Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = airgap field modulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8900 KB  
Article
A Pole-Changing Double-Sided Excitation Permanent Magnet Vernier Motor for Electric Tractors
by Han Chen, Yi Du, Feng Xiao and Zhuofan He
Electronics 2026, 15(2), 324; https://doi.org/10.3390/electronics15020324 - 11 Jan 2026
Viewed by 209
Abstract
To further satisfy the extreme operating conditions of electric tractors, a pole-changing double-sided excitation permanent magnet vernier motor (PC-DPMVM) is proposed evolving from the existing PC-SPMVM in this paper. Half of the rotor PMs are transferred to the stator small slots, while a [...] Read more.
To further satisfy the extreme operating conditions of electric tractors, a pole-changing double-sided excitation permanent magnet vernier motor (PC-DPMVM) is proposed evolving from the existing PC-SPMVM in this paper. Half of the rotor PMs are transferred to the stator small slots, while a consequent-pole rotor structure and stator PM structure can be obtained. Firstly, the simulation and experiments of the existing PC-SPMVM are introduced, which shows the deficiency of the maximum torque output. Then, the evolution process of the proposed PC-DPMVM is illustrated. The rotor modulation and stator modulation behaviors of the PC-DPMVM are introduced based on airgap field modulation theory. The main working PM flux density harmonics are deduced further. Next, electromagnetic performance comparisons are made between two PC-PMVMs by using finite element method, and the results reveal that the proposed PC-DPMVM has superior torque output compared with the PC-SPMVM, while the speed regulation abilities of the two motors are similar. It can be concluded that two extra operation regions can be obtained for the PC-DPMVM according to the comparison of torque-speed curve of the two motors. Full article
(This article belongs to the Special Issue Modeling and Control of Power Converters for Power Systems)
Show Figures

Figure 1

20 pages, 3657 KB  
Article
Design and Optimization of a High-Efficiency Lightweight Permanent Magnet In-Wheel Motor with Torque Performance Improvement
by Zixuan Xiang, Yu Miao, Yuting Zhou and Feng Li
Energies 2025, 18(17), 4509; https://doi.org/10.3390/en18174509 - 25 Aug 2025
Viewed by 1053
Abstract
In this paper, a lightweight permanent magnet in-wheel (LW-PMIW) motor is proposed. This research focuses on using a multi-modulation design to enhance the amplitude of the fundamental wave while suppressing high-order harmonics, thereby enabling the motor to achieve high output torque, a light [...] Read more.
In this paper, a lightweight permanent magnet in-wheel (LW-PMIW) motor is proposed. This research focuses on using a multi-modulation design to enhance the amplitude of the fundamental wave while suppressing high-order harmonics, thereby enabling the motor to achieve high output torque, a light weight, and a high efficiency. Firstly, a combined trade-off factor related to motor mass, losses, and torque is defined specifically to provide guidance for the design. Secondly, a dual-rotor structure is adopted, and a harmonic injection (HI) design is applied to the permanent magnets (PMs). By designing a targeted harmonic injection ratio coefficient, the non-working harmonics of the PM magnetomotive force (MMF) can be weakened. Then, two iron modulating blocks are introduced to asynchronously modulate the PM MMF, which can further enhance the fundamental amplitude and improve the distribution of the airgap magnetic field. Finally, to verify the effectiveness of the multi-modulation design, the electromagnetic performance of the motor is evaluated and analyzed. The analytical and simulation results show that the torque of the proposed motor can reach 35.4 Nm, which is an increase of 19.6% while the torque ripple remains unchanged compared with the initial motor. Meanwhile, the output power increased by 0.37 kW. Hence, the rationality and effectiveness of the motor design are verified. Full article
Show Figures

