A Review on the Evolution of Air-Assisted Spraying in Orchards and the Associated Leaf Motion During Spraying
Abstract
:1. Introduction
2. Development of Orchard Spraying Technologies
2.1. Trends in Precision Spraying for Orchards
2.2. A Comparative Study of Mechanically Assisted and Conventional Spray Application Methods
2.3. Key Factors Influencing Orchard-Spraying Effectiveness
3. Development of Air-Assisted Spraying Technology
3.1. Principles of Air-Assisted Spraying
3.2. Evolution and Application of Air-Assisted Spraying Technology
3.3. Existing Air-Assisted Spraying Equipment and Their Characteristics
4. Droplet Deposition in Air-Assisted Spraying
4.1. Mechanisms of Droplet Deposition Within Fruit Tree Canopies
4.2. Influence of Wind Fields on Droplet Deposition
4.3. Effects of Droplet Size and Properties
4.4. Influence of Canopy Structure on Droplet Deposition
5. Leaf Motion in Airflow Environments
5.1. Aerodynamic Characteristics of Wind-Induced Leaf Motion
5.2. Leaf Vibration Characteristics and the Influence of Wind Speed
5.3. Relevant Fluid Dynamics Theories and Simulations
6. Leaf Motion Induced by Droplet Impact
6.1. Dynamic Effects of Droplet Impacts on Leaves
6.2. Advances in Experimental and Simulation Studies
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, W.-C.; Qiu, B.-J.; Xue, X.-Y.; Chen, C.; Xu, Z.-F.; Zhou, Q.-Q. Droplet Deposition and Control Effect of Insecticides Sprayed with an Unmanned Aerial Vehicle against Plant Hoppers. Crop Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, J.; Wang, S.; Shen, J.; Yang, K.; Zhou, X. Identifying Field Crop Diseases Using Transformer-Embedded Convolutional Neural Network. Agriculture 2022, 12, 1083. [Google Scholar] [CrossRef]
- Mahmood, A.; Hu, Y.; Tanny, J.; Asante, E.A. Effects of Shading and Insect-Proof Screens on Crop Microclimate and Production: A Review of Recent Advances. Sci. Hortic. 2018, 241, 241–251. [Google Scholar] [CrossRef]
- Yang, N.; Wang, P.; Xue, C.; Sun, J.; Mao, H.; Oppong, P.K. A Portable Detection Method for Organophosphorus and Carbamates Pesticide Residues Based on Multilayer Paper Chip. J. Food Process Eng. 2018, 41, e12867. [Google Scholar] [CrossRef]
- Zhou, Q.; Xue, X.; Chen, C.; Cai, C.; Jiao, Y. Canopy Deposition Characteristics of Different Orchard Pesticide Dose Models. Int. J. Agric. Biol. Eng. 2023, 16, 1–6. [Google Scholar] [CrossRef]
- Liu, J.; Abbas, I.; Noor, R.S. Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop. Agronomy 2021, 11, 1480. [Google Scholar] [CrossRef]
- Salcedo, R.; Sánchez, E.; Zhu, H.; Fàbregas, X.; García-Ruiz, F.; Gil, E. Evaluation of an Electrostatic Spray Charge System Implemented in Three Conventional Orchard Sprayers Used on a Commercial Apple Trees Plantation. Crop Prot. 2023, 167, 106212. [Google Scholar] [CrossRef]
- Yan, T.; Zhu, H.; Sun, L.; Wang, X.; Ling, P. Investigation of an Experimental Laser Sensor-Guided Spray Control System for Greenhouse Variable-Rate Applications. Trans. ASABE 2019, 62, 899–911. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, H.; Liu, H.; Chen, Y.; Ozkan, E. Development of a Laser-Guided, Embedded-Computer-Controlled, Air-Assisted Precision Sprayer. Trans. ASABE 2017, 60, 1827–1838. [Google Scholar] [CrossRef]
- Feng, F.; Dou, H.; Zhai, C.; Zhang, Y.; Zou, W.; Hao, J. Design and Experiment of Orchard Air-Assisted Sprayer with Airflow Graded Control. Agronomy 2024, 15, 95. [Google Scholar] [CrossRef]
- Xu, S.; Wang, X.; Li, C.; Ran, X.; Zhong, Y.; Jin, Y.; Song, J. Effect of airflow angle on abaxial surface deposition in air-assisted spraying. Front. Plant Sci. 2023, 14, 1211104. [Google Scholar] [CrossRef]
- Xu, B.; Tiliwa, E.S.; Yan, W.; Azam, S.M.R.; Wei, B.; Zhou, C.; Ma, H.; Bhandari, B. Recent Development in High Quality Drying of Fruits and Vegetables Assisted by Ultrasound: A Review. Food Res. Int. 2021, 152, 110744. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, J.; Wang, J.; Hao, D.; Wang, R. The Motion of Strawberry Leaves in an Air-Assisted Spray Field and Its Influence on Droplet Deposition. Trans. ASABE 2021, 64, 83–93. [Google Scholar] [CrossRef]
