. 2023, 145, 3994–4002. [Google Scholar] [CrossRef]
- Xiong, W.; Feng, X.; Xiao, Y.; Huang, T.; Li, X.; Huang, Z.; Ye, S.; Li, Y.; Ren, X.; Wang, X.; et al. Fluorine-free prepared two-dimensional molybdenum boride (MBene) as a promising anode for lithium-ion batteries with superior electrochemical performance. Chem. Eng. J. 2022, 446, 137466. [Google Scholar] [CrossRef]
- Liu, G.; Yuan, W.; Zhao, Z.; Li, J.; Wu, N.; Guo, D.; Liu, X.; Liu, Y.; Cao, A.; Liu, X. Mo4/3B2Tx induced hierarchical structure and rapid reaction dynamics in MoS2 anode for superior sodium storage. Chem. Eng. J. 2024, 493, 152576. [Google Scholar] [CrossRef]
- Ozkan, M.; Quiros, K.A.M.; Watkins, J.M.; Nelson, T.M.; Singh, N.D.; Chowdhury, M.; Namboodiri, T.; Talluri, K.R.; Yuan, E. Curbing pollutant CO2 by using two-dimensional MXenes and MBenes. Chem 2024, 10, 443–483. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, D.; Kim, Y.H.; Duan, C.; Talapin, D.V.; Zhou, C. Evolution of Surface Chemistry in Two-Dimensional MXenes: From Mixed to Tunable Uniform Terminations. Angew. Chem. Int. Ed. 2024, 63, e202409480. [Google Scholar] [CrossRef] [PubMed]
- Fei, L.; Lei, L.; Xu, H.; Guo, X.; Chen, B.; Han, X.; Chen, X.; Huang, Q.; Wang, D. Ion transport behaviors in MXenes for electrochemical energy storage and conversion. Carbon Energy 2025, 7, e678. [Google Scholar] [CrossRef]
- Ahmad, S.; Xu, H.; Chen, L.; Din, H.U.; Zhou, Z. Functionalized MBenes as promising anode materials for high-performance alkali-ion batteries: A first-principles study. Nanotechnology 2024, 35, 285401. [Google Scholar] [CrossRef]
- Hayat, A.; Bashir, T.; Ahmed, A.M.; Ajmal, Z.; Alghamdi, M.M.; El-Zahhar, A.A.; Sohail, M.; Amin, M.A.; Al-Hadeethi, Y.; Ghasali, E.; et al. Novel 2D MBenes-synthesis, structure, properties with excellent performance in energy conversion and storage: A review. Mater. Sci. Eng. R 2024, 159, 100796. [Google Scholar] [CrossRef]
- Akgul, E.T.; Altıncı, O.C.; Umay, A.; Aghamohammadi, P.; Farghaly, A.A.; Ma, P.; Chen, Y.; Demir, M. Nanoengineering of 2D MBenes for energy storage applications: A review. J. Energy Storage 2024, 84, 110882. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, T.; Ali, M.; Meng, Y.; Jin, Y.; Cui, Y.; Chen, W. Rechargeable Batteries for Grid Scale Energy Storage. Chem. Rev. 2022, 122, 16610–16751. [Google Scholar] [CrossRef]
- Li, X.; Huang, Z.; Shuck, C.E.; Liang, G.; Gogotsi, Y.; Zhi, C. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 2022, 6, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Miao, N.; Gong, Y.; Zhang, H.; Shen, Q.; Yang, R.; Zhou, J.; Hosono, H.; Wang, J. Discovery of Two-dimensional Hexagonal MBene HfBO and Exploration on its Potential for Lithium-Ion Storage. Angew. Chem. Int. Ed. 2023, 62, e202308436. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, J.; Sun, Z. MBenes: Progress, challenges and future. J. Mater. Chem. A 2022, 10, 15865–15880. [Google Scholar] [CrossRef]
- Jing, T.; Zhang, N.; Zhang, C.; Mourdikoudis, S.; Sofer, Z.; Li, W.; Li, P.; Li, T.; Zuo, Y.; Rao, D. Improving C–N–FeOx Oxygen Evolution Electrocatalysts through Hydroxyl-Modulated Local Coordination Environment. ACS Catal. 2022, 12, 7443–7452. [Google Scholar] [CrossRef]
- Khan, A.J.; Shah, S.S.; Khan, S.; Mateen, A.; Iqbal, B.; Naseem, M.; He, L.; Zhang, Y.; Che, Y.; Tang, Y.; et al. 2D metal borides (MBenes): Synthesis methods for energy storage applications. Chem. Eng. J. 2024, 497, 154429. [Google Scholar] [CrossRef]
- Nair, V.G.; Birowska, M.; Bury, D.; Jakubczak, M.; Rosenkranz, A.; Jastrzębska, A.M. 2D MBenes: A novel member in the flatland. Adv. Mater. 2022, 34, 2108840. [Google Scholar] [CrossRef]
- Palei, S.; Murali, G.; Kim, C.-H.; In, I.; Lee, S.-Y.; Park, S.-J. A Review on Interface Engineering of MXenes for Perovskite Solar Cells. Nano-Micro Lett. 2023, 15, 123. [Google Scholar] [CrossRef]
- Bi, W.; Gao, G.; Li, C.; Wu, G.; Cao, G. Synthesis, properties, and applications of MXenes and their composites for electrical energy storage. Prog. Mater. Sci. 2024, 142, 101227. [Google Scholar] [CrossRef]
