Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (302)

Search Parameters:
Keywords = air-bending

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8458 KiB  
Article
Characterization of Defects by Non-Destructive Impulse Excitation Technique for 3D Printing FDM Polyamide Materials in Bending Mode
by Fatima-Ezzahrae Jabri, Imi Ochana, François Ducobu, Rachid El Alaiji and Anthonin Demarbaix
Appl. Sci. 2025, 15(15), 8266; https://doi.org/10.3390/app15158266 - 25 Jul 2025
Viewed by 269
Abstract
The presented article analyzes the impact of internal defects on the modal responses of polyamide parts subjected to bending. Samples with defects of various sizes (0, 3, 5, 7, and 10 mm) located at the neutral bending line were tested. Modal properties were [...] Read more.
The presented article analyzes the impact of internal defects on the modal responses of polyamide parts subjected to bending. Samples with defects of various sizes (0, 3, 5, 7, and 10 mm) located at the neutral bending line were tested. Modal properties were measured via an acoustic and a vibration sensor, using impulse excitation and fast Fourier transform (FFT) analysis. Modal properties include peak frequency, damping and amplitude. Non-defective samples show lower peak frequency and stronger amplitude for both detectors. Moreover, defects larger than 3 mm have minimal impact on peak frequency. The vibration detector is more sensitive to delamination presented at 7 and 10 mm defects. In addition, elevated peak frequency at 3 mm is the result of local hardening at the defect edge. Moreover, a neutral line position reduces damping when the defect size approaches 5 mm. Conversely, acoustic detectors ignore delamination and reveal lower damping and amplitude at 7 and 10 mm defects. Furthermore, internal sound diffusion from 3 and 5 mm defects enhances air losses and damping. Acoustic detectors only evaluate fault size and position, whereas vibrational detectors may detect local reinforcement and delamination more easily. These results highlight the importance of choosing the right detector according to the location, size, and specific modal characteristics of defects. Full article
Show Figures

Figure 1

16 pages, 5151 KiB  
Article
Design and Characterization of Curcumin-Modified Polyurethane Material with Good Mechanical, Shape-Memory, pH-Responsive, and Biocompatible Properties
by Man Wang, Hongying Liu, Wei Zhao, Huafen Wang, Yuwei Zhuang, Jie Yang, Zhaohui Liu, Jing Zhu, Sichong Chen and Jinghui Cheng
Biomolecules 2025, 15(8), 1070; https://doi.org/10.3390/biom15081070 - 24 Jul 2025
Viewed by 268
Abstract
In the context of critical challenges in curcumin-modified polyurethane synthesis—including limited curcumin bioavailability and suboptimal biodegradability/biocompatibility—a novel polyurethane material (Cur-PU) with good mechanical, shape memory, pH-responsive, and biocompatibility was synthesized via a one-pot, two-step synthetic protocol in which HO-PCL-OH served as the soft [...] Read more.
In the context of critical challenges in curcumin-modified polyurethane synthesis—including limited curcumin bioavailability and suboptimal biodegradability/biocompatibility—a novel polyurethane material (Cur-PU) with good mechanical, shape memory, pH-responsive, and biocompatibility was synthesized via a one-pot, two-step synthetic protocol in which HO-PCL-OH served as the soft segment and curcumin was employed as the chain extender. The experimental results demonstrate that with the increase in Cur units, the crystallinity of the Cur-PU material decreases from 32.6% to 5.3% and that the intensities of the diffraction peaks at 2θ = 21.36°, 21.97°, and 23.72° in the XRD pattern gradually diminish. Concomitantly, tensile strength decreased from 35.5 MPa to 19.3 MPa, and Shore A hardness declined from 88 HA to 65 HA. These observations indicate that the sterically hindered benzene ring structure of Cur imposes restrictions on HO-PCL-OH crystallization, leading to lower crystallinity and retarded crystallization kinetics in Cur-PU. As a consequence, the material’s tensile strength and hardness are diminished. Except for the Cur-PU-3 sample, all other variants exhibited exceptional shape-memory functionality, with Rf and Rr exceeding 95%, as determined by three-point bending method. Analogous to pure curcumin solutions, Cur-PU solutions demonstrated pH-responsive chromatic transitions: upon addition of hydroxide ion (OH) solutions at increasing concentrations, the solutions shifted from yellow-green to dark green and finally to orange-yellow, enabling sensitive pH detection across alkaline gradients. Hydrolytic degradation studies conducted over 15 weeks in air, UPW, and pH 6.0/8.0 phosphate buffer solutions revealed mass loss <2% for Cur-PU films. Surface morphological analysis showed progressive etching with the formation of micro-to-nano-scale pores, indicative of a surface-erosion degradation mechanism consistent with pure PCL. Biocompatibility assessments via L929 mouse fibroblast co-culture experiments demonstrated ≥90% cell viability after 72 h, while relative red blood cell hemolysis rates remained below 5%. Collectively, these findings establish Cur-PU as a biocompatible material with tunable mechanical properties, and pH responsiveness, underscoring its translational potential for biomedical applications such as drug delivery systems and tissue engineering scaffolds. Full article
Show Figures

