Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (453)

Search Parameters:
Keywords = air-assisted system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 910 KiB  
Review
Impact of Indoor Air Quality, Including Thermal Conditions, in Educational Buildings on Health, Wellbeing, and Performance: A Scoping Review
by Duncan Grassie, Kaja Milczewska, Stijn Renneboog, Francesco Scuderi and Sani Dimitroulopoulou
Environments 2025, 12(8), 261; https://doi.org/10.3390/environments12080261 - 30 Jul 2025
Viewed by 579
Abstract
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences [...] Read more.
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences of poor—and benefits of good—IAQ and thermal conditions are evaluated, focusing on source control, ventilation and air purification interventions. Economic impacts of interventions in educational buildings have been evaluated to enable the assessment of tangible building-related costs and savings, alongside less easily quantifiable improvements in educational attainment and reduced healthcare. Key recommendations are provided to assist decision makers in pathways to provide clean air, at an optimal temperature for students’ learning and health outcomes. Although the role of educational buildings can be challenging to isolate from other socio-economic confounders, secondary short- and long-term impacts on attainment and absenteeism have been demonstrated from the health effects associated with various pollutants. Sometimes overlooked, source control and repairing existing damage can be important cost-effective methods in minimising generation and preventing ingress of pollutants. Existing ventilation standards are often not met, even when mechanical and hybrid ventilation systems are already in place, but can often be achieved with a fraction of a typical school budget through operational and maintenance improvements, and small-scale air-cleaning and ventilation technologies, where necessary. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

20 pages, 2352 KiB  
Article
Three-Dimensional Physics-Based Channel Modeling for Fluid Antenna System-Assisted Air–Ground Communications by Reconfigurable Intelligent Surfaces
by Yuran Jiang and Xiao Chen
Electronics 2025, 14(15), 2990; https://doi.org/10.3390/electronics14152990 - 27 Jul 2025
Viewed by 214
Abstract
Reconfigurable intelligent surfaces (RISs), recognized as one of the most promising key technologies for sixth-generation (6G) mobile communications, are characterized by their minimal energy expenditure, cost-effectiveness, and straightforward implementation. In this study, we develop a novel communication channel model that integrates RIS-enabled base [...] Read more.
Reconfigurable intelligent surfaces (RISs), recognized as one of the most promising key technologies for sixth-generation (6G) mobile communications, are characterized by their minimal energy expenditure, cost-effectiveness, and straightforward implementation. In this study, we develop a novel communication channel model that integrates RIS-enabled base stations with unmanned ground vehicles. To enhance the system’s adaptability, we implement a fluid antenna system (FAS) at the unmanned ground vehicle (UGV) terminal. This innovative model demonstrates exceptional versatility across various wireless communication scenarios through the strategic adjustment of active ports. The inherent dynamic reconfigurability of the FAS provides superior flexibility and adaptability in air-to-ground communication environments. In the paper, we derive and study key performance characteristics like the autocorrelation function (ACF), validating the model’s effectiveness. The results demonstrate that the RIS-FAS collaborative scheme significantly enhances channel reliability while effectively addressing critical challenges in 6G networks, including signal blockage and spatial constraints in mobile terminals. Full article
Show Figures

Figure 1

16 pages, 3470 KiB  
Article
Performance Analysis of Multi-Source Heat Pumps: A Regression-Based Approach to Energy Performance Estimation
by Reza Alijani and Fabrizio Leonforte
Sustainability 2025, 17(15), 6804; https://doi.org/10.3390/su17156804 - 26 Jul 2025
Viewed by 313
Abstract
The growing demand for energy-efficient heating, ventilation, and air conditioning (HVAC) systems has increased interest in multi-source heat pumps as a sustainable solution. While extensive research has been conducted on heat pump performance prediction, there is still a lack of practical tools for [...] Read more.
The growing demand for energy-efficient heating, ventilation, and air conditioning (HVAC) systems has increased interest in multi-source heat pumps as a sustainable solution. While extensive research has been conducted on heat pump performance prediction, there is still a lack of practical tools for early-stage system evaluation. This study addresses that gap by developing regression-based models to estimate the performance of various heat pump configurations, including air-source, ground-source, and dual-source systems. A simplified performance estimation model was created, capable of delivering results with accuracy levels comparable to TRNSYS simulation outputs, making it a valuable and accessible tool for system evaluation. The analysis was conducted across nine climatic zones in Italy, considering key environmental factors such as air temperature, ground temperature, and solar irradiance. Among the tested configurations, hybrid systems like Solar-Assisted Ground-Source Heat Pumps (SAGSHP) achieved the highest performance, with SCOP values up to 4.68 in Palermo and SEER values up to 5.33 in Milan. Regression analysis confirmed strong predictive accuracy (R2 = 0.80–0.95) and statistical significance (p < 0.05), emphasizing the models’ reliability across different configurations and climatic conditions. By offering easy-to-use regression formulas, this study enables engineers and policymakers to estimate heat pump performance without relying on complex simulations. Full article
(This article belongs to the Special Issue Sustainability and Energy Performance of Buildings)
Show Figures