- Yuan, H.; Hua, J.; Wei, W.; Zhang, M.; Hao, Y.; Chang, J. Progress and prospect of flexible MXene-based energy storage. Carbon Energy 2024, 7, e639. [Google Scholar] [CrossRef]
- Qin, R.; Nong, J.; Wang, K.; Liu, Y.; Zhou, S.; Hu, M.; Zhao, H.; Shan, G. Recent Advances in Flexible Pressure Sensors Based on MXene Materials. Adv. Mater. 2024, 36, 2312761. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef] [PubMed]
- Kamysbayev, V.; Filatov, A.S.; Hu, H.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R.F.; Talapin, D.V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Torsi, R.; Younas, R.; Hinkle, C.L.; Rigosi, A.F.; Hill, H.M.; Zhang, K.; Huang, S.; Shuck, C.E.; Chen, C.; et al. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS Nano 2023, 17, 9694–9747. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Zan, L.; Dong, H.; Wei, Y.; Yu, Y.; Shu, J.; Zhang, J.-N.; Shan, C.-X. Work-function effect of Ti3C2/Fe-N-C inducing solid electrolyte interphase evolution for ultra-stable sodium storage. Nano Res. 2024, 17, 7163. [Google Scholar] [CrossRef]
- Jakubczak, M.; Szuplewska, A.; Rozmysłowska-Wojciechowska, A.; Rosenkranz, A.; Jastrzębska, A.M. Novel 2D MBenes—Synthesis, Structure, and Biotechnological Potential. Adv. Funct. Mater. 2021, 31, 2103048. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Chen, K.; Guo, Y.; Ma, D.; Chu, K. Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes. Angew. Chem. Int. Ed. 2023, 62, e202300054. [Google Scholar] [CrossRef]
- Park, S.J.; Nguyen, T.H.; Tran, D.T.; Dinh, V.A.; Lee, J.H.; Kim, N.H. Delaminated MBene sheets beyond usual 2D transition metal materials for securing Pt single atoms to boost hydrogen evolution. Energ. Environ. Sci. 2023, 16, 4093–4104. [Google Scholar] [CrossRef]
- De, S.K.; Aparna, T.K.; Krishna, K.R.G.; Bhattacharyya, S. Enhancing the electrochemical performance of TiVCTx MXene by tuning termination groups through different synthesis routes. Chem. Eng. J. 2025, 504, 158882. [Google Scholar] [CrossRef]
- Huang, P.; Han, W.-Q. Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. Nano-Micro Lett. 2023, 15, 68. [Google Scholar] [CrossRef]
- Hou, J.; Ji, S.; Ma, X.; Gong, B.; Wang, T.; Xu, Q.; Cao, H. Functionalized MXene composites for protection on metals in electric power. Adv. Colloid Interface Sci. 2025, 341, 103505. [Google Scholar] [CrossRef]
- Alameda, L.T.; Moradifar, P.; Metzger, Z.P.; Alem, N.; Schaak, R.E. Topochemical Deintercalation of Al from MoAlB: Stepwise Etching Pathway, Layered Intergrowth Structures, and Two-Dimensional MBene. J. Am. Chem. Soc. 2018, 140, 8833–8840. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, G.; Gvozdetskyi, V.; Batuk, M.; Wiaderek, K.M.; Sun, Y.; Wang, R.; Zhang, C.; Carnahan, S.L.; Wu, X.; Ribeiro, R.A.; et al. Topochemical Deintercalation of Li from Layered LiNiB: Toward 2D MBene. J. Am. Chem. Soc. 2021, 143, 4213–4223. [Google Scholar] [CrossRef]
- Alameda, L.T.; Lord, R.W.; Barr, J.A.; Moradifar, P.; Metzger, Z.P.; Steimle, B.C.; Holder, C.F.; Alem, N.; Sinnott, S.B.; Schaak, R.E. Multi-Step Topochemical Pathway to Metastable Mo2AlB2 and Related Two-Dimensional Nanosheet Heterostructures. J. Am. Chem. Soc. 2019, 141, 10852–10861. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, Q.; Xu, M.; Ren, J.; Guo, C.; Chen, C.; Geng, W.; Lei, W.; Zhao, X.; Liu, D. Efficient mechanical exfoliation of MXene nanosheets. Chem. Eng. J. 2023, 468, 143439. [Google Scholar] [CrossRef]
- Thakur, A.; Highland, W.J.; Wyatt, B.C.; Xu, J.; Chandran, B.S.N.; Zhang, B.; Hood, Z.D.; Adhikari, S.P.; Oveisi, E.; Pacakova, B.; et al. Synthesis of a 2D tungsten MXene for electrocatalysis. Nat. Synth. 2025. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Zhao, G.; Shen, M.; Gao, X.; Zhao, Y.; Liu, X.; Hou, L.; Yuan, C. General and Fast Gas–Solid Synthesis of Functional MXenes and Derivatives on the Scale of Tens of Grams. Angew. Chem. Int. Ed. 2024, 64, e202420287. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, X.; Jing, Y.; Li, Y. Electrochemical synthesis of urea on MBenes. Nat. Commun. 2021, 12, 4080. [Google Scholar] [CrossRef]
