Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (562)

Search Parameters:
Keywords = alginate gel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6038 KB  
Article
Novel Alginate-Based Physical Hydrogels: Promising Cleaning Tools for Sensitive Artifacts
by Matteo Ferretti, Maduka L. Weththimuni, Donatella Sacchi, Chiara Milanese, Alessandro Girella, Barbara Vigani, Gaia Zucca, Alice Pedalà, Nicola Razza and Maurizio Licchelli
Polymers 2025, 17(22), 2976; https://doi.org/10.3390/polym17222976 - 8 Nov 2025
Viewed by 397
Abstract
Natural polysaccharides are used for very different applications and are particularly exploited for preparing hydrogel materials. For instance, gels based on different carbohydrate polymers have been applied to remove unwanted materials from the surface of cultural heritages items. This study was focused on [...] Read more.
Natural polysaccharides are used for very different applications and are particularly exploited for preparing hydrogel materials. For instance, gels based on different carbohydrate polymers have been applied to remove unwanted materials from the surface of cultural heritages items. This study was focused on the preparation of novel physical hydrogels suitable for the cleaning of sensitive materials like wood and paper, i.e., to remove the soil from their surface. For this purpose, alginate biopolymer was used and ionically crosslinked with six different amines, in the presence of N-hydroxysuccinimide as a co-gelling agent. All the synthetized gel materials were characterized by a multianalytical approach, using different techniques such as FT-IR, thermal analysis, SEM-EDS, mechanical tests, and evaluation of moisture properties. All the results showed that the introduction of the investigated amines improved the original properties of alginate and provided good cleaning properties when applied to sensitive surfaces. Full article
(This article belongs to the Special Issue Biobased and Biodegradable Polymer Blends and Composites II)
Show Figures

Figure 1

16 pages, 9012 KB  
Article
A Study on the Adsorption of Cd(II) in Aqueous Solutions by Fe-Mn Oxide-Modified Algal Powder Gel Beads
by Saijun Zhou, Zixuan Peng, Jiarong Zou, Jinsui Qin, Renjian Deng, Chuang Wang, Yazhou Peng, Andrew Hursthouse and Mingjun Deng
J. Compos. Sci. 2025, 9(11), 606; https://doi.org/10.3390/jcs9110606 - 5 Nov 2025
Viewed by 179
Abstract
Using Microcystis aeruginosa as the raw material, the microalgae was modified through a potassium permanganate–ferrous sulfate treatment process to prepare Fe-Mn oxide-modified algal powder. Sodium alginate was then combined with this modified powder to create Fe-Mn-modified algal powder gel beads, which were employed [...] Read more.
Using Microcystis aeruginosa as the raw material, the microalgae was modified through a potassium permanganate–ferrous sulfate treatment process to prepare Fe-Mn oxide-modified algal powder. Sodium alginate was then combined with this modified powder to create Fe-Mn-modified algal powder gel beads, which were employed for the adsorption of Cd(II) from water. At pH = 9, with dosage of 6 g·L−1 and a contact time of 8 h, the Cd(II) solution at an initial level of 1.0 mg·L−1 achieved a removal efficiency of 96%, and the maximum adsorption capacity is 15.06 mg·g−1. The adsorption behavior conformed to the Langmuir isotherm and obeyed the pseudo-second-order kinetics, and was primarily governed by chemical adsorption. This involved complexation with hydroxyl (-OH) and carboxyl (-COO) functional groups, the ion exchange of Ca2+ with Cd(II), and surface complexation on Fe-Mn oxides. This study provides a valuable basis for the resource utilization of algae and the remediation of Cd contamination. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