Figure 1

17 pages, 4357 KiB  
Article
Rotational Bending Fatigue Crack Initiation and Early Extension Behavior of Runner Blade Steels in Air and Water Environments
by Bing Xue, Yongbo Li, Wanshuang Yi, Wen Li and Jiangfeng Dong
Metals 2025, 15(7), 783; https://doi.org/10.3390/met15070783 - 11 Jul 2025
Viewed by 304
Abstract
This study provides a comprehensive analysis of the fatigue cracking behavior of super martensitic stainless steel in air and water environments, highlighting the critical influence of environmental factors on its mechanical properties. By examining the distribution of fatigue test data, the Weibull three-parameter [...] Read more.
This study provides a comprehensive analysis of the fatigue cracking behavior of super martensitic stainless steel in air and water environments, highlighting the critical influence of environmental factors on its mechanical properties. By examining the distribution of fatigue test data, the Weibull three-parameter model was identified as the most accurate descriptor of fatigue life data in both environments. Key findings reveal that, in air, cracks predominantly propagate along the densest crystallographic planes, whereas, in water, corrosive media significantly accelerate crack initiation and propagation, reducing fatigue resistance, creating more tortuous crack paths, and inducing microvoids and secondary cracks at the crack tip. These corrosive effects adversely alter the material’s microstructure, profoundly impacting fatigue life and crack propagation rates. The insights gained from this research are crucial for understanding the performance of super martensitic stainless steel in aqueous environments, offering a reliable basis for its engineering applications and contributing to the development of more effective design and maintenance strategies. Full article
(This article belongs to the Special Issue Microstructure, Deformation and Fatigue Behavior in Metals and Alloys)
Show Figures

Figure 1

13 pages, 958 KiB  
Article
Efficient Manufacturing of Steerable Eversion Robots with Integrated Pneumatic Artificial Muscles
by Thomas Mack, Cem Suulker, Abu Bakar Dawood and Kaspar Althoefer
J. Manuf. Mater. Process. 2025, 9(7), 223; https://doi.org/10.3390/jmmp9070223 - 1 Jul 2025
Viewed by 471
Abstract
Soft-growing robots based on the eversion principle are renowned for their ability to rapidly extend along their longitudinal axis, allowing them to access remote, confined, or otherwise inaccessible spaces. Their inherently compliant structure enables safe interaction with delicate environments, while their simple actuation [...] Read more.
Soft-growing robots based on the eversion principle are renowned for their ability to rapidly extend along their longitudinal axis, allowing them to access remote, confined, or otherwise inaccessible spaces. Their inherently compliant structure enables safe interaction with delicate environments, while their simple actuation mechanisms support lightweight and low-cost designs. Despite these benefits, implementing effective navigation mechanisms remains a significant challenge. Previous research has explored the use of pneumatic artificial muscles mounted externally on the robot’s body, which, when contracting, induce directional bending. However, this method only offers limited bending performance. To enhance maneuverability, pneumatic artificial muscles embedded in between the walls of double-walled eversion robots have also been considered and shown to offer superior bending performance and force output as compared to externally attached muscle. However, their adoption has been hindered by the complexity of the current manufacturing techniques, which require individually sealing the artificial muscles. To overcome this multi-stage fabrication approach in which muscles are embedded one by one, we propose a novel single-step method. The key to our approach is the use of non-heat-sealable inserts to form air channels during the sealing process. This significantly simplifies the process, reducing production time and effort and improving scalability for manufacturing, potentially enabling mass production. We evaluate the fabrication speed and bending performance of robots produced in this manner and benchmark them against those described in the literature. The results demonstrate that our technique offers high bending performance and significantly improves the manufacturing efficiency. Full article
(This article belongs to the Special Issue Advances in Robotic-Assisted Manufacturing Systems)
Show Figures