Figure 1

16 pages, 7117 KB  
Article
Performance Evaluation of Outer Rotor Permanent Magnet Direct Drive In-Wheel Motor Based on Air-Gap Field Modulation Effect
by Qin Wang
World Electr. Veh. J. 2025, 16(5), 247; https://doi.org/10.3390/wevj16050247 - 25 Apr 2025
Cited by 1 | Viewed by 1574
Abstract
The different pole–slot combinations of outer rotor surface-mounted permanent magnet (ORSPM) motors are designed and analyzed to satisfy EV driving requirements. Firstly, the analytical model for various slot–pole combinations of ORSPM motors is proposed based on the air-gap field modulation effect. Then, some [...] Read more.
The different pole–slot combinations of outer rotor surface-mounted permanent magnet (ORSPM) motors are designed and analyzed to satisfy EV driving requirements. Firstly, the analytical model for various slot–pole combinations of ORSPM motors is proposed based on the air-gap field modulation effect. Then, some of the in-wheel motor parameters and requirements are obtained for the vehicle system. In addition, some special pole–slot combination ORSPM motors are built to achieve higher flux density, and the electromagnetic performance is compared based on the finite element (FE) model, revealing that the 56-slot/48-pole (54s48p) in-wheel motor has a higher torque density and superior flux weakening capability than other cases. Finally, a 13 kW prototype with 54s48p is manufactured and tested to confirm the effectiveness of the FE analysis. Full article
Show Figures

Figure 1

19 pages, 5155 KB  
Article
Analysis and Preliminary Design of Variable Flux Reluctance Machines: A Perspective from Working Field Harmonics
by Xiangpei Gu, Nicola Bianchi and Zhuoran Zhang
Vehicles 2024, 6(1), 571-589; https://doi.org/10.3390/vehicles6010026 - 21 Mar 2024
Cited by 3 | Viewed by 2452
Abstract
Variable flux reluctance machines (VFRMs) are increasingly attracting research interest due to their magnetless and robust brushless structure. Under the modulation effect of the airgap permeance, the VFRM operates with a series of field harmonics, distinguishing it from conventional AC synchronous machines. This [...] Read more.
Variable flux reluctance machines (VFRMs) are increasingly attracting research interest due to their magnetless and robust brushless structure. Under the modulation effect of the airgap permeance, the VFRM operates with a series of field harmonics, distinguishing it from conventional AC synchronous machines. This paper deals with the analysis and preliminary design of the VFRM from the perspective of multiple working airgap field harmonics. Firstly, the spatial and temporal order of the working field harmonics are defined. The systematic winding theory, including the unified star of slots and winding factor calculation method, is established to consider all these working harmonics. Then, an average torque model is built and simplified. The key role of 1st-order rotor permeance, 1st- and 3rd-order polarized stator permeance is deduced. The relationship between key parameters and average torque is computed, providing a guideline for the preliminary design of the VFRM. Full article
Show Figures

Figure 1

17 pages, 4369 KB  
Article
Suspension Flux Internal Model Control of Single-Winding Bearingless Flux-Switching Permanent Magnet Motor
by Yao Chen, Wanneng Yu, Rongfeng Yang and Bowen Cui
Actuators 2023, 12(11), 404; https://doi.org/10.3390/act12110404 - 28 Oct 2023
Cited by 2 | Viewed by 2135
Abstract
A suspension flux internal model control method is proposed to address the problem of the strong coupling of a single-winding bearingless flux-switching permanent magnet motor leading to a significant ripple of the rotor radial displacement. Firstly, based on air-gap magnetic field modulation theory, [...] Read more.
A suspension flux internal model control method is proposed to address the problem of the strong coupling of a single-winding bearingless flux-switching permanent magnet motor leading to a significant ripple of the rotor radial displacement. Firstly, based on air-gap magnetic field modulation theory, the stator flux equation considering rotor dynamic eccentricity is established to reveal the relationship between the eccentric rotor and the magnetic field. Secondly, according to the dynamic characteristics of the motor and the variation law of the air-gap magnetic field, the suspension-plane flux is substituted into the rotor dynamic model, and the suspension flux-dynamics internal model and corresponding output are constructed, respectively. Finally, a complete control strategy is established, and the rotor is stably suspended by PWM control. The simulation and experimental results show that the proposed method has better steady-state and dynamic performance than traditional PID control, and the maximum radial displacement ripples of the rotor are reduced by 53% and 50% in steady-state and dynamic operation. Full article
(This article belongs to the Special Issue Vibration Control Using Electromagnetic Actuators)
Show Figures