17 pages, 1925 KB  
Article
Influence of Calcium Crosslinker Form on Alginate Hydrogel Properties
by Solomiia Kapatsila, Roman Taras, Diana Varchuk, Nataliia Nosova, Serhii Varvarenko and Volodymyr Samaryk
Gels 2025, 11(11), 885; https://doi.org/10.3390/gels11110885 - 4 Nov 2025
Viewed by 504
Abstract
Alginate hydrogels are attractive for biomedical applications and drug delivery due to their biocompatibility and biodegradability. However, calcium-crosslinked alginates often exhibit only moderate absorption properties compared with synthetic hydrogels. This study examined how the form of calcium ion delivery affects the mechanical, swelling, [...] Read more.
Alginate hydrogels are attractive for biomedical applications and drug delivery due to their biocompatibility and biodegradability. However, calcium-crosslinked alginates often exhibit only moderate absorption properties compared with synthetic hydrogels. This study examined how the form of calcium ion delivery affects the mechanical, swelling, and morphological characteristics of calcium-crosslinked alginate hydrogels. We prepared four alginate hydrogel samples in which Ca2+ was introduced on different polyacrylate polymer carriers, and a reference hydrogel crosslinked with calcium citrate. All samples were characterized by equilibrium swelling, gel fraction determination, and rheological frequency-sweep measurements. Also, the average mesh size was estimated using two independent theoretical approaches. Hydrogels prepared with calcium salt of polyacrylic acid (PAA) exhibited higher mechanical strength and higher water swelling than the citrate-crosslinked reference. Calculated mean mesh sizes for the citrate system ranged from 58 to 221 nm, whereas high-molecular-weight crosslinked systems showed a broader distribution (68–708 nm). These results demonstrate that the form of Ca2+ introduction significantly influences network architecture and functional properties and indicates that tuning the carrier form of calcium provides a practical route to design swelling, mesh size, and mechanical behavior of alginate-based hydrogels for specific biomedical or delivery applications. Full article
Show Figures

Figure 1

25 pages, 6936 KB  
Article
Sustainable Cyclodextrin Modification and Alginate Incorporation: Viscoelastic Properties, Release Behavior, and Morphology in Bulk and Microbead Hydrogel Systems
by Maja Čič, Nejc Petek, Iztok Dogša, Andrijana Damjanović, Boštjan Genorio, Nataša Poklar Ulrih and Ilja Gasan Osojnik Črnivec
Gels 2025, 11(11), 875; https://doi.org/10.3390/gels11110875 - 1 Nov 2025
Viewed by 253
Abstract
Incorporating cyclodextrins (CDs) into ionically crosslinked polysaccharide matrices offers a promising strategy for developing well-defined, safe-by-design and biocompatible carrier systems with tunable rheological properties. In this study, β-cyclodextrin (β-CD) was functionalized with citric acid (CDC) and maleic anhydride (CDM) using [...] Read more.
Incorporating cyclodextrins (CDs) into ionically crosslinked polysaccharide matrices offers a promising strategy for developing well-defined, safe-by-design and biocompatible carrier systems with tunable rheological properties. In this study, β-cyclodextrin (β-CD) was functionalized with citric acid (CDC) and maleic anhydride (CDM) using solvent-free synthesis to improve compatibility with alginate hydrogels. The modified CDs were characterized by FTIR, 1H NMR, DLS, zeta potential, and MS, confirming successful esterification (4.0 and 3.4 –OH substitution for CDC and CDM, respectively) and stable aqueous dispersion. Rheological measurements showed that native CD accelerated gelation (within approximately 30 s), while CDC and CDM delayed crosslinking (by 2 to 13 min) and reduced gel strength, narrowing the linear viscoelastic range to 0.015–0.089% strain due to competition between polycarboxylated CDs and alginate chains for Ca2+ ions. Vibrational prilling produced alginate microbeads with diameters of 800–1000 µm and a simultaneous increase in size and CD concentration. Hydrogels demonstrated high CD retention (>80% after 28 h) and slightly greater release of CDC and CDM than native CD. Overall, solvent-free modification of CDs with citric and maleic acids provides a sustainable approach to tailoring the gelation kinetics, viscoelasticity, and release behavior of alginate-based hydrogels, offering a versatile, food- and health-compliant platform for controlled delivery of bioactive compounds. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities (2nd Edition))
Show Figures