- Majed, A.; Torkamanzadeh, M.; Nwaokorie, C.F.; Eisawi, K.; Dun, C.; Buck, A.; Urban, J.J.; Montemore, M.M.; Presser, V.; Naguib, M. Toward MBenes Battery Electrode Materials: Layered Molybdenum Borides for Li-Ion Batteries. Small Methods 2023, 7, 2300193. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Mo, F.; Wang, J.; Ling, W.; Yu, M.; Huang, Y. MBene with Redox-Active Terminal Groups for an Energy-Dense Cascade Aqueous Battery. Adv. Mater. 2024, 36, 2311914. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H.; Zhang, C.; Gou, Y.; Gong, Z.; Jiang, Y.; Zeng, H.; Wang, J.; Meng, F.; Cui, Y. MBene Brønsted Acid Catalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte. ACS Catal. 2025, 15, 2885–2895. [Google Scholar] [CrossRef]
- Xiong, W.; Feng, X.; Huang, T.; Huang, Z.; He, X.; Liu, J.; Xiao, Y.; Wang, X.; Zhang, Q. Rapid synthesis of two-dimensional MoB MBene anodes for high-performance sodium-ion batteries. J. Mater. Sci. Technol. 2025, 212, 67–76. [Google Scholar] [CrossRef]
- Jiang, Y.; Lao, J.; Dai, G.; Ye, Z. Advanced Insights on MXenes: Categories, Properties, Synthesis, and Applications in Alkali Metal Ion Batteries. ACS Nano 2024, 18, 14050–14084. [Google Scholar] [CrossRef] [PubMed]
- Zarepour, A.; Ahmadi, S.; Rabiee, N.; Zarrabi, A.; Iravani, S. Self-Healing MXene- and Graphene-Based Composites: Properties and Applications. Nano-Micro Lett. 2023, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, Y.; Yang, N.; Bi, L. Unveiling the importance of the interface in nanocomposite cathodes for proton-conducting solid oxide fuel cells. Exploration 2024, 4, 20230082. [Google Scholar] [CrossRef] [PubMed]
- Lakmal, A.; Thombre, P.B.; Shuck, C.E. Solid-Solution MXenes: Synthesis, Properties, and Applications. Acc. Chem. Res. 2024, 57, 3007–3019. [Google Scholar] [CrossRef]
- Yong, B.; Wang, Y.; Zhao, H.; Wang, T.; Zhu, J.; Tai, J.; Ma, D.; Sun, S.; Mi, H.; He, T.; et al. A Trifunctional Hydroxylated Borophene-Mediated MXene Enabled Super-Stable and Fast-Kinetics Interface Storage. Adv. Funct. Mater. 2024, 34, 2316127. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Chen, R.; Dai, Y.; Zhang, J.; Yang, H.; Zong, W.; Jiang, Z.; Zhong, Y.; Wang, J.; et al. From Synthesis to Energy Storage, The Microchemistry of MXene and MBene. Adv. Energy Mater. 2024, 15, 2403757. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, Y.; Li, S.; Wang, L.; Han, B.; Cui, X.; Xu, Q. Revealing High-Rate and High Volumetric Pseudo-Intercalation Charge Storage from Boron-Vacancy Doped MXenes. Adv. Funct. Mater. 2023, 33, 2301994. [Google Scholar] [CrossRef]
- Pu, J.; Fan, S.; Shen, Z.; Yin, J.; Tan, Y.; Zhang, K.; Wu, B.; Hong, G.; Yao, Y. F-Free Fabrication Novel 2D Mo-Based MBene Catalyst for Advanced Lithium–Sulfur Batteries. Adv. Funct. Mater. 2025, 35, 2424215. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, X.; Wei, C.; Xi, B.; Xiong, S.; Feng, J. Unraveling Electronic Microenviroment of Iron Single Atom Modulated by Nitrogen-Bridged Ligands in MBene Toward Bilateral Sulfur Redox Chemistry. Adv. Funct. Mater. 2024, 34, 2410583. [Google Scholar] [CrossRef]
- Peng, C.; Liang, S.; Yu, Y.; Cao, L.; Yang, C.; Liu, X.; Guo, K.; Müller-Buschbaum, P.; Cheng, Y.J.; Wang, C. A chronicle of titanium niobium oxide materials for high-performance lithium-ion batteries: From laboratory to industry. Carbon Neutraliz. 2024, 3, 1036–1091. [Google Scholar] [CrossRef]
- Xia, H.C.; Qu, G.; Yin, H.B.; Zhang, J.A. Atomically Dispersed Metal Active Centers as a Chemically Tunable Platform for Energy Storage Devices. J. Mater. Chem. A 2020, 8, 15358–15372. [Google Scholar] [CrossRef]
- Rana, M.; Alghamdi, N.; Peng, X.; Huang, Y.; Wang, B.; Wang, L.; Gentle, I.R.; Hickey, S.; Luo, B. Scientific issues of zinc-bromine flow batteries and mitigation strategies. Exploration 2023, 3, 20220073. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Kim, N.-Y.; Ju, Z.; Hong, Y.-K.; Kang, K.-D.; Pang, J.-H.; Lee, S.-J.; Chae, S.-S.; Park, M.-S.; Kim, J.-Y.; et al. Upscaling high-areal-capacity battery electrodes. Nat. Energy 2025, 10, 295–307. [Google Scholar] [CrossRef]