Figure 1

41 pages, 4553 KiB  
Review
Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review
by Yue Li, Yihui Li, Siyuan Zhang, Tianyi Gao, Zhaoyi Gao, Chin Wei Lai, Ping Xiang and Fengqi Yang
Toxics 2025, 13(8), 616; https://doi.org/10.3390/toxics13080616 - 24 Jul 2025
Viewed by 771
Abstract
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist [...] Read more.
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist in understanding their spatiotemporal distribution, cross-media migration mechanisms, and cascading ecotoxicological consequences. This review systematically investigates the global distribution patterns of ECs in aquatic environments over the past five years and evaluates their potential ecological risks. Furthermore, it examines the performance of various treatment technologies, focusing on economic cost, efficiency, and environmental sustainability. Methodologically aligned with PRISMA 2020 guidelines, this study implements dual independent screening protocols, stringent inclusion–exclusion criteria (n = 327 studies). Key findings reveal the following: (1) Occurrences of ECs show geographical clustering in highly industrialized river basins, particularly in Asia (37.05%), Europe (24.31%), and North America (14.01%), where agricultural pharmaceuticals and fluorinated compounds contribute disproportionately to environmental loading. (2) Complex transboundary pollutant transport through atmospheric deposition and oceanic currents, coupled with compound-specific partitioning behaviors across water–sediment–air interfaces. (3) Emerging hybrid treatment systems (e.g., catalytic membrane bioreactors, plasma-assisted advanced oxidation) achieve > 90% removal for recalcitrant ECs, though requiring 15–40% cost reductions for scalable implementation. This work provides actionable insights for developing adaptive regulatory frameworks and advancing green chemistry principles in environmental engineering practice. Full article
Show Figures

Graphical abstract

16 pages, 1420 KiB  
Article
Light-Driven Quantum Dot Dialogues: Oscillatory Photoluminescence in Langmuir–Blodgett Films
by Tefera Entele Tesema
Nanomaterials 2025, 15(14), 1113; https://doi.org/10.3390/nano15141113 - 18 Jul 2025
Viewed by 320
Abstract
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm [...] Read more.
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm laser illumination on the red absorption edge of the blue-emitting smaller QDs (QD450), the red-emitting larger QDs (QD645) exhibited oscillatory temporal dynamics in their photoluminescence (PL), characterized by a pronounced blueshift in the emission peak wavelength and an abrupt decrease in peak intensity. Conversely, excitation by a 405 nm laser on the blue absorption edge induced a drastic redshift in the emission wavelength over time. These significant shifts in emission spectra are attributed to photon- and anisotropic-strain-assisted interlayer atom transfer. The findings provide new insights into strain-driven atomic rearrangements and their impact on the photophysical behavior of QD systems. Full article
Show Figures