Graphical abstract

17 pages, 2578 KB  
Article
Comparing the Printability, Biological and Physicochemical Properties of Bio-Based Photo-Crosslinkable Hydrogels
by Ane García-García, Unai Silván, Leyre Pérez-Álvarez and Senentxu Lanceros
Polymers 2025, 17(21), 2867; https://doi.org/10.3390/polym17212867 - 28 Oct 2025
Viewed by 409
Abstract
Bio-based photo-crosslinkable hydrogels are used in tissue engineering as three-dimensional printable scaffolds due to their functional and biological similarities with the extracellular matrix (ECM). In this work, emerging bioink candidates such as chitosan, alginate and gelatin-based photo-crosslinkable hydrogel were developed using extrusion-based 3D [...] Read more.
Bio-based photo-crosslinkable hydrogels are used in tissue engineering as three-dimensional printable scaffolds due to their functional and biological similarities with the extracellular matrix (ECM). In this work, emerging bioink candidates such as chitosan, alginate and gelatin-based photo-crosslinkable hydrogel were developed using extrusion-based 3D printing to establish a better understanding of their applicability. The polymers were methacrylated by the same methacrylation reaction pathway, which enabled successful light-induced 3D printing. Morphology, swelling (6–40%), mechanical (Young’s modulus, 0.1–0.5 KPa) and rheological properties (300–1000 Pa), degradation kinetics (10->60 days) and printability of the gels were also characterized in identical conditions for the first time. 3D-printability results indicated that methacrylated gelatin enhanced printability, shape fidelity and integrity of printed structures compared to methacrylated alginate, which presents structural instability and poorer printing control due to its low crosslink density. Moreover, cell attachment and Live/Dead assays using bone marrow-derived mesenchymal stem cells (BM-MSCs) showed that all formulations have good biocompatibility for use as scaffolds. Specifically, gelatin-based hydrogels showed a higher level of BM-MSCs attachment and spreading than the other types of hydrogels. Overall, our results suggest that the hydrogels based on these three biopolymers present good potential as a biomaterial for light-induced extrusion-based 3D printing. Full article
(This article belongs to the Special Issue Advances in Sustainable Polymeric Materials, 3rd Edition)
Show Figures

Figure 1

22 pages, 6784 KB  
Article
Investigation of Rheological Characteristics of Thermosensitive Nasal In Situ Gels Based on P407 and Their Effect on Spray Pattern
by Natalia Menshutina, Vladislav Derkach, Elizaveta Mokhova and Mariia Gordienko
Gels 2025, 11(10), 841; https://doi.org/10.3390/gels11100841 - 21 Oct 2025
Viewed by 652
Abstract
This article presents the results of a study on the rheological characteristics of in situ thermosensitive nasal gels based on poloxamer 407 (P407) and their effect on spray angle. The development of new drug delivery systems based on in situ thermosensitive gels can [...] Read more.
This article presents the results of a study on the rheological characteristics of in situ thermosensitive nasal gels based on poloxamer 407 (P407) and their effect on spray angle. The development of new drug delivery systems based on in situ thermosensitive gels can overcome several shortcomings of traditional nasal sprays associated with mucociliary clearance and low mucoadhesion. Using the cold method, samples based on P407 were prepared in pure form, in combination with poloxamer 188 (P188), and with the addition of several mucoadhesive polymers: chitosan, sodium alginate, and hydroxypropyl methylcellulose (HPMC). Analytical studies were carried out for all obtained samples, which showed that the gelling temperature (Tsol–gel) of compositions with P407 was inversely dependent on its concentration, decreasing from 32.71 °C to 24.63 °C. The addition of hydrophilic P188 increased Tsol–gel. The addition of mucoadhesive polymers had varying effects on Tsol–gel: chitosan and HPMC increased the temperature, while sodium alginate decreased it. The addition of mucoadhesive polymers significantly affected the viscosity of the formulations; for example, the addition of sodium alginate resulted in a fivefold increase, making the formulations unsuitable for spraying. A study of the spray angles of Tsol–gel samples in the range of 27–31 °C using the SprayVIEW measuring system revealed an inverse relationship between the viscosity of the formulations and the spray angle. A mathematical model of the solution droplet trajectory was presented, enabling the spray angle to be predicted depending on the formulation composition. The relative error of the computational experiments did not exceed 10%. This approach has the potential to reduce the number of full-scale experiments, and consequently their cost. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