- Park, C.Y.; Kim, J.; Lim, W.G.; Lee, J. Toward maximum energy density enabled by anode-free lithium metal batteries: Recent progress and perspective. Exploration 2023, 4, 20210255. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Y.; Yang, Z.; Zhou, H.; Ni, D.; Li, C.; Li, Q.; Zhang, X. Heterostructured CoO/MoB MBene composites for high performance lithium-ion batteries anode. iScience 2025, 28, 112133. [Google Scholar] [CrossRef]
- Tao, H.; Xiong, Z.; Yabin, A.; Shasha, Z.; Chen, L.; Xianzhong, S.; Kai, W.; Yanwei, M. Nanoarchitectonics and applications of two-dimensional materials as anodes for lithium-ion capacitors. Energy Mater. 2025, 5, 500003. [Google Scholar]
- He, R.; Zhong, W.; Wu, Y.; Liu, W.; Cai, C.; Cheng, S.; Huang, L.; Xie, J. Two-Layer Graphite Anode for Energy and Power Densified LiFePO4 Battery. Adv. Mater. 2025, 2501185. [Google Scholar] [CrossRef]
- Xia, H.C.; Li, K.X.; Guo, Y.Y.; Guo, J.H.; Xu, Q.; Zhang, J.N. CoS2 nanodots trapped within graphitic structured N-doped carbon spheres with efficient performances for lithium storage. J. Mater. Chem. A 2018, 6, 7148–7154. [Google Scholar] [CrossRef]
- Rout, C.S.; Shinde, P.V.; Patra, A.; Jeong, S.M. Recent Developments and Future Perspectives of Molybdenum Borides and MBenes. Adv. Sci. 2024, 11, 2308178. [Google Scholar] [CrossRef]
- Shen, Q.; Shi, Y.; He, Y.; Wang, J. Defect Engineering of Hexagonal MAB Phase Ti2InB2 as Anode of Lithium-Ion Battery with Excellent Cycling Stability. Adv. Sci. 2024, 11, 2308589. [Google Scholar] [CrossRef] [PubMed]
- Miao, N.; Wang, J.; Gong, Y.; Wu, J.; Niu, H.; Wang, S.; Li, K.; Oganov, A.R.; Tada, T.; Hosono, H. Computational Prediction of Boron-Based MAX Phases and MXene Derivatives. Chem. Mater. 2020, 32, 6947–6957. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, Z.; Li, X.; Wang, Y.; Li, P.; Cui, H.; Zhang, R.; Yang, S.; Zhang, S.; Zhi, C. MBene promoted Zn peroxide chemistry in rechargeable near-neutral Zn–air batteries. Energ. Environ. Sci. 2023, 16, 3407–3415. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Wu, F.; Zou, G.; Gaumet, J.-J.; Li, J.; Fernandez, C.; Wang, Y.; Peng, Q. Nitrogen-Anchored Boridene Enables Mg–CO2 Batteries with High Reversibility. J. Am. Chem. Soc. 2024, 146, 9967–9974. [Google Scholar] [CrossRef]
- Zhang, Z.; Ling, W.; Ma, N.; Wang, J.; Chen, X.; Fan, J.; Yu, M.; Huang, Y. Ultralong Cycle Life and High Rate of Zn‖I2 Battery Enabled by MBene-Hosted I2 Cathode. Adv. Funct. Mater. 2024, 34, 2310294. [Google Scholar] [CrossRef]
- Chen, Y.-Z.; Mao, T.-T.; Liao, S.-Y.; Yao, S.X.; Min, Y.-G. Layered MoxBy (MBenes) derived by a molten-salt method and their application in advanced LIB anodes. J. Mater. Chem. A 2024, 12, 12163–12172. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, H.; Wei, H.; Wang, H.; Xie, H.; Xu, Z.; Ni, D.; Li, C.; Bollella, P.; Li, J.; et al. Superior performance lithium-ion battery anode based on Co9S8 nanoparticles layered in-situ growth with capacitive synergy. J. Colloid Interface Sci. 2025, 688, 505–516. [Google Scholar] [CrossRef]
- Zhang, W.; He, L.; Chen, Y.; Wu, Z.; Yu, P.; Chen, K.; Ge, F.; Li, M.; Yu, L.; Lin, N.; et al. Unraveling the potential of MXenes as multifunctional cathodes: Innovations and challenges for next-generation energy storage systems. Mater. Sci. Eng. R 2025, 164, 100975. [Google Scholar] [CrossRef]
- He, Y.; Wang, L.; Wang, A.; Zhang, B.; Pham, H.; Park, J.; He, X. Insight into uniform filming of LiF-rich interphase via synergistic adsorption for high-performance lithium metal anode. Exploration 2023, 4, 20230114. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, Q.; Yu, Y.; Liu, Y.; Chen, A.; Guan, J.; Wang, H.; Liu, W.; Liu, X.; Liu, X.; et al. Application of transition metal boride nanosheet as sulfur host in high loading Li-S batteries. Chem. Eng. J. 2023, 452, 139366. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, D.; Wei, S.; Xing, K.; Li, M.; Jiang, Y.; Yuan, R.; Chen, G.; Hu, Z.; Huang, Y.; et al. MXene Hollow Microsphere-Boosted Nanocomposite Electrodes for Thermocells with Enhanced Thermal Energy Harvesting Capability. ACS Nano 2025, 19, 3392–3402. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.C.; Zhao, D.M.; Wei, R.; Duan, Z.Y.; Zhao, Y.X.; Li, Z.Y.; Lin, T.H.; Li, C.W. Multifunctional elastomeric composites based on 3D graphene porous materials. Exploration 2024, 4, 20230057. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Peng, Q.; Yang, M.; Hu, H.; Ding, J.; Chen, Y.; Gong, X.; Yang, J.; Qu, Y.; Zhou, Z.; et al. Boosted Li2CO3 reversible conversion utilizing Cu-doped TiB MBene/graphene for Li–CO2 batteries. J. Mater. Chem. A 2024, 12, 25887–25895. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, H.; Zhang, M.; Yang, N.; Cong, S.; Zhao, H.; Wang, X.; Xiong, S.; Li, K.; Zhou, A. A Highly Conductive and Supercapacitive MXene/N-CNT Electrode Material Derived from a MXene-Co-Melamine Precursor. ACS Appl. Electron. Mater. 2023, 5, 2506–2517. [Google Scholar] [CrossRef]
- Fan, S.; Ai, D.; Zhang, W.; Yang, R.; Shen, G.; Yang, X.; Cheng, Y.; Yu, X. In-plane aligned doping pattern in electrospun PEI/MBene nanocomposites for high-temperature capacitive energy storage. Mater. Horiz. 2025, 12, 2267–2278. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, Y.; Qiu, J.; Cheng, J.; Xu, Y.; Wang, Y. Insights into molecular interactions at organic-MBene heterointerfaces for efficient Zn-ion storage. J. Colloid Interface Sci. 2025, 678, 95–104. [Google Scholar] [CrossRef]
- Jing, C.; Huang, L.; Tao, S.; Chen, Y.; Zhang, S.; Dong, W.; Ling, F.; Tang, X.; Li, Y.; Feng, L.; et al. Construction of MoB@LDH heterojunction and its derivates through phase and interface engineering for advanced supercapacitor applications. J. Colloid Interface Sci. 2024, 660, 10–20. [Google Scholar] [CrossRef]
- Nam, S.W.; Nguyen, T.H.; Tran, D.T.; Dinh, V.A.; Ta, T.T.N.; Dong, C.-L.; Kim, N.H.; Lee, J.H. Molecularly engineered potential of d-orbital modulated iron-bridged delaminated MBene for rechargeable Zn–air batteries. Energ. Environ. Sci. 2024, 17, 6559–6570. [Google Scholar] [CrossRef]
- Shi, Y.; Song, G.; Yang, B.; Tang, Y.; Liu, Z.; Zhang, Z.; Shakouri, M.; Cheng, J.; Pang, H. Prussian Blue Analogues “Dressed” in MXene Nanosheets Tightly for High Performance Lithium-Ion Batteries. Adv. Mater. 2025, 37, 2416665. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, Z.; Zhang, R.; Cui, H.; Yang, Q.; Zhi, C. Recent advances and interfacial challenges in solid-state electrolytes for rechargeable Li-air batteries. Exploration 2023, 3, 20220051. [Google Scholar] [CrossRef]
- Li, T.; Zhu, C.; Yang, X.; Gao, Y.; He, W.; Yue, H.; Zhao, H. Co3O4 nanoneedle@electroactive nickel boride membrane core/shell arrays: A novel hybrid for enhanced capacity. Electrochim. Acta 2017, 246, 226–233. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Huang, B.; Mao, Z.; Wang, R.; He, B.; Gong, Y.; Wang, H. Abundant heterointerfaces in MOF-derived hollow CoS2–MoS2 nanosheet array electrocatalysts for overall water splitting. J. Energy Chem. 2021, 57, 99–108. [Google Scholar] [CrossRef]
- Luo, Y.; Handy, J.V.; Das, T.; Ponis, J.D.; Albers, R.; Chiang, Y.-H.; Pharr, M.; Schultz, B.J.; Gobbato, L.; Brown, D.C.; et al. Effect of pre-intercalation on Li-ion diffusion mapped by topochemical single-crystal transformation and operando investigation. Nat. Mater. 2024, 23, 960–968. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Ren, D.; Wang, L.; He, X. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Mater. 2021, 36, 147–170. [Google Scholar] [CrossRef]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.-E.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ. Environ. Sci. 2014, 7, 1597. [Google Scholar] [CrossRef]
- Wu, F.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energ. Environ. Sci. 2017, 10, 435–459. [Google Scholar] [CrossRef]
- Yun, Q.; Li, L.; Hu, Z.; Lu, Q.; Chen, B.; Zhang, H. Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage. Adv. Mater. 2020, 32, e1903826. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ren, L.; Chen, X.; Wang, Q.; Chen, C.; Fan, J.; Wang, S.; Binas, V.; Shen, S. Well-defined nanostructures of high entropy alloys for electrocatalysis. Exploration 2024, 5, 20230036. [Google Scholar] [CrossRef]