Figure 1

17 pages, 11658 KiB  
Article
A Breathable, Highly Sensitive, and Wearable Piezoresistive Sensor with a Wide Detection Range Based on Gradient Porous PU@MXene/CNT Film for Electronic Skin
by Xiuli Yang, Feiran He, Huihui Qiao, Shuibo Yang, Dehua Wen, Kaige Yang, Ziyi Dang and Yin He
Polymers 2025, 17(11), 1530; https://doi.org/10.3390/polym17111530 - 30 May 2025
Viewed by 823
Abstract
Developing flexible sensors that combine high sensitivity, a wide detection range, and comfortable wearability remains a key challenge in the development of electronic skin. This study presents a breathable, highly sensitive, and wearable piezoresistive sensor based on the preparation of hierarchical microporous PU@MXene [...] Read more.
Developing flexible sensors that combine high sensitivity, a wide detection range, and comfortable wearability remains a key challenge in the development of electronic skin. This study presents a breathable, highly sensitive, and wearable piezoresistive sensor based on the preparation of hierarchical microporous PU@MXene + CNT films and single-sided electrodes using a simple and effective method. Distilled water was used as a non-solvent to induce the separation of polyurethane films (PU) with different mass fractions, forming a gradient porous structure with inconsistent pore morphologies in the upper and lower layers. Three-dimensional structure analysis of the hierarchical porous films with varying gradients, conducted using computed tomography, revealed that the porous structures formed after phase separation of PU solutions with different mass fractions exhibited different morphologies. As the mass fraction increased, the pore size, pore volume, and porosity gradually decreased while the surface area gradually increased. The greater the gradient of the constructed porous film, the more significant the difference between the upper- and lower-layer structures. A flexible sensor prepared using the PU@MXene + CNT porous film with the largest gradient exhibited excellent sensitivity in a wide detection range from 0.7 to 20 kPa, which was higher than that of porous films with other gradients, demonstrating high stability (>8000 cycles). The air permeability and moisture permeability of PU@MXene + CNT with the largest gradient were 0.9922 L/m2/s and 1123.6 g/m2/day, respectively, and these values were 1.35 and 4.40 times those of the non-porous film. Therefore, the constructed flexible piezoresistive sensor with a gradient porous structure had both high sensitivity and wide detection range, as well as good air and moisture permeability. Finally, the sensor successfully monitored human movements, including throat activity, finger motions, and arm bending, demonstrating its potential for wearable electronic applications. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

16 pages, 1837 KiB  
Article
The Influence of Fibre and Fly Ash Additions on the Properties of Self-Compacting Concrete
by Gabriela Rutkowska, Jacek Szulej and Paweł Ogrodnik
Materials 2025, 18(11), 2565; https://doi.org/10.3390/ma18112565 - 30 May 2025
Viewed by 528
Abstract
Self-compacting concrete (SCC) is an innovative building material that is distinguished by its ability to flow and fill forms without the need for mechanical vibration. The aim of this research was to determine the effect of different types of fibres—steel, glass, and polypropylene—on [...] Read more.
Self-compacting concrete (SCC) is an innovative building material that is distinguished by its ability to flow and fill forms without the need for mechanical vibration. The aim of this research was to determine the effect of different types of fibres—steel, glass, and polypropylene—on the properties of both the fresh mix (consistency, density, air content, and viscosity) and the hardened concrete (compressive strength, tensile strength in bending, density, water absorption, and frost resistance). Attention was also paid to CO2 emissions associated with cement production and the potential of their reduction by using alternative materials. The results of the conducted research demonstrate that, in terms of enhancing the mechanical properties of self-compacting concrete (SCC), the incorporation of glass fibres (GFs) leads to the most significant improvements in compressive and flexural strength—by 1.6% and 29.2%, respectively. Therefore, these fibres can be recommended for use in high-performance structural applications, such as precast elements, load-bearing components, and structures subjected to dynamic loading. Polypropylene fibres (PPFs), owing to their ability to reduce water absorption by 7.3%, may be suitable for elements exposed to high humidity and shrinkage risk, such as tunnels, fire-resistant barriers, or insulating layers. Steel fibres (SFs), in turn, have proven particularly effective in SCC used for industrial flooring and other elements exposed to cyclic dynamic loads. Full article
(This article belongs to the Special Issue Advanced Characterization of Fiber-Reinforced Composite Materials)
Show Figures