26 pages, 3636 KB  
Article
Effect of Sodium Alginate Concentration on the Physicochemical, Structural, Functional Attributes, and Consumer Acceptability of Gel Beads Encapsulating Tangerine Peel (Citrus reticulata Blanco ‘Cho Khun’) Extract
by Karthikeyan Venkatachalam, Narin Charoenphun, Chawakwan Nitikornwarakul and Somwang Lekjing
Gels 2025, 11(10), 808; https://doi.org/10.3390/gels11100808 - 9 Oct 2025
Viewed by 977
Abstract
The effect of varying sodium alginate (SA) concentrations (1%, 2%, and 3%; SA1–SA3) on the encapsulation of tangerine (Citrus reticulata Blanco ‘Cho Khun’) peel extract (TPE, 0.5% w/v) into hydrogel beads was evaluated. Overall, the results showed that increasing [...] Read more.
The effect of varying sodium alginate (SA) concentrations (1%, 2%, and 3%; SA1–SA3) on the encapsulation of tangerine (Citrus reticulata Blanco ‘Cho Khun’) peel extract (TPE, 0.5% w/v) into hydrogel beads was evaluated. Overall, the results showed that increasing SA concentration significantly altered bead characteristics: lightness (L*) decreased from 56.35 to 45.57, red-green axis (a*) shifted negatively from −1.32 to −6.87, and yellow-blue axis (b*) increased from −17.81 to 6.41. Moisture content (97.85% to 93.16%) and water activity (0.96 to 0.93) declined with higher SA, while hardness increased (4.12 to 5.17 g). ζ-potential values shifted from −29.10 mV (SA1) to −39.10 mV (SA3), confirming enhanced electrostatic stabilization. FTIR spectra revealed characteristic alginate functional groups, and morphological analysis showed smoother, denser beads at higher SA concentrations. Phenolic (47.86–48.51 mg GAE g−1 DW) and flavonoid (34.02–36.68 mg QE g−1 DW) contents were well-retained, supporting antioxidant activities (DPPH 70.34–72.54%; ABTS 65.66–66.91%). Antimicrobial tests demonstrated > 4-log reductions against E. coli and P. aeruginosa. Sensory evaluation revealed that higher SA concentrations improved texture and taste. Overall, SA encapsulation, particularly at 3%, effectively stabilized TPE, preserving its functional properties for potential food and nutraceutical applications. Full article
(This article belongs to the Special Issue Modification of Gels in Creating New Food Products (2nd Edition))
Show Figures

Figure 1

23 pages, 1287 KB  
Article
Antimicrobial Activity and Activation of Defense Genes in Plants by Natural Extracts: Toward Sustainable Plant Health Management
by Christine Bilen, Sebastiano Laera, Palma R. Rotondo, Matteo Dimaglie, Lorenza Vaccaro, Michela Marashi, Tiziana Mascia, Angela A. Lopedota, Roberta Spanò, Stefania Pollastro, Francesco Faretra, Daniel El Chami and Rita M. De Miccolis Angelini
Agronomy 2025, 15(10), 2342; https://doi.org/10.3390/agronomy15102342 - 5 Oct 2025
Viewed by 772
Abstract
The increasing demand for sustainable agriculture has accelerated research into eco-friendly plant health management, particularly through natural substances rich in bioactive compounds. In this study, various substances, including essential oils, extracts from Aloe vera, artichoke and ornamental plants, by-products from beer and [...] Read more.
The increasing demand for sustainable agriculture has accelerated research into eco-friendly plant health management, particularly through natural substances rich in bioactive compounds. In this study, various substances, including essential oils, extracts from Aloe vera, artichoke and ornamental plants, by-products from beer and coffee processing, and selected commercial formulations including biostimulants and a plant strengthener, were evaluated for their antimicrobial properties and ability to trigger plant defenses. Notably, Agapanthus spp. exhibited strong antifungal activity against the fungus Botrytis cinerea (Bc), while thyme, tea tree, and lavender essential oils were effective against both Bc and the bacterium Pseudomonas syringae pv. tomato (Pst). Greenhouse trials on tomato plants demonstrated the protective effects of A. vera gel and ornamental plant extracts against Bc and Potato virus Y (PVY), while coffee and artichoke extracts were effective against Pst. An alginate-based formulation containing thyme oil showed enhanced in planta efficacy against the three pathogens. Gene expression analyses revealed early upregulation of PR-1 and PR-4, especially with alginate treatments and A. vera gel at 12 h post-treatment (hpt) while coffee extract triggered the strongest late response at 72 hpt. These findings highlight the potential of plant-derived substances in promoting sustainable plant disease management through both direct antimicrobial action and immune system activation. Full article
Show Figures