- Dopilka, A.; Larson, J.M.; Cha, H.; Kostecki, R. Synchrotron Near-Field Infrared Nanospectroscopy and Nanoimaging of Lithium Fluoride in Solid Electrolyte Interphases in Li-Ion Battery Anodes. ACS Nano 2024, 18, 15270–15283. [Google Scholar] [CrossRef]
- Hobold, G.M.; Wang, C.; Steinberg, K.; Li, Y.; Gallant, B.M. High lithium oxide prevalence in the lithium solid–electrolyte interphase for high Coulombic efficiency. Nat. Energy 2024, 9, 580–591. [Google Scholar] [CrossRef]
- Dou, Y.; Zhao, L.; Liu, Y.; Zhang, Z.; Zhang, Y.; Li, R.; Liu, X.; Zhou, Y.; Wang, J.; Wang, J. High-abundance and low-cost anodes for sodium-ion batteries. Carbon Neutraliz. 2024, 3, 954–995. [Google Scholar] [CrossRef]
- Zhu, Y.-F.; Xiao, Y.; Dou, S.-X.; Kang, Y.-M.; Chou, S.-L. Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries. eScience 2021, 1, 13–27. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, R.; Zhang, Q.; Ma, Y.; Gao, B.; Li, Z. Theoretical investigation of the V2BX2 (X = S, Se, and Te) monolayers as anode materials for Na-ion batteries. Mater. Today Commun. 2023, 35, 105923. [Google Scholar] [CrossRef]
- Mao, H.; Yang, S.; Yang, Y.; Yang, J.; Yuan, G.; Zheng, M.; Hu, H.; Liang, Y.; Yu, X. Hybrid catalyst-assisted synthesis of multifunctional carbon derived from Camellia shell for high-performance sodium-ion batteries and sodium-ion hybrid capacitors. Carbon Neutraliz. 2024, 3, 673–688. [Google Scholar] [CrossRef]
- Liang, B.; Ma, N.; Wang, Y.; Wang, T.; Fan, J. N-functionalized Ti2B MBene as high-performance anode materials for sodium-ion batteries: A DFT study. Appl. Surf. Sci. 2022, 599, 153927. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, P.; Zan, L.; Qu, G.; Tu, Y.; Zhu, K.; Wei, Y.; Wei, Z.; Zheng, F.; Zhang, M.; et al. Probing the active sites of 2D nanosheets with Fe-N-C carbon shell encapsulated FexC/Fe species for boosting sodium-ion storage performances. Nano Res. 2021, 15, 7154–7162. [Google Scholar] [CrossRef]
- Xia, H.C.; Zan, L.X.; Wei, Y.F.; Guo, K.; Yan, W.F.; Deng, D.H.; Zhang, J.N. Catalytic Effect of Carbon-Based Electrode Materials in Energy Storage Devices. Sci. China Mater. 2022, 65, 3229–3242. [Google Scholar] [CrossRef]
- Wei, Y.; Zan, L.; Xia, H.; Yan, W.; Zhang, J.-N. Mechanism of interfacial effects in sodium-ion storage devices. Nano Res. 2023, 17, 1313–1326. [Google Scholar] [CrossRef]
- Huang, W.G.; Bin Zulkifli, M.Y.; Chai, M.; Lin, R.J.; Wang, J.J.; Chen, Y.L.; Chen, V.; Hou, J.W. Recent advances in enzymatic biofuel cells enabled by innovative materials and techniques. Exploration 2023, 3, 20220145. [Google Scholar] [CrossRef]
- Bi, W.; Li, S.; Wang, W.; Liu, Y.; Shen, J.; Gao, G.; Zhang, Z.; Wu, G.; Cao, G. MXenes and their composites as electrodes for sodium ion batteries. Energy Storage Mater. 2024, 71, 103568. [Google Scholar] [CrossRef]
- Cheng, W.D.; Zhao, M.Y.; Lai, Y.C.; Wang, X.; Liu, H.Y.; Xiao, P.; Mo, G.; Liu, B.; Liu, Y.P. Recent advances in battery characterization using in situ XAFS, SAXS, XRD, and their combining techniques: From single scale to multiscale structure detection. Exploration 2024, 4, 20230056. [Google Scholar] [CrossRef]
- Guan, Y.; Jiang, S.; Ding, Y.; Xiao, B.; Pi, Y.; Wang, Z.; Cong, Y. Insight into the mechanism of nitrogen doping in MXenes with controllable surface chemistry. Mater. Today Energy 2024, 44, 101642. [Google Scholar] [CrossRef]
- Jia, J.; Li, B.; Duan, S.; Cui, Z.; Gao, H. Monolayer MBenes: Prediction of anode materials for high-performance lithium/sodium ion batteries. Nanoscale 2019, 11, 20307–20314. [Google Scholar] [CrossRef]
- Bo, T.; Liu, P.-F.; Zhang, J.; Wang, F.; Wang, B.-T. Tetragonal and trigonal Mo2B2 monolayers: Two new low-dimensional materials for Li-ion and Na-ion batteries. Phys. Chem. Chem. Phys. 2019, 21, 5178–5188. [Google Scholar] [CrossRef]
- Liu, G.; Xu, M.; Cao, R.; Zhao, Z.; Yuan, W.; Liu, Y.; Cao, A.; Wang, L.; Liu, X. Mo4/3B2Tx boosting the electrochemical kinetics and Na2S adsorption of SnS anode in sodium ion batteries. J. Colloid Interface Sci. 2025, 695, 137801. [Google Scholar] [CrossRef] [PubMed]