Figure 1

15 pages, 5302 KB  
Article
Improving Torque Analysis and Design Using the Air-Gap Field Modulation Principle for Permanent-Magnet Hub Machines
by Yuhua Sun, Nicola Bianchi, Jinghua Ji and Wenxiang Zhao
Energies 2023, 16(17), 6214; https://doi.org/10.3390/en16176214 - 27 Aug 2023
Cited by 3 | Viewed by 2353
Abstract
The Double Permanent Magnet Vernier (DPMV) machine is well known for its high torque density and magnet utilization ratio. This paper aims to investigate the torque generation mechanism and its improved design in DPMV machines for hub propulsion based on the field modulation [...] Read more.
The Double Permanent Magnet Vernier (DPMV) machine is well known for its high torque density and magnet utilization ratio. This paper aims to investigate the torque generation mechanism and its improved design in DPMV machines for hub propulsion based on the field modulation principle. Firstly, the topology of the proposed DPMV machine is introduced, and a commercial PM machine is used as a benchmark. Secondly, the rotor PM, stator PM, and armature magnetic fields are derived and analyzed considering the modulation effect, respectively. Meanwhile, the contribution of each harmonic to average torque is pointed out. It can be concluded that the 7th-, 12th-, 19th- and 24th-order flux density harmonics are the main source of average torque. Thanks to the multi-working harmonic characteristics, the average torque of DPMV machines has significantly increased by 31.8% compared to the counterpart commercial PM machine, while also reducing the PM weight by 75%. Thirdly, the auxiliary barrier structure and dual three-phase winding configuration are proposed from the perspective of optimizing the phase and amplitude of working harmonics, respectively. The improvements in average torque are 9.9% and 5.4%, correspondingly. Full article
(This article belongs to the Special Issue Modeling, Control and Diagnosis of Electrical Machines and Devices)
Show Figures

Figure 1

19 pages, 13582 KB  
Article
Demagnetization Modeling and Analysis for a Six-Phase Surface-Mounted Field-Modulated Permanent-Magnet Machine Based on Equivalent Magnetic Network
by Xianglin Li, Yingjie Tan, Bo Yan, Yujian Zhao and Hao Wang
Energies 2023, 16(16), 6099; https://doi.org/10.3390/en16166099 - 21 Aug 2023
Cited by 4 | Viewed by 2199
Abstract
Based on the magnetic gear effect, the field-modulated permanent-magnet machine (FMPMM) can realize the unequal pole design of the rotor PM field and the stator armature magnetic field. With the advantages of high torque density and high efficiency, the FMPMM has been widely [...] Read more.
Based on the magnetic gear effect, the field-modulated permanent-magnet machine (FMPMM) can realize the unequal pole design of the rotor PM field and the stator armature magnetic field. With the advantages of high torque density and high efficiency, the FMPMM has been widely studied in low-speed direct-drive applications. As a kind of machine excited by PMs, the performance of the FMPMM was affected by the demagnetization state. However, the method for establishing the FMPMM demagnetization model based on a finite element analysis (FEA) presented some problems, including tedious repeated modeling work and long calculation time-consuming under fine subdivision. Therefore, in this paper, a six-phase surface-mounted FMPMM was taken as an example, and an equivalent magnetic network (EMN) model was proposed for evaluating the machine performance under demagnetization. In order to realize the rapid establishing EMN models under diverse demagnetization types, the variable coercivity of PM was introduced. Furthermore, for the purpose of improving the calculation accuracy and shortening the calculation time, the least square method was used in fitting and analyzing the discrete results. Then, in order to verify the validity of the proposed EMN model, a prototype was fabricated and a testing platform was built. The air-gap flux density and the no-load back EMF obtained by the FEA, the proposed EMN model, and the experimental testing were compared. The results showed that the proposed EMN model can realize the rapid modeling and accurate analysis of the six-phase surface-mounted FMPMM under diverse demagnetization types. Full article
Show Figures