Figure 1

22 pages, 4897 KB  
Article
Fabrication of Next-Generation Skin Scaffolds: Integrating Human Dermal Extracellular Matrix and Microbiota-Derived Postbiotics via 3D Bioprinting
by Sultan Golpek Aymelek, Billur Sezgin, Ahmet Ceylan and Fadime Kiran
Polymers 2025, 17(19), 2647; https://doi.org/10.3390/polym17192647 - 30 Sep 2025
Viewed by 828
Abstract
This study presents the development of an advanced three-dimensional (3D) bioprinted skin scaffold integrating sodium alginate (SA), gelatin (Gel), human skin-derived decellularized extracellular matrix (dECM), and microbiota-derived postbiotics. To ensure a biocompatible and functional ECM source, human skin samples collected during elective aesthetic [...] Read more.
This study presents the development of an advanced three-dimensional (3D) bioprinted skin scaffold integrating sodium alginate (SA), gelatin (Gel), human skin-derived decellularized extracellular matrix (dECM), and microbiota-derived postbiotics. To ensure a biocompatible and functional ECM source, human skin samples collected during elective aesthetic surgical procedures were utilized. Following enzymatic treatment, the dermal layer was carefully separated from the epidermis and subjected to four different decellularization protocols. Among them, Protocol IV emerged as the most suitable, achieving significant DNA removal while maintaining the structural and biochemical integrity of the ECM, as confirmed by Fourier-transform infrared spectroscopy. Building on this optimized dECM-4, microbiota-derived postbiotics from Limosilactobacillus reuteri EIR/Spx-2 were incorporated to further enhance the scaffold’s bioactivity. Hybrid scaffolds were then fabricated using 7% Gel, 2% SA, 1% dECM-4, and 40 mg/mL postbiotics in five-layered grid structures via 3D bioprinting technology. Although this composition resulted in reduced mechanical strength, it exhibited improved hydrophilicity and biodegradability. Moreover, antimicrobial assays demonstrated inhibition zones of 16 mm and 13 mm against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) and Pseudomonas aeruginosa (ATCC 27853), respectively. Importantly, biocompatibility was confirmed through in vitro studies using human keratinocyte (HaCaT) cells, which adhered, proliferated, and maintained normal morphology over a 7-day culture period. Taken together, these findings suggest that the engineered hybrid scaffold provides both regenerative support and antimicrobial protection, making it a strong candidate for clinical applications, particularly in the management of chronic wounds. Full article
(This article belongs to the Special Issue Polymers for Aesthetic Purposes)
Show Figures