- Kashif Masood, M.; Wang, J.; Song, J.; Liu, Y. A novel two-dimensional whorled CrB4 and MoB4 as high-performance anode material for metal ion batteries. Appl. Surf. Sci. 2024, 652, 159301. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, Y.; Liang, Y.; Shi, L.; Ma, R.; Qiu, X.; Li, Y.; Guo, N.; Zhuang, Q.; Xi, B.; et al. Substitution Index-Prediction Rules for Low-Potential Plateau of Hard Carbon Anodes in Sodium-Ion Batteries. Adv. Mater. 2025, 2417886. [Google Scholar] [CrossRef]
- Cai, C.; Li, X.; Li, J.; Yu, R.; Hu, P.; Zhu, T.; Li, T.; Lee, S.; Xu, N.; Fan, H.; et al. Transition metal vacancy and position engineering enables reversible anionic redox reaction for sodium storage. Nat. Commun. 2025, 16, 100. [Google Scholar] [CrossRef]
- Tang, S.; Li, J.; Yuan, Q.; Wang, T.; Xiang, W.; Yu, J.S. Robust Sodium Storage Enabled by Heterogeneous Engineering and Electrolyte Modification. Adv. Energy Mater. 2025, 15, 2404418. [Google Scholar] [CrossRef]
- Wang, F.; Chen, L.; Wei, J.; Diao, C.; Li, F.; Du, C.; Bai, Z.; Zhang, Y.; Malyi, O.I.; Chen, X.; et al. Pushing slope- to plateau-type behavior in hard carbon for sodium-ion batteries via local structure rearrangement. Energ. Environ. Sci. 2025, 18, 4312–4323. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.-W.; Chu, Y.; Zhang, J.; Xue, H.; Jia, Y.; Cao, T.; Qiu, D.; Zou, X.; Wang, D.-W.; et al. Redefining closed pores in carbons by solvation structures for enhanced sodium storage. Nat. Commun. 2025, 16, 3634. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Yi, Z.; Yu, H.; Jia, W.; Dai, L.; Yang, J.; Chen, J.; Xie, L.; Su, F.; Chen, C.-M. Fractal dimension revealed from SAXS as a descriptor of structural disorder in hard carbon anodes of sodium ion battery. Chin. Chem. Lett. 2025, 111124. [Google Scholar] [CrossRef]
- Dong, S.; Chen, Z.; Liu, H.; Zhang, Y.; Yan, X.; Cui, Z.; Jiang, Z.; Li, J.; Xu, H.; Peng, W.; et al. Accordion-like structure MBene with ordered metal vacancies as catalytic host material to enhance Se reaction kinetics in aqueous Cu-Se batteries. Adv. Funct. Mater. 2025, 2425475. [Google Scholar] [CrossRef]
- Xia, Y.; Que, L.; Yu, F.; Deng, L.; Liang, Z.; Jiang, Y.; Sun, M.; Zhao, L.; Wang, Z. Tailoring Nitrogen Terminals on MXene Enables Fast Charging and Stable Cycling Na-Ion Batteries at Low Temperature. Nano-Micro Lett. 2022, 14, 143. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, J.; Guo, X.; Cao, X.; Wang, S.; Liu, H.; Wang, G. Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions. Chem. Soc. Rev. 2023, 52, 3215–3264. [Google Scholar] [CrossRef]
- Ma, P.; Zhang, Z.; Wang, J.; Li, H.; Yang, H.Y.; Shi, Y. Self-Assembled 2D VS2/Ti3C2Tx MXene Nanostructures with Ultrafast Kinetics for Superior Electrochemical Sodium-Ion Storage. Adv. Sci. 2023, 10, 2304465. [Google Scholar] [CrossRef]
- Kuang, J.; Liu, Z.; Fu, L.; Shi, Y.; Zhang, M.; Wang, Y.; Ding, N.; Sun, D.; Tang, Y.; Wang, H. Charge Tuning and Anchor Effect Achieving Stable High-Voltage Layered Metal Oxides for Sodium-Ion Battery. Angew. Chem. Int. Ed. 2025, 137, e202500715. [Google Scholar] [CrossRef]
- Jin, J.; Hu, L.; Hu, T.; He, X.; Xia, Y.; Zhang, J.; Gan, Y.; Fang, R.; Xia, X.; Zhang, W.; et al. MXene-Induced 2D Hard Carbon with In Situ Embedding of TiC Scaffolds Enabling Fast Na+ Diffusion and Interfacial Stabilization. Small 2025, 21, 2412196. [Google Scholar] [CrossRef]
- Pan, F.; Li, Z.; Yao, S.; Liu, J.; Wei, Z.; Chen, X.; Xie, Y.; Du, F. Combined intercalation and space-charge mechanism enabled high-capacity, ultrafast and long-lifespan sodium-ion storage for chalcogenide anodes. Energ. Environ. Sci. 2025, 18, 1856–1866. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, H.; Wang, X.; Xie, X.; Li, Y.; Ma, G.; Lei, Z. Micropore filling and sodium cluster formation in optimized hard carbon for robust sodium storage. J. Energy Chem. 2025, 108, 118–128. [Google Scholar] [CrossRef]