Figure 1

25 pages, 9816 KiB  
Article
Design and Basic Performance Analysis of a Bionic Finger Soft Actuator with a Dual-Chamber Composite Structure
by Yu Cai, Sheng Liu, Dazhong Wang, Shuai Huang, Dong Zhang, Mengyao Shi, Wenqing Dai and Shang Wang
Actuators 2025, 14(6), 268; https://doi.org/10.3390/act14060268 - 28 May 2025
Viewed by 603
Abstract
Pneumatic soft manipulators are one of the current development trends in the field of manipulators. The soft manipulator that has been developed at present still has problems with single function and poor load-bearing capacity. This paper designs a composite soft finger inspired by [...] Read more.
Pneumatic soft manipulators are one of the current development trends in the field of manipulators. The soft manipulator that has been developed at present still has problems with single function and poor load-bearing capacity. This paper designs a composite soft finger inspired by the human middle finger, featuring a dual-chamber pneumatic drive and embedded steel sheet structure. Utilizing the principles of moment equilibrium and virtual work, a theoretical model for the bending behavior of the soft finger is developed, and the correlation between the bending angle and driving air pressure is derived. The determination process of key parameters and their influence on bending deformation are explained in detail through simulation. The bending experiment confirmed the reliability of the theoretical model. The fingertip force test indicates that the composite finger exerts a greater force than the ordinary one, with the extra force equivalent to 42.57% of the composite finger’s own fingertip force. Subsequent tests on the soft robotic hand measured the hooking quality, gripping diameter, and gripping force. The hooking experiment confirmed that composite fingers have a stronger load-bearing capacity than ordinary fingers, with an extra capacity equivalent to 31.25% of the composite finger’s own load-bearing capacity. Finally, the grasping experiment demonstrates that the soft manipulator can grasp objects of varying shapes and weights, indicating its strong adaptability and promising applications. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

17 pages, 9487 KiB  
Article
Polymer Composite Sandwich Panels Composed of Hemp and Plastic Skins and Composite Wood, Recycled Plastic, and Styrofoam Cores
by Ashiqul Islam, Wahid Ferdous, Paulomi (Polly) Burey, Kamrun Nahar, Libo Yan and Allan Manalo
Polymers 2025, 17(10), 1359; https://doi.org/10.3390/polym17101359 - 15 May 2025
Viewed by 620
Abstract
This paper presents an experimental investigation of six different types of composite sandwich panels manufactured from waste-based materials, which are comprised of two different types of skins (made from hemp and recycled PET (Polyethylene terephthalate) fabrics with bio-epoxy resin) and three different cores [...] Read more.
This paper presents an experimental investigation of six different types of composite sandwich panels manufactured from waste-based materials, which are comprised of two different types of skins (made from hemp and recycled PET (Polyethylene terephthalate) fabrics with bio-epoxy resin) and three different cores (composite wood, recycled plastic, and styrofoam) materials. The skins of these sandwich panels were investigated under five different environmental conditions (normal air, water, hygrothermal, saline solution, and 80 °C elevated temperature) over seven months to evaluate their durability performance. In addition, the tensile and dynamic mechanical properties of those sandwich panels were studied. The bending behavior of cores and sandwich panels was also investigated and compared. The results indicated that elevated temperatures are 30% more detrimental to fiber composite laminates than normal water. Composite laminates made of hemp are more sensitive to environmental conditions than composite laminates made of recycled PET. A higher-density core makes panels more rigid and less susceptible to indentation failure. The flexible plastic cores are found to be up to 25% more effective at increasing the strength of sandwich panels than brittle wood cores. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Figure 1