Figure 1

16 pages, 20416 KB  
Article
Analysis of Torque Ripple in V-Shape Interior Permanent Magnet Machine Based on General Airgap Field Modulation Theory
by Jiawei Zhou, Ming Cheng, Wenfei Yu and Wei Hua
Energies 2023, 16(12), 4586; https://doi.org/10.3390/en16124586 - 8 Jun 2023
Cited by 4 | Viewed by 2820
Abstract
This paper proposes a novel torque ripple model of V-Shape interior permanent magnet (IPM) synchronous machine based on the general field modulation theory (GAFMT). Firstly, the magnetic field modulation behavior of a 12-stator-slot/8-rotor-pole (12/8) IPM machine is discussed, where the expressions of permanent-magnet-excited [...] Read more.
This paper proposes a novel torque ripple model of V-Shape interior permanent magnet (IPM) synchronous machine based on the general field modulation theory (GAFMT). Firstly, the magnetic field modulation behavior of a 12-stator-slot/8-rotor-pole (12/8) IPM machine is discussed, where the expressions of permanent-magnet-excited (PM-excited) and armature fields are derived. Secondly, the total torque ripple is divided into three components, namely, the PM-excited cogging torque, the armature cogging torque, and the modulation torque ripple. Additionally, the relationship between the field harmonics and the torque ripple is discussed based on the GAFMT. Then, a finite element analysis (FEA)-assisted dual fast Fourier transformation (FFT) method is proposed to obtain the accurate value of the field amplitude for torque ripple calculation. The field analysis results based on the GAFMT and the proposed torque ripple are then validated by comparing their results with those obtained from the FEA simulations, and a good agreement is observed, demonstrating the effectiveness of the field analysis and the proposed torque ripple model. Finally, experiments on a prototype 12/8 IPM machine demonstrate the validity of the torque ripple model, providing an effective method for torque ripple suppression of IPM machines. Full article
Show Figures

Figure 1

17 pages, 15102 KB  
Article
Research on High-Torque-Density Design for Axial Modular Flux-Reversal Permanent Magnet Machine
by Shan Lin, Lanchao Chang, Peng Su, Yongjian Li, Wei Hua and Yi Shen
Energies 2023, 16(4), 1691; https://doi.org/10.3390/en16041691 - 8 Feb 2023
Cited by 3 | Viewed by 2419
Abstract
The traditional flux reversal permanent magnet (FRPM) machine has high torque ripple due to the double salient-pole structure, and the effective air-gap length is increased by the permanent magnet structure of the stator tooth surface, which affects the size of the air-gap magnetomotive [...] Read more.
The traditional flux reversal permanent magnet (FRPM) machine has high torque ripple due to the double salient-pole structure, and the effective air-gap length is increased by the permanent magnet structure of the stator tooth surface, which affects the size of the air-gap magnetomotive force (MMF). This paper proposes an axial modular flux-reversal permanent magnet (AM-FRPM) machine with attractive torque capabilities. Based on air-gap magnetic field modulation theory, a method to achieve optimal air-gap harmonic torque contributions was developed. Then, the principle for high-torque-density generation in the AM-FRPM machine under an alternating magnetization topology was investigated using the PM magnetic field modulation and armature reaction magnetic field modulation. In addition, the cogging torque suppression mechanism, which guides the selection of stator-slot and rotor-pole combinations, was investigated. In addition, a comprehensive comparison of the electromagnetic characteristics of two AM-FRPM machines and a traditional FRPM machine was conducted. Then, the advantages and disadvantages of the three machines were analyzed. Finally, prototypes were manufactured and tested to verify the correctness of the theoretical analysis. Full article
Show Figures

Figure 1

14 pages, 7427 KB  
Article
A New Dual Stator Permanent Magnet Machine Based on Field Modulation Theory
by Ziyang Ding, Chao He, Chunmei Feng and Jianfei Yang
Sustainability 2023, 15(1), 281; https://doi.org/10.3390/su15010281 - 24 Dec 2022
Cited by 3 | Viewed by 3171
Abstract
Increasing industrial development puts forward high requirements for the performances of stator permanent magnet (PM) machines, such as torque density and efficiency. The paper proposes a new dual stator PM machine based on field modulation theory (DSPMM), which employs the intermediate rotor participating [...] Read more.
Increasing industrial development puts forward high requirements for the performances of stator permanent magnet (PM) machines, such as torque density and efficiency. The paper proposes a new dual stator PM machine based on field modulation theory (DSPMM), which employs the intermediate rotor participating in the electromechanical energy conversion of the internal and external machine. The proposed machine has the advantages of high torque density and high efficiency and solves the problem of insufficient space utilization of a single stator machine. The evolution process and working principle of the proposed DSPMM are studied. The flux-switching-type PM (FSPM) and the flux-reversal-type PM (FRPM) are employed in the proposed DSPMM, which forms four representative machines. For a fair comparison, the proposed machines employ identical key parameters, i.e., PM volume, the outer radius of the outer stator, and active airgap length. Based on finite element analysis (FEA), the electromagnetic performances of the four representative DSPMM under no-load and rated load, and different copper consumption conditions are analyzed and compared. The calculated results show that the proposed DSPMM with inner FSPM stator and outer FRPM stator can provide high output torque, low torque ripple, high power factor, and high efficiency. Full article
(This article belongs to the Special Issue Intelligence and Sustainability in Electrical Engineering)
Show Figures