- Shi, R.; Sun, H.; Qiu, W.; Lv, X.; Ahmad, F.; Gu, J.; Yu, H.; Zhang, Z. Analysing Airflow Velocity in the Canopy to Improve Droplet Deposition for Air-Assisted Spraying: A Case Study on Pears. Agronomy 2022, 12, 2424. [Google Scholar] [CrossRef]
- Wei, Z.; Xue, X.; Salcedo, R.; Zhang, Z.; Gil, E.; Sun, Y.; Li, Q.; Shen, J.; He, Q.; Dou, Q.; et al. Key Technologies for an Orchard Variable-Rate Sprayer: Current Status and Future Prospects. Agronomy 2022, 13, 59. [Google Scholar] [CrossRef]
- Garcerá, C.; Vicent, A.; Chueca, P. Effect of Spray Volume, Application Timing and Droplet Size on Spray Distribution and Control Efficacy of Different Fungicides against Circular Leaf Spot of Persimmon Caused by Plurivorosphaerella nawae. Crop Prot. 2019, 130, 105072. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, S.; Liu, J. Fused-Deep-Features Based Grape Leaf Disease Diagnosis. Agronomy 2021, 11, 2234. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, J.; Guo, J.; Qiu, B. Numerical Simulation and Validation of Droplet Deposition on Tomato Leaf Surface under Air-Assisted Spraying. Agronomy 2024, 14, 1661. [Google Scholar] [CrossRef]
- Xi, T.; Li, C.; Qiu, W.; Wang, H.; Lv, X.; Han, C.; Ahmad, F. Droplet Deposition Behavior on a Pear Leaf Surface under Wind-Induced Vibration. Appl. Eng. Agric. 2020, 36, 913–926. [Google Scholar] [CrossRef]
- Shi, Q.; Mao, H.; Guan, X. Numerical Simulation and Experimental Verification of the Deposition Concentration of an Unmanned Aerial Vehicle. Appl. Eng. Agric. 2019, 35, 367–376. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Zhen, J.; Lei, X.; Chen, Y. Resistance Characteristics of Broad-Leaf Crop Canopy in Air-Assisted Spray Field and Their Effects on Droplet Deposition. Front. Plant Sci. 2022, 13, 924749. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, K.; Dong, X.; Huang, X.; Ahmad, F.; Qiu, B. Force and Motion Behaviour of Crop Leaves during Spraying. Biosyst. Eng. 2023, 235, 83–99. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Jiang, Y.; Pan, X.; Hussain, Z.; Javaid, M.; Rizwan, M. Advances in Sprinkler Irrigation: A Review in the Context of Precision Irrigation for Crop Production. Agronomy 2023, 14, 47. [Google Scholar] [CrossRef]
- Ji, X.; Wang, A.; Wei, X. Precision Control of Spraying Quantity Based on Linear Active Disturbance Rejection Control Method. Agriculture 2021, 11, 761. [Google Scholar] [CrossRef]
- Salas, B.; Salcedo, R.; Garcia-Ruiz, F.; Gil, E. Design, Implementation and Validation of a Sensor-Based Precise Airblast Sprayer to Improve Pesticide Applications in Orchards. Precis. Agric. 2023, 25, 865–888. [Google Scholar] [CrossRef]
- Fessler, L.; Fulcher, A.; Lockwood, D.; Wright, W.; Zhu, H. Advancing Sustainability in Tree Crop Pest Management: Refining Spray Application Rate with a Laser-guided Variable-rate Sprayer in Apple Orchards. HortScience 2020, 55, 1522–1530. [Google Scholar] [CrossRef]
- Samseemoung, G.; Soni, P.; Suwan, P. Development of a Variable Rate Chemical Sprayer for Monitoring Diseases and Pests Infestation in Coconut Plantations. Agriculture 2017, 7, 89. [Google Scholar] [CrossRef]
- Li, L.; He, X.; Song, J.; Liu, Y.; Zeng, A.; Yang, L.; Liu, C.; Liu, Z. Design and Experiment of Variable Rate Orchard Sprayer Based on Laser Scanning Sensor. Int. J. Agric. Biol. Eng. 2017, 11, 101–108. [Google Scholar] [CrossRef]
- Rovira-Más, F.; Saiz-Rubio, V.; Cuenca, A.; Ortiz, C.; Teruel, M.P.; Ortí, E. Open-Format Prescription Maps for Variable Rate Spraying in Orchard Farming. J. ASABE 2024, 67, 243–257. [Google Scholar] [CrossRef]
- Asaei, H.; Jafari, A.; Loghavi, M. Site-Specific Orchard Sprayer Equipped with Machine Vision for Chemical Usage Management. Comput. Electron. Agric. 2019, 162, 431–439. [Google Scholar] [CrossRef]
- Farhan, S.M.; Yin, J.; Chen, Z.; Memon, M.S. A Comprehensive Review of LiDAR Applications in Crop Management for Precision Agriculture. Sensors 2024, 24, 5409. [Google Scholar] [CrossRef]