Graphical abstract

18 pages, 2216 KB  
Article
Three-Dimensional Dual-Network Gel-Immobilized Mycelial Pellets: A Robust Bio-Carrier with Enhanced Shear Resistance and Biomass Retention for Sustainable Removal of SMX
by Qingyu Zhang, Haijuan Guo, Jingyan Zhang and Fang Ma
Sustainability 2025, 17(19), 8765; https://doi.org/10.3390/su17198765 - 30 Sep 2025
Viewed by 624
Abstract
Fungal mycelial pellets (MPs) exhibit high biomass-loading capacity; however, their application in wastewater treatment is constrained by structural fragility and the risk of environmental dispersion. To overcome these limitations, a dual-crosslinked polyvinyl alcohol–alginate gel (10% PVA, 2% sodium alginate) embedding strategy was developed [...] Read more.
Fungal mycelial pellets (MPs) exhibit high biomass-loading capacity; however, their application in wastewater treatment is constrained by structural fragility and the risk of environmental dispersion. To overcome these limitations, a dual-crosslinked polyvinyl alcohol–alginate gel (10% PVA, 2% sodium alginate) embedding strategy was developed and stabilized using 2% CaCl2 and saturated boric acid. This encapsulation enhanced the tensile strength of MPs by 499% (310.4 vs. 62.1 kPa) and improved their settling velocity by 2.3-fold (1.12 vs. 0.49 cm/s), which was critical for stability under turbulent bioreactor conditions. Following encapsulation, the specific oxygen uptake rates (SOURs) of three fungal strains (F557, Y3, and F507) decreased by 30.3%, 54.8%, and 48.3%, respectively, while maintaining metabolic functionality. SEM revealed tight adhesion between the gel layer and both surface and internal hyphae, with the preservation of porous channels conducive to microbial colonization. In sequential-batch reactors treating sulfamethoxazole (SMX)-contaminated wastewater, gel-encapsulated MPs combined with acclimated sludge consistently achieved 72–75% SMX removal efficiency over six cycles, outperforming uncoated MPs (efficiency decreased from 81.2% to 58.7%) and pure gel–sludge composites (34–39%). The gel coating inhibited hyphal dispersion by over 90% and resisted mechanical disintegration under 24 h agitation. This approach offers a scalable and environmentally sustainable means of enhancing MPs’ operational stability in continuous-flow systems while mitigating fungal dissemination risks. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

31 pages, 8619 KB  
Review
A Critical Review: Gel-Based Edible Inks for 3D Food Printing: Materials, Rheology–Geometry Mapping, and Control
by Zhou Qin, Yang Yang, Zhaomin Zhang, Fanfan Li, Ziqing Hou, Zhihua Li, Jiyong Shi and Tingting Shen
Gels 2025, 11(10), 780; https://doi.org/10.3390/gels11100780 - 29 Sep 2025
Viewed by 1538
Abstract
Edible hydrogels are the central material class in 3D food printing because they reconcile two competing needs: (i) low resistance to flow under nozzle shear and (ii) fast recovery of elastic structure after deposition to preserve geometry. This review consolidates the recent years [...] Read more.
Edible hydrogels are the central material class in 3D food printing because they reconcile two competing needs: (i) low resistance to flow under nozzle shear and (ii) fast recovery of elastic structure after deposition to preserve geometry. This review consolidates the recent years of progress on hydrogel formulations—gelatin, alginate, pectin, carrageenan, agar, starch-based gels, gellan, and cellulose derivatives, xanthan/konjac blends, protein–polysaccharide composites, and emulsion gels alongside a critical analysis of printing technologies relevant to food: extrusion, inkjet, binder jetting, and laser-based approaches. For each material, this review connects gelation triggers and compositional variables to rheology signatures that govern printability and then maps these to process windows and post-processing routes. This review consolidates a decision-oriented workflow for edible-hydrogel printability that links formulation variables, process parameters, and geometric fidelity through standardized test constructs (single line, bridge, thin wall) and rheology-anchored gates (e.g., yield stress and recovery). Building on these elements, a “printability map/window” is formalized to position inks within actionable operating regions, enabling recipe screening and process transfer. Compared with prior reviews, the emphasis is on decisions: what to measure, how to interpret it, and how to adjust inks and post-set enablers to meet target fidelity and texture. Reporting minima and a stability checklist are identified to close the loop from design to shelf. Full article
(This article belongs to the Special Issue Recent Advance in Food Gels (3rd Edition))
Show Figures