Figure 1

13 pages, 16533 KB  
Article
Analysis of DC Winding Induced Voltage in Wound-Rotor Synchronous Machines by Using the Air-Gap Field Modulation Principle
by Wentao Zhang, Ying Fan, Z. Q. Zhu, Zhongze Wu, Wei Hua and Ming Cheng
World Electr. Veh. J. 2022, 13(11), 215; https://doi.org/10.3390/wevj13110215 - 17 Nov 2022
Cited by 1 | Viewed by 4701
Abstract
In order to analyze the DC winding induced voltage in the wound-rotor synchronous machine, this paper uses the air-gap field modulation principle to investigate its operation mechanism and harmonic order. By establishing the analytical magneto-motive force (MMF)-permeance model, the DC winding induced voltage [...] Read more.
In order to analyze the DC winding induced voltage in the wound-rotor synchronous machine, this paper uses the air-gap field modulation principle to investigate its operation mechanism and harmonic order. By establishing the analytical magneto-motive force (MMF)-permeance model, the DC winding induced voltage per electrical cycle under open-circuit condition, armature reaction condition and on-load condition are deduced. Analytical analysis shows that the MMF function, stator and rotor permeance function are critical factors that influence the harmonic order of the DC winding induced voltage. The analysis results are compared with those predicted by the finite element analysis (FEA). Both non-linear steel and linear steel conditions are accounted in the FEA analysis, and the results show that the analytical deduction result agrees well with the FEA analysis result. Full article
Show Figures

Figure 1

24 pages, 16036 KB  
Article
Design and Performance Analysis of a Staggered Vernier Generator for Wave Power Generation
by Zhongyue Lu, Guoheng Wu, Mangkuan Wang, Zirong Luo and Jianzhong Shang
J. Mar. Sci. Eng. 2022, 10(8), 1156; https://doi.org/10.3390/jmse10081156 - 21 Aug 2022
Viewed by 2844
Abstract
In this paper, a staggered vernier generator suitable for a counter-rotating self-adaptable WEC is proposed to meet the energy demand of the small-scale engineering equipment in the deep sea. According to the vernier effect of the magnetic gear, the generator modulates the low-order [...] Read more.
In this paper, a staggered vernier generator suitable for a counter-rotating self-adaptable WEC is proposed to meet the energy demand of the small-scale engineering equipment in the deep sea. According to the vernier effect of the magnetic gear, the generator modulates the low-order rotating magnetic field generated by the rotation of the low-speed permanent magnet rotor into a high-order magnetic field rotating at a high speed, thereby realizing the acceleration of the generator magnetic field. A staggered structure permanent magnet vernier generator with 18 teeth/28 poles is designed. The main magnetic flux path on the staggered structure in the staggered vernier generator is analyzed, and the air-gap magnetic field distribution of the generator is analyzed with the help of numerical simulation software. The influence of different design parameters on the vernier generator is discussed. The staggered vernier structure can improve the main magnetic flux of the generator, reduce the magnetic flux leakage, and improve the performance of the generator without adding additional structures and materials. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

14 pages, 3628 KB  
Article
Assessment of a Therapeutic X-ray Radiation Dose Measurement System Based on a Flexible Copper Indium Gallium Selenide Solar Cell
by Dong-Seok Shin, Tae-Ho Kim, Jeong-Eun Rah, Dohyeon Kim, Hye Jeong Yang, Se Byeong Lee, Young Kyung Lim, Jonghwi Jeong, Haksoo Kim, Dongho Shin and Jaeman Son
Sensors 2022, 22(15), 5819; https://doi.org/10.3390/s22155819 - 4 Aug 2022
Cited by 3 | Viewed by 3225
Abstract
Several detectors have been developed to measure radiation doses during radiotherapy. However, most detectors are not flexible. Consequently, the airgaps between the patient surface and detector could reduce the measurement accuracy. Thus, this study proposes a dose measurement system based on a flexible [...] Read more.
Several detectors have been developed to measure radiation doses during radiotherapy. However, most detectors are not flexible. Consequently, the airgaps between the patient surface and detector could reduce the measurement accuracy. Thus, this study proposes a dose measurement system based on a flexible copper indium gallium selenide (CIGS) solar cell. Our system comprises a customized CIGS solar cell (with a size 10 × 10 cm2 and thickness 0.33 mm), voltage amplifier, data acquisition module, and laptop with in-house software. In the study, the dosimetric characteristics, such as dose linearity, dose rate independence, energy independence, and field size output, of the dose measurement system in therapeutic X-ray radiation were quantified. For dose linearity, the slope of the linear fitted curve and the R-square value were 1.00 and 0.9999, respectively. The differences in the measured signals according to changes in the dose rates and photon energies were <2% and <3%, respectively. The field size output measured using our system exhibited a substantial increase as the field size increased, contrary to that measured using the ion chamber/film. Our findings demonstrate that our system has good dosimetric characteristics as a flexible in vivo dosimeter. Furthermore, the size and shape of the solar cell can be easily customized, which is an advantage over other flexible dosimeters based on an a-Si solar cell. Full article
(This article belongs to the Special Issue Optical Fiber Sensors in Radiation Environments)
Show Figures