- Nan, Y.; Zhang, H.; Zheng, J.; Yang, K.; Ge, Y. Low-volume precision spray for plant pest control using profile variable rate spraying and ultrasonic detection. Front. Plant Sci. 2023, 13, 1042769. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Du, Z.; Shen, Y.; Du, W.; Zhang, X. Development and Evaluation of an Intelligent Multivariable Spraying Robot for Orchards and Nurseries. Comput. Electron. Agric. 2024, 222, 109056. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, Y. A Review: Development of Plant Protection Methods and Advances in Pesticide Application Technology in Agro-Forestry Production. Agriculture 2023, 13, 2165. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Mathew, A.C.; Imran, S.; Pandian, R.T.P.; Manikantan, M.R. Design, Development and Evaluation of a Tractor Mounted Air Blast Sprayer for Coconut and Arecanut. Sci. Prog. 2023, 106, 00368504231199927. [Google Scholar] [CrossRef]
- Li, T.; Qi, P.; Wang, Z.; Xu, S.; Huang, Z.; Han, L.; He, X. Evaluation of the Effects of Airflow Distribution Patterns on Deposit Coverage and Spray Penetration in Multi-Unit Air-Assisted Sprayer. Agronomy 2022, 12, 944. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, B. Research on Deposition Characteristics of a New Air-Assisted Electrostatic Sprayer. Eur. J. Agric. Food Sci. 2024, 6, 37–43. [Google Scholar] [CrossRef]
- Zhu, H.; Derksen, R.C.; Krause, C.R.; Brazee, R.D.; Fox, R.D.; Ozkan, H.E. Spray deposition in taxus and air velocity profile for a fiveport, air-assist sprayer. In Proceedings of the 2004 ASAE Annual Meeting, Ottawa, ON, Canada, 1–4 August 2004; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2004. [Google Scholar]
- Dou, H.; Li, Q.; Zhai, C.; Yang, S.; Zhao, C.; Gao, Y.; He, Y. Computational model of pesticide deposition distribution on canopies for air-assisted spraying. Front. Plant Sci. 2023, 14, 1153904. [Google Scholar] [CrossRef]
- Fritz, B.K.; Hoffmann, W.C.; Bagley, W.E. Effects of Spray Mixtures on Droplet Size under Aerial Application Conditions and Implications on Drift. Appl. Eng. Agric. 2009, 26, 21–29. [Google Scholar] [CrossRef]
- Sun, D.; Huang, X.; Hu, J.; Jiang, H.; Song, S.; Xue, X. Multifactorial analysis and experiments affecting the effect of fog droplet penetration in fruit tree canopies. Front. Plant Sci. 2024, 15, 1351525. [Google Scholar] [CrossRef]
- Cross, J.V.; Walklate, P.J.; Murray, R.A.; Richardson, G.M. Spray Deposits and Losses in Different Sized Apple Trees from an Axial Fan Orchard Sprayer: 2. Effects of Spray Quality. Crop Prot. 2001, 20, 333–343. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Zhu, X.; Yuan, S. Droplet Characterisation of a Complete Fluidic Sprinkler with Different Nozzle Dimensions. Biosyst. Eng. 2016, 148, 90–100. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, S.; Darko, R.O. Characteristics of Water and Droplet Size Distribution from Fluidic Sprinklers. Irrig. Drain. 2016, 65, 522–529. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, C.; Li, H.; Xiang, Q. Influences of Nozzle Parameters and Low-Pressure on Jet Breakup and Droplet Characteristics. Int. J. Agric. Biol. Eng. 2016, 9, 22–32. [Google Scholar] [CrossRef]
- Ou, M.; Zhang, Y.; Wu, M.; Wang, C.; Dai, S.; Wang, M.; Dong, X.; Jiang, L. Development and Experiment of an Air-Assisted Sprayer for Vineyard Pesticide Application. Agriculture 2024, 14, 2279. [Google Scholar] [CrossRef]
- Meng, Y.; Zhong, W.; Liu, Y.; Wang, M.; Lan, Y. Droplet Distribution of an Autonomous UAV-based Sprayer in Citrus Tree Canopy. J. Phys. Conf. Ser. 2022, 2203, 012022. [Google Scholar] [CrossRef]
- Sun, D.; Hu, J.; Huang, X.; Luo, W.; Song, S.; Xue, X. Study on the Improvement of Droplet Penetration Effect by Nozzle Tilt Angle under the Influence of Orthogonal Side Wind. Sensors 2024, 24, 2685. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wu, J.; Xiao, S.; Fang, H.; Zheng, Q. Investigating the Wettability of Rapeseed Leaves. Appl. Eng. Agric. 2021, 37, 399–409. [Google Scholar] [CrossRef]