24 pages, 2085 KiB  
Review
A Review on the Evolution of Air-Assisted Spraying in Orchards and the Associated Leaf Motion During Spraying
by Guanqun Wang, Ziyu Li, Weidong Jia, Mingxiong Ou, Xiang Dong and Zhengji Zhang
Agriculture 2025, 15(9), 964; https://doi.org/10.3390/agriculture15090964 - 29 Apr 2025
Cited by 1 | Viewed by 788
Abstract
Air-assisted spraying is vital in modern orchard pest management by enhancing droplet penetration and coverage on complex canopies. However, the interaction between airflow, droplets, and flexible foliage remains unclear, limiting spray efficiency and environmental sustainability. This review summarizes recent advances in understanding leaf [...] Read more.
Air-assisted spraying is vital in modern orchard pest management by enhancing droplet penetration and coverage on complex canopies. However, the interaction between airflow, droplets, and flexible foliage remains unclear, limiting spray efficiency and environmental sustainability. This review summarizes recent advances in understanding leaf motion dynamics in wind and droplet fields and their impact on pesticide deposition. First, we review orchard spraying technologies, focusing on air-assisted systems and their contribution to more uniform coverage. Next, we analyze mechanisms of droplet deposition within canopies, highlighting how wind characteristics, droplet size, and canopy structure influence pesticide distribution. Special attention is given to leaf aerodynamic responses, including bending, vibration, and transient deformation induced by wind and droplet impacts. Experimental and simulation studies reveal how leaf motion affects droplet retention, spreading, and secondary splashing. The limitations of static boundary models in deposition simulations are discussed, along with the potential of fluid-structure interaction (FSI) models. Future directions include integrated leaf-droplet experiments, intelligent airflow control, and incorporating plant biomechanics into precision spraying. Understanding leaf motion in spray environments is key to enhancing orchard spraying efficiency, precision, and sustainability. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Graphical abstract

11 pages, 7256 KiB  
Article
Shock Thermal Resistance of Parachute Fabrics
by Jiří Militký, Jakub Wiener, Dana Křemenáková and Mohanapriya Venkataraman
Eng 2025, 6(4), 80; https://doi.org/10.3390/eng6040080 - 18 Apr 2025
Viewed by 487
Abstract
The use of polyester and polyamide fabrics for parachute constructions has a great advantage because, in comparison with classical silk-based parachutes, they are more durable and suitable for absorbing higher mechanical shocks. Because polyester and polyamides are thermoplastics, they are sensitive to sudden [...] Read more.
The use of polyester and polyamide fabrics for parachute constructions has a great advantage because, in comparison with classical silk-based parachutes, they are more durable and suitable for absorbing higher mechanical shocks. Because polyester and polyamides are thermoplastics, they are sensitive to sudden increases in temperature due to mechanical shocks and high-speed friction. It is known that the local surface temperature of these parachute fabrics may exceed the melting point of the canopy for a short time period during parachute opening, which would have irreversible effects on parachute functionality and could lead to catastrophic parachute rupture. The main aim of this article is to enhance the surface heat resistance of the parachute fabrics from polyamide and polyester filaments through surface coating combined with super-fine TiO2 particles and silanization. This coating is also selected to increase the frictional heat loss and enhance the mechanical stability of parachute fabrics constructed from polyamide and polyester filaments. The changes in air permeability, bending rigidity, and friction of surface-coated parachute fabrics are evaluated as well. The new method based on laser irradiation by a pulsed laser is used for the prediction of these fabrics’ short-time surface thermal resistance. Full article
Show Figures