Figure 1

18 pages, 3234 KB  
Article
Fabrication of Protein–Polysaccharide-Based Hydrogel Composites Incorporated with Magnetite Nanoparticles as Acellular Matrices
by Anet Vadakken Gigimon, Hatim Machrafi, Claire Perfetti, Patrick Hendrick and Carlo S. Iorio
Int. J. Mol. Sci. 2025, 26(19), 9338; https://doi.org/10.3390/ijms26199338 - 24 Sep 2025
Viewed by 423
Abstract
Hydrogels with protein–polysaccharide combinations are widely used in the field of tissue engineering, as they can mimic the in vivo environments of native tissues, specifically the extracellular matrix (ECM). However, achieving stability and mechanical properties comparable to those of tissues by employing natural [...] Read more.
Hydrogels with protein–polysaccharide combinations are widely used in the field of tissue engineering, as they can mimic the in vivo environments of native tissues, specifically the extracellular matrix (ECM). However, achieving stability and mechanical properties comparable to those of tissues by employing natural polymers remains a challenge due to their weak structural characteristics. In this work, we optimized the fabrication strategy of a hydrogel composite, comprising gelatin and sodium alginate (Gel-SA), by varying reaction parameters. Magnetite (Fe3O4) nanoparticles were incorporated to enhance the mechanical stability and structural integrity of the scaffold. The changes in hydrogel stiffness and viscoelastic properties due to variations in polymer mixing ratio, crosslinking time, and heating cycle, both before and after nanoparticle incorporation, were compared. FTIR spectra of crosslinked hydrogels confirmed physical interactions of Gel-SA, metal coordination bonds of alginate with Ca2+, and magnetite nanoparticles. Tensile and rheology tests confirmed that even at low magnetite concentration, the Gel-SA-Fe3O4 hydrogel exhibits mechanical properties comparable to soft tissues. This work has demonstrated enhanced resilience of magnetite-incorporated Gel-SA hydrogels during the heating cycle, compared to Gel-SA gel, as thermal stability is a significant concern for hydrogels containing gelatin. The interactions of thermoreversible gelatin, anionic alginate, and nanoparticles result in dynamic hydrogels, facilitating their use as viscoelastic acellular matrices. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

17 pages, 8259 KB  
Article
NMR/MRI Techniques to Characterize Alginate-Based Gel Rafts for the Treatment of Gastroesophageal Reflux Disease
by Ewelina Baran, Piotr Kulinowski, Marek Król and Przemysław Dorożyński
Gels 2025, 11(9), 749; https://doi.org/10.3390/gels11090749 - 17 Sep 2025
Viewed by 1158
Abstract
Gastroesophageal reflux disease (GERD) is associated with symptoms such as heartburn, resulting from gastric content reflux. Alginate-based raft-forming gel formulations represent a non-pharmacological strategy for GERD management by forming a floating gel barrier in the stomach. This study evaluated three commercial anti-reflux oral [...] Read more.
Gastroesophageal reflux disease (GERD) is associated with symptoms such as heartburn, resulting from gastric content reflux. Alginate-based raft-forming gel formulations represent a non-pharmacological strategy for GERD management by forming a floating gel barrier in the stomach. This study evaluated three commercial anti-reflux oral gel systems under simulated fed-state gastric conditions, using in vitro magnetic resonance relaxometry techniques. Magnetic resonance imaging (MRI) was performed in 0.01 M hydrochloric acid (HCl) to visualize gel raft formation, spatial structure, and spatial distribution of effective T2 relaxation time. Nuclear magnetic resonance (NMR) relaxometry in 0.01 M deuterium chloride (DCl) measured T1 and T2 relaxation times of the protons that were initially included in the preparation to assess its molecular mobility within the gel matrix. Two formulations formed floating, coherent gels, whereas the remaining one exhibited only polymer swelling without flotation. In one case, relaxometry data revealed a solid-like component that can be detected, indicating enhanced mechanical stability. The performance of each formulation was influenced by interactions among alginate, bicarbonates, and calcium ions, which determined gel consistency and flotation behavior. MRI and NMR relaxometry in vitro provide valuable non-invasive insights into the structural and functional behavior of alginate-based gel formulations. This approach supports the rational design of advanced gel-based therapies for GERD by linking molecular composition with in situ performance. Full article
(This article belongs to the Special Issue Polymeric Hydrogels for Biomedical Application (2nd Edition))
Show Figures