- Ma, J.; Liu, K.; Dong, X.; Chen, C.; Qiu, B.; Zhang, S. Effects of Leaf Surface Roughness and Contact Angle on In Vivo Measurement of Droplet Retention. Agronomy 2022, 12, 2228. [Google Scholar] [CrossRef]
- Liao, J.; Luo, X.; Wang, P.; Zhou, Z.; O’Donnell, C.C.; Zang, Y.; Hewitt, A.J. Analysis of the Influence of Different Parameters on Droplet Characteristics and Droplet Size Classification Categories for Air Induction Nozzle. Agronomy 2020, 10, 256. [Google Scholar] [CrossRef]
- Li, H.; Travlos, I.; Qi, L.; Kanatas, P.; Wang, P. Optimization of Herbicide Use: Study on Spreading and Evaporation Characteristics of Glyphosate-Organic Silicone Mixture Droplets on Weed Leaves. Agronomy 2019, 9, 547. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Zahid, A.; He, L.; Choi, D.; Krawczyk, G.; Zhu, H. LiDAR-Sensed Tree Canopy Correction in Uneven Terrain Conditions Using a Sensor Fusion Approach for Precision Sprayers. Comput. Electron. Agric. 2021, 191, 106565. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Y.; Wei, W.; Hu, Z.; Li, P. Optimization Design of Spray Cooling Fan Based on CFD Simulation and Field Experiment for Horticultural Crops. Agriculture 2021, 11, 566. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Z.; Xu, X.; Shen, D.; Jiang, T.; Xie, B.; Duan, J. Wetting and deposition characteristics of air-assisted spray droplet on large broad-leaved crop canopy. Front. Plant Sci. 2023, 14, 1079703. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Zhu, H. Development of an Electric Variable Air Assist System for Apple Orchard Sprayers. J. ASABE 2024, 67, 853–864. [Google Scholar] [CrossRef]
- Xu, T.; Li, X.; Ding, L.; Qi, Y.; Lu, H.; Xiao, W.; Li, J. Study on the Influence of Ambient Wind on Droplet Distribution Characteristics of Air-Assisted Sprayer. 2024. [Google Scholar] [CrossRef]
- Jiang, S.; Li, W.; Yang, S.; Zheng, Y.; Tan, Y.; Xu, J. Factors Affecting Droplet Loss behind Canopies with Air-Assisted Sprayers Used for Fruit Trees. Agronomy 2023, 13, 375. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Zahid, A.; He, L.; Choi, D.; Krawczyk, G.; Zhu, H.; Heinemann, P. Development of a LiDAR-Guided Section-Based Tree Canopy Density Measurement System for Precision Spray Applications. Comput. Electron. Agric. 2021, 182, 106053. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Yu, S.; Wang, P.; Liu, H.; Yang, X. Anti-Drift Technology Progress of Plant Protection Applied to Orchards: A Review. Agronomy 2023, 13, 2679. [Google Scholar] [CrossRef]
- Liao, J.; Hewitt, A.J.; Wang, P.; Luo, X.; Zang, Y.; Zhou, Z.; Lan, Y.; O’Donnell, C. Development of Droplet Characteristics Prediction Models for Air Induction Nozzles Based on Wind Tunnel Tests. Int. J. Agric. Biol. Eng. 2019, 12, 1–6. [Google Scholar] [CrossRef]
- Cross, J.V.; Walklate, P.J.; Murray, R.A.; Richardson, G.M. Spray Deposits and Losses in Different Sized Apple Trees from an Axial Fan Orchard Sprayer: 1. Effects of Spray Liquid Flow Rate. Crop Prot. 2001, 20, 13–30. [Google Scholar] [CrossRef]
- Cross, J.V.; Walklate, P.J.; Murray, R.A.; Richardson, G.M. Spray Deposits and Losses in Different Sized Apple Trees from an Axial Fan Orchard Sprayer: 3. Effects of Air Volumetric Flow Rate. Crop Prot. 2002, 22, 381–394. [Google Scholar] [CrossRef]
- Hui Liu, H.Z. Evaluation of a Laser Scanning Sensor in Detection of Complex-Shaped Targets for Variable-Rate Sprayer Development. Trans. ASABE 2016, 59, 1181–1192. [Google Scholar] [CrossRef]
- Fox, R.D.; Derksen, R.C.; Zhu, H.; Brazee, R.D.; Svensson, S.A. A History of Air-Blast Sprayer Development and Future Prospects. Trans. ASABE 2008, 51, 405–410. [Google Scholar] [CrossRef]
- Landers, A.J. Developments Towards an Automatic Precision Sprayer for Fruit Crop Canopies. In Proceedings of the ASABE Annual International Meeting, Pittsburg, PA, USA, 20–23 June 2010; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2010. [Google Scholar]
- Doruchowski, G.; Swiechowski, W.; Godyn, A.; Holownicki, R. Automatically controlled sprayer to implement spray drift reducing application strategies in orchards. J. Fruit Ornam. Plant Res. 2011, 19, 175–182. [Google Scholar]