Figure 1

17 pages, 15797 KiB  
Article
Unbalance Response of a Hydrogen Fuel Cell Vehicle Air Compressor Rotor Supported by Gas Foil Bearings: Experimental Study and Analysis
by Ming Ying and Xinghua Liu
Lubricants 2025, 13(4), 181; https://doi.org/10.3390/lubricants13040181 - 14 Apr 2025
Cited by 1 | Viewed by 604
Abstract
In rotating machinery, unbalanced mass is one of the most common causes of system vibration. This paper presents an experimental investigation of the unbalance response of a gas foil bearing-rotor system, based on a 30 kW-rated commercial hydrogen fuel cell vehicle air compressor. [...] Read more.
In rotating machinery, unbalanced mass is one of the most common causes of system vibration. This paper presents an experimental investigation of the unbalance response of a gas foil bearing-rotor system, based on a 30 kW-rated commercial hydrogen fuel cell vehicle air compressor. The study examines the response of the system to varying unbalanced masses at different rotational speeds. Experimental results show that, after adding unbalanced mass, subsynchronous vibration of the rotor is relatively slight, while synchronous vibration is the main source of vibration; when unbalanced mass is added to one side of the rotor, the synchronous vibration on that side initially decreases and then increases with speed, while synchronous vibration on the opposite side continuously increases with speed; when unbalanced mass is added to both sides, the synchronous vibration on each side increases with the phase difference of the unbalanced mass at low speed, while the opposite trend occurs at high speed. The analysis of the gas foil bearing-rotor system dynamics model established based on the dynamic coefficient of the bearing shows that the bending of the rotor offsets the displacement caused by the unbalanced mass, which is the primary reason for the nonlinear behavior of the synchronous vibration of the rotor. These findings contribute to an improved understanding of GFB-rotor interactions under unbalanced conditions and provide practical guidance for optimizing dynamic balancing strategies in hydrogen fuel cell vehicle compressors. Full article
Show Figures

Figure 1

15 pages, 6297 KiB  
Article
Investigating Load-Bearing Capabilities and Failure Mechanisms of Inflatable Air Ribs
by Ying Liu, Shengchao Liang, Yanru Li and Jun Zhang
Appl. Sci. 2025, 15(8), 4154; https://doi.org/10.3390/app15084154 - 10 Apr 2025
Viewed by 355
Abstract
Air ribs are the critical components of tents. Ten air ribs were designed to study the influence of rise–span ratios on load-bearing performance and explore the failure mechanism. According to the maximum stress that appears at the top and bending regions of the [...] Read more.
Air ribs are the critical components of tents. Ten air ribs were designed to study the influence of rise–span ratios on load-bearing performance and explore the failure mechanism. According to the maximum stress that appears at the top and bending regions of the rib, the ribs can be divided into an upright region and an arc-like region. So, a segmentation failure competition mechanism was proposed. In order to enhance the bearing performance, the upright region and arc-like region should be designed to fail at the same time. For the rib named 0.333-S, the stress distributes uniformly and the critical load is 2.62 kN/m2; the upright region and arc-like region fail at the same time. For the rib named 0.5-S/R, the critical load is 1.465 kN/m2, and it fails at the upright region, resulting in a reduction of 44%. The tent with ribs named 0.333-S shows better resistance performance against wind load, and the end ribs of this tent deform less. Its maximum displacement is 0.112 m, which is reduced by 65.8% compared with that of the original upright arch tent. Full article
Show Figures

Figure 1

24 pages, 13076 KiB  
Article
Three-Chamber Actuated Humanoid Joint-Inspired Soft Gripper: Design, Modeling, and Experimental Validation
by Yinlong Zhu, Qin Bao, Hu Zhao and Xu Wang
Sensors 2025, 25(8), 2363; https://doi.org/10.3390/s25082363 - 8 Apr 2025
Viewed by 460
Abstract
To address the limitations of single-chamber soft grippers, such as constant curvature, insufficient motion flexibility, and restricted fingertip movement, this study proposes a soft gripper inspired by the structure of the human hand. The designed soft gripper consists of three fingers, each comprising [...] Read more.
To address the limitations of single-chamber soft grippers, such as constant curvature, insufficient motion flexibility, and restricted fingertip movement, this study proposes a soft gripper inspired by the structure of the human hand. The designed soft gripper consists of three fingers, each comprising three soft joints and four phalanges. The air chambers in each joint are independently actuated, enabling flexible grasping by adjusting the joint air pressure. The constraint layer is composed of a composite material with a mass ratio of 5:1:0.75 of PDMS base, PDMS curing agent, and PTFE, which enhances the overall finger stiffness and fingertip load capacity. A nonlinear mathematical model is established to describe the relationship between the joint bending angle and actuation pressure based on the constant curvature assumption. Additionally, the kinematic model of the finger is developed using the D–H parameter method. Finite element simulations using ABAQUS analyze the effects of different joint pressures and phalange lengths on the grasping range, as well as the fingertip force under varying actuation pressures. Bending performance and fingertip force tests were conducted on the soft finger actuator, with the maximum fingertip force reaching 2.21 N. The experimental results show good agreement with theoretical and simulation results. Grasping experiments with variously sized fruits and everyday objects demonstrate that, compared to traditional single-chamber soft grippers, the proposed humanoid joint-inspired soft gripper significantly expands the grasping range and improves grasping force by four times, achieving a maximum grasp weight of 0.92 kg. These findings validate its superior grasping performance and potential for practical applications. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

