A New Dual Stator Permanent Magnet Machine Based on Field Modulation Theory
Abstract
1. Introduction
2. Topology and Operating Principle
2.1. Topology
2.2. Operating Principle
2.3. Key Parameters Design
3. Electromagnetic Performance Analysis
3.1. No-Load Airgap Flux Density
3.2. No-Load Magnetic Field Distribution
3.3. No-Load Back-EMF
3.4. Torque Characteristics
3.5. Power Factor and Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Z.Q.; Howe, D. Electrical machines and drives for electric, hybrid and fuel cell vehicles. Proc. IEEE 2007, 95, 746–765. [Google Scholar] [CrossRef]
- Chau, K.T.; Chan, C.C.; Liu, C. Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans. Ind. Electron. 2008, 55, 2246–2257. [Google Scholar] [CrossRef]
- Boldea, I.; Tutelea, L.; Parsa, L.; Dorrell, D. Automotive electric propulsion systems with reduced or no permanent magnets: An overview. IEEE Trans. Ind. Electron. 2014, 61, 5696–5711. [Google Scholar] [CrossRef]
- Li, D.; Zou, T.; Qu, R.; Jiang, D. Analysis of fractional-slot concentrated winding PM vernier machines with regular open-slot stators. IEEE Trans. Ind. Appl. 2018, 54, 1320–1330. [Google Scholar] [CrossRef]
- Kim, B.; Lipo, T.A. Analysis of a PM vernier motor with spoke structure. IEEE Trans. Ind. Appl. 2016, 52, 217–225. [Google Scholar] [CrossRef]
- Li, X.; Chau, K.T.; Cheng, M. Comparative analysis and experimental verification of an effective permanent-magnet vernier machine. IEEE Trans. Magn. 2015, 51, 1–9. [Google Scholar]
- Zhu, X.; Lee, C.H.T.; Chan, C.C. Overview of flux-modulation machines based on flux-modulation principle: Topology, theory, and development prospects. IEEE Trans. Transp. Electrif. 2020, 6, 612–624. [Google Scholar] [CrossRef]
- Cheng, M.; Han, P.; Hua, W. General airgap field modulation theory for electrical machines. IEEE Trans. Ind. Electron. 2017, 64, 6063–6074. [Google Scholar] [CrossRef]
- Kwon, J.; Kwon, B. Investigation of dual-stator spoke-type vernier machine for EV application. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Jia, S.; Qu, R.; Li, J.; Li, D.; Kong, W. A stator-PM consequent-pole vernier machine with hybrid excitation and DC-biased sinusoidal current. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
- Zhang, H.; Kou, B.; Zhu, Z.Q.; Qu, R.; Luo, J.; Shao, Y. Thrust ripple analysis on toroidal-winding linear permanent magnet vernier machine. IEEE Trans. Ind. Electron. 2018, 65, 9853–9862. [Google Scholar] [CrossRef]
- Wang, H.; Fang, S.; Jahns, T.M.; Yang, H.; Lin, H. Design and analysis of a dual-rotor field modulation machine with triple PM excitation. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition, Portland, OR, USA, 23–27 September 2018; pp. 3302–3309. [Google Scholar]
- Fang, H.; Wei, Y.; Song, R. Design and analysis of superconducting magnetic-field-modulation electric machine. IEEE Trans. Appl. Supercond. 2021, 31, 1–4. [Google Scholar] [CrossRef]
- Wang, H.; Fang, S.; Yang, H.; Lin, H.; Wang, D.; Li, Y.; Jiu, C. A novel consequent-pole hybrid excited vernier machine. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
- Yang, H.; Lin, H.; Zhu, Z.Q.; Lyu, S.; Liu, Y. Design and analysis of novel asymmetric-stator-pole flux reversal PM machine. IEEE Trans. Ind. Electron. 2020, 67, 101–114. [Google Scholar] [CrossRef]
- Tan, Q.; Wang, M.; Li, L. Analysis of a new flux switching permanent magnet linear machine. IEEE Trans. Magn. 2021, 57, 1–5. [Google Scholar] [CrossRef]
- More, D.S.; Fernandes, B.G. Analysis of flux-reversal machine based on fictitious electrical gear. IEEE Trans. Energy Convers. 2010, 25, 940–947. [Google Scholar] [CrossRef]
- Jin, M.J.; Wang, Y.; Shen, J.X. Cogging torque suppression in a permanent magnet flux-switching integrated-starter-generator. IET Electr. Power Appl. 2010, 4, 647–656. [Google Scholar] [CrossRef]
- Zhu, X.; Hua, W. Stator-slot/rotor-pole pair combinations of flux-reversal permanent magnet machine. IEEE Trans. Ind. Electron. 2019, 66, 6799–6810. [Google Scholar] [CrossRef]
- Hua, H.; Zhu, Z.Q. Novel hybrid-excited switched-flux machine having separate field winding stator. IEEE Trans. Magn. 2016, 52, 1–5. [Google Scholar] [CrossRef]