- Jiangyi, H.; Fan, W. Design and Testing of a Small Orchard Tractor Driven by a Power Battery. Eng. Agrícola 2023, 43, e20220195. [Google Scholar] [CrossRef]
- Hołownicki, R.; Doruchowski, G.; Świechowski, W.; Godyń, A.; Konopacki, P.J. Variable Air Assistance System for Orchard Sprayers; Concept, Design and Preliminary Testing. Biosyst. Eng. 2017, 163, 134–149. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, H.; Shen, Y.; Chen, Y.; Ozkan, H.E. Development of Digital Flow Control System for Multi-Channel Variable-Rate Sprayers. Trans. ASABE 2014, 57, 273–281. [Google Scholar] [CrossRef]
- Lin, J.; Cai, J.; Ouyang, J.; Xiao, L.; Qiu, B. The Influence of Electrostatic Spraying with Waist-Shaped Charging Devices on the Distribution of Long-Range Air-Assisted Spray in Greenhouses. Agronomy 2024, 14, 2278. [Google Scholar] [CrossRef]
- Gao, J.; Guo, Y.; Tunio, M.H.; Chen, X.; Chen, Z. Design of a High-Voltage Electrostatic Ultrasonic Atomization Nozzle and Its Droplet Adhesion Effects on Aeroponically Cultivated Plant Roots. Int. J. Agric. Biol. Eng. 2023, 16, 30–37. [Google Scholar] [CrossRef]
- Kong, F.; Qiu, B.; Dong, X.; Yi, K.; Wang, Q.; Jiang, C.; Zhang, X.; Huang, X. Design and Development of a Side Spray Device for UAVs to Improve Spray Coverage in Obstacle Neighborhoods. Agronomy 2024, 14, 2002. [Google Scholar] [CrossRef]
- Qiu, W.; Li, X.; Li, C.; Ding, W.; Lv, X.; Liu, Y. Design and Test of a Novel Crawler-Type Multi-Channel Air-Assisted Orchard Sprayer. Int. J. Agric. Biol. Eng. 2020, 13, 60–67. [Google Scholar] [CrossRef]
- Dai, S.; Ou, M.; Du, W.; Yang, X.; Dong, X.; Jiang, L.; Zhang, T.; Ding, S.; Jia, W. Effects of sprayer speed, spray distance, and nozzle arrangement angle on low-flow air-assisted spray deposition. Front. Plant Sci. 2023, 14, 1184244. [Google Scholar] [CrossRef]
- Junping, L.; Xingye, Z.; Shouqi, Y.; Xingfa, L. Droplet Motion Model and Simulation of a Complete Fluidic Sprinkler. Trans. ASABE 2018, 61, 1297–1306. [Google Scholar] [CrossRef]
- Dong, X.; Zhu, H.; Yang, X. Characterization of Droplet Impact and Deposit Formation on Leaf Surfaces. Pest Manag. Sci. 2014, 71, 302–308. [Google Scholar] [CrossRef]
- Massinon, M.; Cock, N.D.; Forster, W.A.; Nairn, J.J.; McCue, S.W.; Zabkiewicz, J.A.; Lebeau, F. Spray Droplet Impaction Outcomes for Different Plant Species and Spray Formulations. Crop Prot. 2017, 99, 65–75. [Google Scholar] [CrossRef]
- Panneton, B.; Philion, H.; Thériault, R.; Khelifi, M. Spray Chamber Evaluation of Air-Assisted Spraying on Broccoli. Crop Sci. 2000, 40, 444–448. [Google Scholar] [CrossRef]
- Cui, H.; Wang, C.; Liu, X.; Yuan, J.; Liu, Y. Dynamic Simulation of Fluid-Structure Interactions between Leaves and Airflow during Air-Assisted Spraying: A Case Study of Cotton. Comput. Electron. Agric. 2023, 209, 107817. [Google Scholar] [CrossRef]
- Musiu, E.M.; Qi, L.; Wu, Y. Spray Deposition and Distribution on the Targets and Losses to the Ground as Affected by Application Volume Rate, Airflow Rate and Target Position. Crop Prot. 2019, 116, 170–180. [Google Scholar] [CrossRef]
- Pascuzzi, S.; Cerruto, E.; Manetto, G. Foliar Spray Deposition in a “Tendone” Vineyard as Affected by Airflow Rate, Volume Rate and Vegetative Development. Crop Prot. 2017, 91, 34–48. [Google Scholar] [CrossRef]
- Tadrist, L.; Saudreau, M.; Hémon, P.; Amandolese, X.; Marquier, A.; Leclercq, T.; Langre, E. de Foliage Motion under Wind, from Leaf Flutter to Branch Buffeting. J. R. Soc. Interface 2018, 15, 20180010. [Google Scholar] [CrossRef]
- Qin, W.C.; Xue, X.Y.; Cui, L.F.; Zhou, Q.Q.; Xu, Z.F.; Chang, F.L. Optimization and test for spraying parameters of cotton defoliant sprayer. Int. J. Agric. Biol. Eng. 2016, 9, 63–72. [Google Scholar] [CrossRef]
- Silva, A.D.; Sinfort, C.; Tinet, C.; Pierrat, D.; Huberson, S. A Lagrangian Model for Spray Behaviour within Vine Canopies. J. Aerosol Sci. 2006, 37, 658–674. [Google Scholar] [CrossRef]