- Xia, H.; Zan, L.; Qu, G.; Tu, Y.; Dong, H.; Wei, Y.; Zhu, K.; Yu, Y.; Hu, Y.; Deng, D.; et al. Evolution of a solid electrolyte interphase enabled by FeNx/C catalysts for sodium-ion storage. Energ. Environ. Sci. 2022, 15, 771–779. [Google Scholar] [CrossRef]
- Wen, X.; Tang, D.; Li, J.; Li, R.; Li, S.; Zhang, J.; Fu, T.; Fan, S.; Lu, Y.; Wei, Q.; et al. Ultrathin Mesoporous Sandwiched Junctions with Monolayered Mesopores for Ultrahigh-Rate Sodium-Ion Storage. Nano Lett. 2025, 25, 8003–8011. [Google Scholar] [CrossRef]
- Xia, H.; Zan, L.; Yuan, P.; Qu, G.; Dong, H.; Wei, Y.; Yu, Y.; Wei, Z.; Yan, W.; Hu, J.S.; et al. Evolution of Stabilized 1T-MoS2 by Atomic-Interface Engineering of 2H-MoS2/Fe−Nx towards Enhanced Sodium Ion Storage. Angew. Chem. Int. Ed. 2023, 62, e202218282. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yu, X.; Tian, Z.; Yang, X.; Xu, J. Carbonaceous catalyst boosting conversion kinetics of Na2S in Na-ion batteries. Energy Storage Mater. 2025, 74, 103899. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, M.; Hu, X.; Yuan, J.; Liao, W.; Sheng, L.; Chen, Y.; Wu, Y.; Zhan, H.; Wen, Z. Anion Defects Engineering of Ternary Nb-Based Chalcogenide Anodes Toward High-Performance Sodium-Based Dual-Ion Batteries. Nano-Micro Lett. 2023, 15, 104. [Google Scholar] [CrossRef]
- Yin, H.; Xiao, B.; Yu, Z.-P.; Cunha, J.; Çaha, İ.; Zhang, T.-Q.; Hou, Z.-H.; Li, G.-Y. Embedding CoS2 nanoparticles within hierarchically porous carbon matrix for enhanced sodium-ion storage and cyclic stability. Rare Met. 2025. [Google Scholar] [CrossRef]
- Wu, S.; Tang, F.; Zhang, K.; Zhang, L.; Huang, F. Synergistic Long- and Short-Range Sodium-Ion Transport Pathways for Enhanced Low-Temperature Performance in Ceramic-DEE-Polymer Electrolytes. Adv. Funct. Mater. 2025, 2501107. [Google Scholar] [CrossRef]
- Nie, Z.; Liu, C.; Lai, Q.-S.; Li, W.; Li, Q.; Yang, R.; Gao, X.-W.; Gu, Q.; Luo, W.-B. Constructing multiphase junction towards layer-structured cathode material for enhanced sodium ion batteries. Energy Storage Mater. 2025, 74, 103971. [Google Scholar] [CrossRef]
- Zhang, G.; Fu, C.; Gao, S.; Zhao, H.; Ma, C.; Liu, Z.; Li, S.; Ju, Z.; Huo, H.; Zuo, P.; et al. Regulating Interphase Chemistry by Targeted Functionalization of Hard Carbon Anode in Ester-Based Electrolytes for High-Performance Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2025, 64, e202424028. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Lu, Y.; Lu, X.; Chen, H.; Wu, X.; Wu, M.; Xu, F.; Wen, Z. Surface Engineering through In Situ Construction of CoxB-Spinel Dual Coating Layers for High-Voltage Stable Sodium-Ion Batteries. Adv. Energy Mater. 2024, 14, 2303773. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, P.; Soomro, R.A.; Zhu, Q.; Xu, B. Advances in the Synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103148. [Google Scholar] [CrossRef] [PubMed]
Materials | Types | Capacity (mA h/g) | Diffusion Energy (eV) | Refs. |
---|---|---|---|---|
Mo2B2 | LIBs | 444 | 0.270 | [23] |
TiB | LIBs | 480 | 0.020 | [24] |
SIBs | 480 | 0.020 | [24] | |
Ti2B2 | LIBs | 456 | 0.017 | [25] |
SIBs | 342 | 0.008 | [25] | |
Ti3C2 | LIBs | 320 | 0.280 | [26] |
SIBs | 370 | — | [27] | |
Ti2C | SIBs | 359 | — | [28] |
Graphene | LIBs | 372 | 0.400 | [29] |
MoS2 | SIBs | 669 | 0.460 | [30,31] |
Black phosphorus | LIBs | 2596 | 0.080 | [32] |
Monolayer h-BN | LIBs | 762 | 0.100 | [33,34] |
SIBs | 571 | — | [33] | |
g-C3N4 | LIBs | 1166 | 0.570 | [35,36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Hu, Y.; Lan, H.; Xia, H. Unlocking the Potential of MBenes in Li/Na-Ion Batteries. Molecules 2025, 30, 2831. https://doi.org/10.3390/molecules30132831
Li Z, Hu Y, Lan H, Xia H. Unlocking the Potential of MBenes in Li/Na-Ion Batteries. Molecules. 2025; 30(13):2831. https://doi.org/10.3390/molecules30132831
Chicago/Turabian StyleLi, Zixin, Yao Hu, Haihui Lan, and Huicong Xia. 2025. "Unlocking the Potential of MBenes in Li/Na-Ion Batteries" Molecules 30, no. 13: 2831. https://doi.org/10.3390/molecules30132831
APA StyleLi, Z., Hu, Y., Lan, H., & Xia, H. (2025). Unlocking the Potential of MBenes in Li/Na-Ion Batteries. Molecules, 30(13), 2831. https://doi.org/10.3390/molecules30132831