15 pages, 5821 KiB  
Article
Investigation of Seepage Behavior and Settlement Deformation Mechanisms in Loess Embankment Foundation Systems in Eastern Gansu Province
by Wei Wang, Wei Li, Pengxiang Zhang and Lulu Liu
Appl. Sci. 2025, 15(7), 3789; https://doi.org/10.3390/app15073789 - 30 Mar 2025
Viewed by 372
Abstract
The northwestern region of China is characterized by loess soil and seasonal permafrost. Due to the combined effects of its unique climate and precipitation patterns, local roads frequently suffer from issues such as foundation settlement, erosion, and collapse, which pose significant risks to [...] Read more.
The northwestern region of China is characterized by loess soil and seasonal permafrost. Due to the combined effects of its unique climate and precipitation patterns, local roads frequently suffer from issues such as foundation settlement, erosion, and collapse, which pose significant risks to both road construction and safe operation. This study examines a typical high subgrade in Northwest China, where a scaled laboratory model experiment was conducted. The research investigates the impact of water infiltration at the slope foot, under the dual influences of extreme cold and precipitation, on changes in the internal moisture field and settlement deformation characteristics of both the foundation and subgrade. The results indicate that the variation in moisture content across the section follows an arc-shaped diffusion pattern. Settlement is influenced by both the amount of infiltrated water and cold air, with a noticeable lag effect. A settlement of 0.1 cm is considered the threshold for significant impact, with the minimum observed lag period approaching 4 days. The settlement is concentrated in the slope region, exhibiting a bending failure pattern. Numerical simulations reveal that the cross-sectional settlement distribution forms an inverted “S” shape, and the cumulative moisture content at each monitoring point exhibits a quadratic relationship with the cumulative settlement. The findings of this study provide scientific guidance and technical references for road construction and safe operation in the seasonal permafrost regions of Northwest China. Full article
Show Figures

Figure 1

26 pages, 9353 KiB  
Review
The Review of Selected Non-Pneumatic Tires Properties—Load Carrying Mechanism, Structure of Non-Pneumatic Tires
by Marcin Żmuda and Jerzy Jackowski
Materials 2025, 18(7), 1566; https://doi.org/10.3390/ma18071566 - 30 Mar 2025
Viewed by 898
Abstract
In recent years, non-pneumatic tires have been gaining popularity, which can be seen in the increase in research results and proposals from world-class tire manufacturers (mainly as technology demonstrators). The possibility of eliminating the need to maintain compressed air is a major factor [...] Read more.
In recent years, non-pneumatic tires have been gaining popularity, which can be seen in the increase in research results and proposals from world-class tire manufacturers (mainly as technology demonstrators). The possibility of eliminating the need to maintain compressed air is a major factor in the development of non-pneumatic tires and their usage in vehicles. Articles and patents were reviewed in relation to the load transfer mechanism, the design of non-pneumatic tire components, and recommendations for materials. Non-pneumatic tire top loaders are a desirable type of this type of wheel compared to bottom loaders, because they transfer loads over a larger part of the wheel, which increases their load capacity. Most non-pneumatic tires consist of a rim, an elastic structure, and a shear beam/band with a tread. The rim is used to secure the elastic structure and can be fitted with vibration dampers in the form of circumferential rubber rings. The gradient elastic structure, in comparison with the homogeneous structure (same thickness or dimensions of the elements), allows the range of axle displacements to be adjusted to the desired level without the need to increase the size of the wheel, and also influences the change in the location of the maximum stresses. The shear beam/ band mimics the properties of compressed air used in pneumatic tires. The shear beam/ band made as a webbing geometry ensures uniform pressure in the contact patch. The reinforced composite shear beam/ band ensures adequate bending strength with low energy losses and a small thickness of the beam/ band. Materials commonly used in the tire industry are used as reinforcement for the shear beam/ band, which was illustrated by the results of our own research. Full article
Show Figures

Graphical abstract

Back to TopTop