- Endalew, A.M.; Debaer, C.; Rutten, N.; Vercammen, J.; Delele, M.A.; Ramon, H.; Nicolaï, B.M.; Verboven, P. Modelling Pesticide Flow and Deposition from Air-Assisted Orchard Spraying in Orchards: A New Integrated CFD Approach. Agric. For. Meteorol. 2010, 150, 1383–1392. [Google Scholar] [CrossRef]
- Hong, S.-W.; Zhao, L.; Zhu, H. CFD Simulation of Pesticide Spray from Air-Assisted Sprayers in an Apple Orchard: Tree Deposition and off-Target Losses. Atmos. Environ. 2017, 175, 109–119. [Google Scholar] [CrossRef]
- Grella, M.; Marucco, P.; Zwertvaegher, I.; Gioelli, F.; Bozzer, C.; Biglia, A.; Manzone, M.; Caffini, A.; Fountas, S.; Nuyttens, D.; et al. The Effect of Fan Setting, Air-Conveyor Orientation and Nozzle Configuration on Airblast Sprayer Efficiency: Insights Relevant to Trellised Vineyards. Crop Prot. 2022, 155, 105921. [Google Scholar] [CrossRef]
- Kasner, E.J.; Fenske, R.A.; Hoheisel, G.A.; Galvin, K.; Blanco, M.N.; Seto, E.Y.W.; Yost, M.G. Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment. Ann. Work. Expo. Health 2020, 64, 25–37. [Google Scholar] [CrossRef]
- Reichard, D.L.; Retzer, H.J.; Liljedahl, L.A.; Hall, F.R. Spray Droplet Size Distributions Delivered by Air Blast Orchard Sprayers. Trans. ASAE 1977, 20, 232–237. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Zahid, A.; He, L.; Martin, P. Opportunities and Possibilities of Developing an Advanced Precision Spraying System for Tree Fruits. Sensors 2021, 21, 3262. [Google Scholar] [CrossRef]
- Gao, J.; Xu, K.; He, R.; Chen, X.; Tunio, M.H. Development and Experiments of Low Frequency Ultrasonic Electrostatic Atomizing Nozzle with Double Resonators. Int. J. Agric. Biol. Eng. 2022, 15, 39–48. [Google Scholar] [CrossRef]
- Majasalmi, T.; Rautiainen, M. The Impact of Tree Canopy Structure on Understory Variation in a Boreal Forest. For. Ecol. Manag. 2020, 466, 118100. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, H.; Xu, L.; Ru, Y.; Ju, H.; Chen, Q. Wind Tunnel Study of the Changes in Drag and Morphology of Three Fruit Tree Species during Air-Assisted Spraying. Biosyst. Eng. 2022, 218, 153–162. [Google Scholar] [CrossRef]
- Gao, J.; Bo, P.; Lan, Y.; Sun, L.; Liu, H.; Li, X.; Wang, G.; Wang, H. Study on droplet deposition characteristics and application of small and medium crown garden plants sprayed by UAV sprayer. Front. Plant Sci. 2024, 15, 1343793. [Google Scholar] [CrossRef]
- Duga, A.T.; Ruysen, K.; Dekeyser, D.; Nuyttens, D.; Bylemans, D.; Nicolai, B.M.; Verboven, P. Spray Deposition Profiles in Pome Fruit Trees: Effects of Sprayer Design, Training System and Tree Canopy Characteristics. Crop Prot. 2015, 67, 200–213. [Google Scholar] [CrossRef]
- Lauderbaugh, L.K.; Holder, C.D. The Biomechanics of Leaf Oscillations during Rainfall Events. J. Exp. Bot. 2022, 73, 1139–1154. [Google Scholar] [CrossRef]
- Tang, J.; Wang, Y.; Wang, N.; Ning, X.; Lyu, K.; Sui, L.; Shi, Z. Swaying Tree Simulation by Slicing Partition. Chin. J. Electron. 2020, 29, 826–832. [Google Scholar] [CrossRef]
- Louf, J.-F.; Nelson, L.; Kang, H.; Song, P.N.; Zehnbauer, T.; Jung, S. How Wind Drives the Correlation between Leaf Shape and Mechanical Properties. Sci. Rep. 2018, 8, 16314. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Asante, E.A.; Lu, Y.; Mahmood, A.; Buttar, N.A.; Yuan, S. A Review of Air Disturbance Technology for Plant Frost Protection. Int. J. Agric. Biol. Eng. 2018, 11, 21–28. [Google Scholar] [CrossRef]
- Vogel, S. Twist-to-Bend Ratios and Cross-Sectional Shapes of Petioles and Stems. J. Exp. Bot. 1992, 43, 1527–1532. [Google Scholar] [CrossRef]
- Bhosale, Y.; Esmaili, E.; Bhar, K.; Jung, S. Bending, twisting and flapping leaf upon raindrop impact. Bioinspir. Biomim. 2020, 15, 036007. [Google Scholar] [CrossRef]
- Shao, C.-P.; Chen, Y.-J.; Lin, J.-Z. Wind Induced Deformation and Vibration of a Platanus Acerifolia Leaf. Acta Mech. Sin. 2012, 28, 583–594. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, H.; Xu, L.; Ru, Y.; Ju, H.; Chen, Q. Measurement of morphological changes of pear leaves in airflow based on high-speed photography. Front. Plant Sci. 2022, 13, 900427. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.; Schönborn, J.; Fugmann, H.; Mayer, H. Responses of an Individual Deciduous Broadleaved Tree to Wind Excitation. Agric. For. Meteorol. 2013, 177, 69–82. [Google Scholar] [CrossRef]