Graphical abstract

21 pages, 5038 KB  
Article
Fabrication and Anti-Swelling Properties of Gelatin/Sodium Alginate–Carboxymethyl Chitosan-Based Cationic Coordination Hydrogels
by Haixin Zhao, Jinlong Li, Shuang Cong, Hongman Hou, Gongliang Zhang and Jingran Bi
Foods 2025, 14(18), 3149; https://doi.org/10.3390/foods14183149 - 9 Sep 2025
Viewed by 1000
Abstract
In this study, the effect of cationic participation on the swelling behavior and pH-responsive release characteristics of polyelectrolyte hydrogel based on gelatin (Gel), sodium alginate (Alg), and carboxymethyl chitosan (CMCS) was explored. The shell–core morphology of the cationic coordination hydrogels was prepared by [...] Read more.
In this study, the effect of cationic participation on the swelling behavior and pH-responsive release characteristics of polyelectrolyte hydrogel based on gelatin (Gel), sodium alginate (Alg), and carboxymethyl chitosan (CMCS) was explored. The shell–core morphology of the cationic coordination hydrogels was prepared by introducing Na+, Ca2+, and Fe3+ into the crosslinking system, which significantly altered the inherent pH-responsive swelling properties of Gel/Alg-CMCS hydrogel. The modified hydrogel demonstrated a release resistance of carvacrol (CAR) under acidic conditions while facilitating rapid release under neutral conditions. Notably, the CAR release profile was substantially modified by the distinct anti-swelling properties of cationic coordination hydrogels. In particular, Gel/Alg-CMCS-Fe3+ hydrogel exhibited high accumulative release of 58.34% at pH 1.0 while maintaining a minimal release degree of merely 7% in weakly acidic and neutral environments. These intriguing findings provide valuable insights into intelligent active delivery for future applications. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 3345 KB  
Article
Hydrogel Beads Loaded with Glucosinolate-Rich Brassicaceae Extract as a Controlled-Release Alternative to Biofumigation
by Michele Baglioni, Ilaria Clemente, Raffaello Nardin, Flavia Bisozzi, Sara Costantini, Giacomo Fattori, Gabriella Tamasi and Claudio Rossi
Molecules 2025, 30(18), 3660; https://doi.org/10.3390/molecules30183660 - 9 Sep 2025
Viewed by 660
Abstract
Biofumigation was originally proposed as an alternative to toxic fumigants for the treatment of agricultural soils, owing to the biocidal effect of isothiocyanates (ITCs) released by some plant species like Brassicaceae. However, biofumigation also presents limitations; thus, an advanced and viable alternative [...] Read more.
Biofumigation was originally proposed as an alternative to toxic fumigants for the treatment of agricultural soils, owing to the biocidal effect of isothiocyanates (ITCs) released by some plant species like Brassicaceae. However, biofumigation also presents limitations; thus, an advanced and viable alternative could be the use of controlled-release systems such as gelled polymer networks. In the present work, we explore the use of biocompatible hydrogels based on sodium alginate (ALG) and sodium carboxymethylcellulose (CMC), conveniently loaded with a Brassicaceae extract for this purpose. The extract was characterized by means of HPLC-MS, showing its high glucosinolate content, especially glucoraphanin, a secondary metabolite produced by several species of this family. The physicochemical properties of the synthesized gels were investigated by means of differential scanning calorimetry (DSC), rheometry, and scanning electron microscopy (SEM), both in the presence and absence of the loaded extract. Loading and release kinetics (in water) were studied by means of HPLC-DAD, and the Weibull model was employed to interpret the results. It was found that both hydrogels can effectively confine the Brassicaceae extract’s active principle, slowly releasing it in an aqueous environment. Both systems possess excellent properties for real applications, with the CMC-based hydrogels being slightly preferable over the ALG ones due to their higher encapsulation efficiency, mechanical properties, and overall features. These systems are promising tools for combating harmful microorganisms due to the biocidal properties of glucosinolates, but their potential goes beyond their use in agriculture, as they could be applied as antifouling or antimicrobial agents in cultural heritage cleaning or other fields. Full article
Show Figures

Graphical abstract

Back to TopTop