- Baloch, N.; Kwon, B.; Gao, Y. Low-cost high-torque-density dual-stator consequent-pole permanent magnet vernier machine. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Shi, Y.; Ching, T.W. Power factor analysis of dual-stator permanent magnet vernier motor with consideration on turn-number assignment of inner and outer stator windings. IEEE Trans. Magn. 2021, 57, 1–5. [Google Scholar] [CrossRef]
- Bilal, M.; Ikram, J. Performance improvement of dual stator axial flux spoke type permanent magnet vernier machine. IEEE Access 2021, 9, 64179–64188. [Google Scholar] [CrossRef]
- Wei, L.; Nakamura, T. Optimization design of a dual-stator switched flux consequent pole permanent magnet machine with unequal length teeth. IEEE Trans. Magn. 2020, 56, 1–5. [Google Scholar] [CrossRef]
- Li, Y.; Bobba, D.; Sarlioglu, B. Design and performance characterization of a novel low-pole dual-stator flux-switching permanent magnet machine for traction application. IEEE Trans. Ind. Appl. 2016, 52, 4304–4314. [Google Scholar] [CrossRef]
- Kim, D.; Hwang, H.; Bae, S. Analysis and design of a double-stator flux-switching permanent magnet machine using ferrite magnet in hybrid electric vehicles. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Wang, H.; Fang, S. Design of new dual-stator field modulation machines. IEEE Trans. Ind. Electron. 2020, 67, 5626–5636. [Google Scholar] [CrossRef]
- Asgar, M.; Afjei, E.; Torkaman, H. A new strategy for design and analysis of a double-stator switched reluctance motor: Electro-magnetics, FEM, and experiment. IEEE Trans. Magn. 2015, 51, 1–8. [Google Scholar] [CrossRef]
- Chai, F.; Pei, Y.; Zheng, P. Analysis and restrain strategy of cogging torque in double-stator permanent magnet brushless motor. In Proceedings of the IEEE International Electric Machines and Drives Conference, Madison, WI, USA, 1–4 June 2003; Volume 2, pp. 1073–1077. [Google Scholar]
- Chai, F.; Xia, J.; Guo, B. Double-stator permanent magnet synchronous in-wheel motor for hybrid electric drive system. IEEE Trans. Magn. 2009, 45, 278–281. [Google Scholar] [CrossRef]
Items | Model A | Model B | Model C | Model D |
---|---|---|---|---|
Stator slot number | 12 | |||
Outer/inner diameter of outer stator (mm) | 140/103 | |||
Outer/inner diameter of inner stator (mm) | 76/20 | |||
Outer/inner diameter of rotor (mm) | 102/77 | |||
Active length of inner/outer airgap (mm) | 0.5/0.5 | |||
PPN of rotor | 11 | |||
Turn of the inner/outer armature windings | 128/128 | |||
the inner/outer slot area (mm2) | 95/152 | |||
Active stack length (mm) | 20 | |||
PPN of the inner/outer PM | 6/12 | 12/6 | 6/6 | 12/12 |
PM volume (mm3) | 94.5 | |||
PM grade | N38SH | |||
PM remanence (T) | 1.28 | |||
PM coercive force (kA/m) | 955 | |||
Rated speed (rpm) | 273 | |||
RMS value of rated current (Arms) | 1.7 | |||
HR (mm) | 5 | |||
θT (deg.) | 7 | 2 | 10 | 18 |
Items | Model A | Model B | Model C | Model D |
---|---|---|---|---|
Amplitude of back-EMF (V) | 27.6 | 24.0 | 21.8 | 8.1 |
THD of back-EMF (%) | 4.75 | 9.77 | 4.91 | 10.73 |
Peak-to-peak cogging torque (mNm) | 186 | 275 | 210 | 171 |
Steady torque at rated state (Nm) | 2.60 | 2.22 | 1.95 | 0.79 |
Torque ripple (%) | 3.47 | 10.9 | 14.4 | 30.0 |
Power factor | 0.91 | 0.90 | 0.75 | 0.67 |
Output power (W) | 74.21 | 63.37 | 55.68 | 22.61 |
Copper Loss (W) | 1.99 | 1.99 | 1.99 | 1.99 |
Iron Loss (W) | 2.20 | 1.59 | 2.46 | 1.81 |
Magnetic loss (W) | 0.26 | 0.08 | 0.08 | 0.29 |
Efficiency (%) | 94.3 | 94.5 | 92.5 | 84.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; He, C.; Feng, C.; Yang, J. A New Dual Stator Permanent Magnet Machine Based on Field Modulation Theory. Sustainability 2023, 15, 281. https://doi.org/10.3390/su15010281
Ding Z, He C, Feng C, Yang J. A New Dual Stator Permanent Magnet Machine Based on Field Modulation Theory. Sustainability. 2023; 15(1):281. https://doi.org/10.3390/su15010281
Chicago/Turabian StyleDing, Ziyang, Chao He, Chunmei Feng, and Jianfei Yang. 2023. "A New Dual Stator Permanent Magnet Machine Based on Field Modulation Theory" Sustainability 15, no. 1: 281. https://doi.org/10.3390/su15010281
APA StyleDing, Z., He, C., Feng, C., & Yang, J. (2023). A New Dual Stator Permanent Magnet Machine Based on Field Modulation Theory. Sustainability, 15(1), 281. https://doi.org/10.3390/su15010281