- Jiang, H.; Xin, D.; Zhang, H. Wind-Tunnel Study of the Aerodynamic Characteristics and Mechanical Response of the Leaves of Betula Platyphylla Sukaczev. Biosyst. Eng. 2021, 207, 162–176. [Google Scholar] [CrossRef]
- Wang, G.; Dong, X.; Jia, W.; Ou, M.; Yu, P.; Wu, M.; Zhang, Z.; Hu, X.; Huang, Y.; Lu, F. Influence of Wind Speed on the Motion Characteristics of Peach Leaves (Prunus persica). Agriculture 2024, 14, 2307. [Google Scholar] [CrossRef]
- Gosselin, F.P. Mechanics of a Plant in Fluid Flow. J. Exp. Bot. 2019, 70, 3533–3548. [Google Scholar] [CrossRef]
- Meder, F.; Naselli, G.A.; Mazzolai, B. Wind dynamics and leaf motion: Approaching the design of high-tech devices for energy harvesting for operation on plant leaves. Front. Plant Sci. 2022, 13, 994429. [Google Scholar] [CrossRef]
- Roth-Nebelsick, A.; Konrad, W.; Ebner, M.; Miranda, T.; Thielen, S.; Nebelsick, J.H. When Rain Collides with Plants—Patterns and Forces of Drop Impact and How Leaves Respond to Them. J. Exp. Bot. 2022, 73, 1155–1175. [Google Scholar] [CrossRef]
- Sean Gart, J.E.M.; Constantine, M. Megaridis, and Sunghwan Jung Droplet Impacting a Cantilever: A Leaf-Raindrop System. Phys. Rev. Appl. 2015, 3, 044019. [Google Scholar] [CrossRef]
- Li, H.; Niu, X.; Ding, L.; Tahir, A.S.; Guo, C.; Chai, J.; Zhang, K.; Cheng, S.; Zhao, Y.; Zhang, Y.; et al. Dynamic Spreading Characteristics of Droplet Impinging Soybean Leaves. Int. J. Agric. Biol. Eng. 2021, 14, 26–34. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Z.; Xu, X.; Xie, B.; Duan, J. Spreading Model of Single Droplet Impacting the Banana Leaf Surface and Computational Fluid Dynamics Simulation Analysis. Comput. Electron. Agric. 2024, 223, 109113. [Google Scholar] [CrossRef]
Sprayer Type | Key Performance Metrics | Pesticide Use and Drift | Typical Operational Costs | Suitable Orchard Scale |
---|---|---|---|---|
Conventional Air-Blast Sprayer | limited inner-canopy penetration in dense foliage. | High off-target losses (often 50–80% of spray volume does not hit target). | Moderate initial cost (requires tractor); high ongoing chemical cost due to waste. | All scales. |
Precision Variable-Rate Sprayer | Adjusts flow per tree section in real time; maintains uniform deposition similar to conventional | 30–67% reduction in pesticide usage for same efficacy; drift greatly reduced. | High initial cost (sensor, controller retrofits). | Medium to large orchards benefit most (scale amplifies savings); gaining commercial adoption. |
Electrostatic Sprayer | Produces finer, charged droplets that adhere to plant surfaces; can improve underside coverage. | Up to +10% leaf underside deposition observed in trials; drift potentially lowered by droplets sticking to foliage. | Moderate add-on cost (HV generator, electrodes); requires maintenance of charging system. | Small to medium orchards; used in high-value crops. |
Tunnel Sprayer | Enclosed spray zone around trees; recycles unused spray; very uniform coverage. | Drift reduced ~90% (spray is contained); up to 30% less chemical needed due to recapture | High equipment cost; heavier and more complex to operate. | Large commercial orchards or environmentally sensitive areas. Often used in vineyards. |
UAV sprayer | Aerial application with downwash aiding coverage on treetops; extremely agile targeting. | Very low drift beyond target (downward air limits off-target spread); reduced coverage inside dense canopies | Equipment cost per ha is high (many battery swaps, low volume per flight); requires skilled operation. | Small orchards, spot treatments, or hard-to-access plots. |
System Type | Droplet Size (VMD) and Distribution | Canopy Penetration and Deposition | Spray Drift Tendency |
---|---|---|---|