Figure 1

19 pages, 5763 KB  
Article
Design and Analysis of Modulated Magnetic Pole for Dual Three-Phase Surface-Mounted Permanent Magnet Synchronous Motor
by Liyan Guo, Zhongyuan Hao, Jiaqi Xu, Huimin Wang, Xinmin Li and Shuang Wu
Energies 2022, 15(13), 4597; https://doi.org/10.3390/en15134597 - 23 Jun 2022
Cited by 3 | Viewed by 2196
Abstract
In order to improve the air-gap magnetic field waveform and reduce the torque ripple of dual three-phase surface-mounted permanent magnet synchronous motors (PMSMs), a new surface-mounted modulated permanent magnet (PM) structure is proposed in this paper. Compared with the existing pole-cutting structure, the [...] Read more.
In order to improve the air-gap magnetic field waveform and reduce the torque ripple of dual three-phase surface-mounted permanent magnet synchronous motors (PMSMs), a new surface-mounted modulated permanent magnet (PM) structure is proposed in this paper. Compared with the existing pole-cutting structure, the modulated magnetic pole does not need to customize the precise machining mold. However, when the modulation pole structure is installed, only the magnetic block-assisted assembly structure is designed to reduce the manufacturing cost. Based on the principle of specific harmonic elimination technology (SHET), the number, size and position angle of the modulated magnetic poles can be calculated, and the elimination or the injection of specific harmonics of the air-gap magnetic field can be realized, which can optimize the performance of the motor. It can be seen that the modulation pole structure based on SHET is also an effective method to improve the sinusoidal waveform of the air-gap magnetic field of the surface-mounted PM motor. Full article
Show Figures

Figure 1

19 pages, 9300 KB  
Article
Design Optimization and Analysis of an Outer-Rotor Direct-Drive Permanent-Magnet Motor for Medium-Speed Electric Vehicle
by Yuan Yuan, Wenjun Meng, Xiaoxia Sun and Liyong Zhang
World Electr. Veh. J. 2019, 10(2), 16; https://doi.org/10.3390/wevj10020016 - 4 Apr 2019
Cited by 12 | Viewed by 8304
Abstract
At present, it is the conventional inner rotor motor instead of the internal combustion engine that is adopted by most electric cars. However, compared to the traditional centralized driving pattern, cars adopting a distributed direct driving pattern have higher drive efficiency and more [...] Read more.
At present, it is the conventional inner rotor motor instead of the internal combustion engine that is adopted by most electric cars. However, compared to the traditional centralized driving pattern, cars adopting a distributed direct driving pattern have higher drive efficiency and more stable handling. Given this background, a kind of direct-drive outer rotor motor with 40 poles and 42 slots applied for middle or low speed electric cars was designed. The core of this study included the electromagnetic analysis and structural design of the motor. Firstly, the material and dimension parameters of the stator and rotor were selected and calculated by the traditional method. The air-gap length and pole-arc coefficient were optimized using an RMxprt module, which was developed using the equivalent magnetic circuit method. Then, a two-dimensional finite-element model was established using ANSYS Maxwell. The magnetic field and torque characteristics of the model were then analyzed. Results show that the design of the motor is reasonable. In addition, a method for reducing the torque ripple was proposed and verified by simulation. Full article
Show Figures

Figure 1

Back to TopTop