Tower Sprayer | Medium to coarse droplets (200–400 µm VMD) reduce drift while the directed air carries them through canopy. Some use twin-fluid nozzles to maintain droplet size at various heights. | These sprayers achieve excellent vertical penetration. They provide uniform top-to-bottom deposition, with inner-canopy coverage improved by approximately 30% compared to a standard fan. | Fan speed reduced drift significantly lower than conventional spraying, comparable to no-air drift at only 0–30% power consumption. |
Multi-Channel Sprayer | Medium droplets (180–300 µm), potentially adjustable by zone. Could employ different nozzle types per channel. Generally avoids extremely fine droplets to limit drift in each channel’s stream. | Multiple airflow channels direct spray into specific canopy layers upper, middle, and lower. This design achieves very high coverage even in dense sections. Laboratory simulations indicate that optimizing each channel can increase coverage by 15–20% in dense canopy regions. Field prototypes significantly improved deposition uniformity. | Overall drift is lower than in single-fan systems because unnecessary airflow is eliminated. Preliminary estimates suggest overall drift reductions of approximately 20–50%, pending comprehensive field validation. |
Electrostatic Air-Assist Sprayer | Fine to medium droplets (50–200 µm) with electrostatic charge (usually 3–6 kV charge applied). Droplet spectrum skews smaller to maximize charge effects, but airflow helps ensure reach. | Electrostatic attraction improves coverage on concealed and abaxial (underside) leaf surfaces. In laboratory and field tests, abaxial coverage increased by up to 11%. In dense canopies, charged droplets do not markedly outperform uncharged droplets in reaching the deep interior. | Drift-reduction effect is inconsistent: when droplets are extremely fine, some may still escape before reaching a target surface. Overall, only modest drift mitigation (10–30%) has been observed under typical conditions. |
Authors | Targets | Models | Notes |
---|---|---|---|
Bhosale et al. [102] | Katsura leaf | Angular moment of drop = Instantaneous angular momentum of the leaf: | Where δb is the maximum bending deflection, md is the mass of drop, vd is the impact speed, Lb is the impact distance, θ is the initial angle of inclination of the leaf from the horizon, M is the mass of the leaf and L is the length of the leaf lamina. |
Ma et al. [22] | Capsicum (Capsicum annuum L.) leaf | Displacement response equation: | Where m is the leaf blade mass, ζ is the damping ratio of the leaf blade system, X(s) is the excitation signal, ωd is the damped natural frequency of the system, ωn is the natural frequency of the leaf blade system and τ is the relative time. |
Gart et al. [111] | polycarbonate cantilever beam | Vibration frequency of beam: | Where ω0 is the vibration frequency, β is the prefactor, mbeam is the beam mass per unit length, L is the beam length, E is the elastic modulus, I is the cross-sectional inertia and mdrop is the mass of droplet. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Li, Z.; Jia, W.; Ou, M.; Dong, X.; Zhang, Z. A Review on the Evolution of Air-Assisted Spraying in Orchards and the Associated Leaf Motion During Spraying. Agriculture 2025, 15, 964. https://doi.org/10.3390/agriculture15090964
Wang G, Li Z, Jia W, Ou M, Dong X, Zhang Z. A Review on the Evolution of Air-Assisted Spraying in Orchards and the Associated Leaf Motion During Spraying. Agriculture. 2025; 15(9):964. https://doi.org/10.3390/agriculture15090964
Chicago/Turabian StyleWang, Guanqun, Ziyu Li, Weidong Jia, Mingxiong Ou, Xiang Dong, and Zhengji Zhang. 2025. "A Review on the Evolution of Air-Assisted Spraying in Orchards and the Associated Leaf Motion During Spraying" Agriculture 15, no. 9: 964. https://doi.org/10.3390/agriculture15090964
APA StyleWang, G., Li, Z., Jia, W., Ou, M., Dong, X., & Zhang, Z. (2025). A Review on the Evolution of Air-Assisted Spraying in Orchards and the Associated Leaf Motion During Spraying. Agriculture, 15(9), 964. https://doi.org/10.3390/agriculture15090964