Graphical abstract

20 pages, 2364 KiB  
Article
Novel Core–Shell Aerogel Formulation for Drug Delivery Based on Alginate and Konjac Glucomannan: Rational Design Using Artificial Intelligence Tools
by Carlos Illanes-Bordomás, Mariana Landin and Carlos A. García-González
Polymers 2025, 17(14), 1919; https://doi.org/10.3390/polym17141919 - 11 Jul 2025
Viewed by 373
Abstract
This study explores novel alginate–konjac glucomannan core–shell aerogel particles for drug delivery systems fabricated via air-assisted coaxial prilling. A systematic approach is needed for the optimization of this method due to the numerous processing variables involved. This study investigated the influence of six [...] Read more.
This study explores novel alginate–konjac glucomannan core–shell aerogel particles for drug delivery systems fabricated via air-assisted coaxial prilling. A systematic approach is needed for the optimization of this method due to the numerous processing variables involved. This study investigated the influence of six variables: alginate and konjac glucomannan concentrations, compressed airflow, liquid pump pressures, and nozzle configuration. A hybrid software using Artificial Neural Networks and genetic algorithms was used to model and optimize the hydrogel formation, achieving a 100% desirable solution. The optimal formulation identified resulted in particles displaying a log-normal size distribution (R2 = 0.967) with an average diameter of 1.57 mm. Supercritical CO2 drying yielded aerogels with macropores and mesopores and a high specific surface area (201 ± 10 m2/g). The loading of vancomycin hydrochloride (Van) or a dexamethasone base (DX) into the aerogel cores during the process was tested. The aerogels exhibited appropriate structural characteristics, and both drugs showed burst release profiles with ca. 80% release within 10 min for DX and medium-dependent release for Van. This study demonstrates the feasibility of producing konjac aerogel particles for delivery systems and the high potential of AI-driven optimization methods, highlighting the need for coating modifications to achieve the desired release profiles. Full article
Show Figures

Graphical abstract

22 pages, 3045 KiB  
Article
Optimization of RIS-Assisted 6G NTN Architectures for High-Mobility UAV Communication Scenarios
by Muhammad Shoaib Ayub, Muhammad Saadi and Insoo Koo
Drones 2025, 9(7), 486; https://doi.org/10.3390/drones9070486 - 10 Jul 2025
Viewed by 503
Abstract
The integration of reconfigurable intelligent surfaces (RISs) with non-terrestrial networks (NTNs), particularly those enabled by unmanned aerial vehicles (UAVs) or drone-based platforms, has emerged as a transformative approach to enhance 6G connectivity in high-mobility scenarios. UAV-assisted NTNs offer flexible deployment, dynamic altitude control, [...] Read more.
The integration of reconfigurable intelligent surfaces (RISs) with non-terrestrial networks (NTNs), particularly those enabled by unmanned aerial vehicles (UAVs) or drone-based platforms, has emerged as a transformative approach to enhance 6G connectivity in high-mobility scenarios. UAV-assisted NTNs offer flexible deployment, dynamic altitude control, and rapid network reconfiguration, making them ideal candidates for RIS-based signal optimization. However, the high mobility of UAVs and their three-dimensional trajectory dynamics introduce unique challenges in maintaining robust, low-latency links and seamless handovers. This paper presents a comprehensive performance analysis of RIS-assisted UAV-based NTNs, focusing on optimizing RIS phase shifts to maximize the signal-to-interference-plus-noise ratio (SINR), throughput, energy efficiency, and reliability under UAV mobility constraints. A joint optimization framework is proposed that accounts for UAV path loss, aerial shadowing, interference, and user mobility patterns, tailored specifically for aerial communication networks. Extensive simulations are conducted across various UAV operation scenarios, including urban air corridors, rural surveillance routes, drone swarms, emergency response, and aerial delivery systems. The results reveal that RIS deployment significantly enhances the SINR and throughput while navigating energy and latency trade-offs in real time. These findings offer vital insights for deploying RIS-enhanced aerial networks in 6G, supporting mission-critical drone applications and next-generation autonomous systems. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

42 pages, 4568 KiB  
Review
Comprehensive Review on Evaporative Cooling and Desiccant Dehumidification Technologies for Agricultural Greenhouses
by Fakhar Abbas, Muhammad Sultan, Muhammad Wakil Shahzad, Muhammad Farooq, Hafiz M. U. Raza, Muhammad Hamid Mahmood, Uzair Sajjad and Zhaoli Zhang
AgriEngineering 2025, 7(7), 222; https://doi.org/10.3390/agriengineering7070222 - 8 Jul 2025
Viewed by 1397
Abstract
Greenhouses are crucial for maintaining an ideal temperature and humidity level for plant growth; however, attaining ideal levels remains a challenge. Energy-efficient and sustainable alternatives are needed because traditional temperature/humidity control practices and vapor compression air conditioning systems depend on climate conditions and [...] Read more.
Greenhouses are crucial for maintaining an ideal temperature and humidity level for plant growth; however, attaining ideal levels remains a challenge. Energy-efficient and sustainable alternatives are needed because traditional temperature/humidity control practices and vapor compression air conditioning systems depend on climate conditions and harmful refrigerants. Advanced alternative technologies like evaporative cooling and desiccant dehumidification have emerged that maintain the ideal greenhouse temperature and humidity while using the least amount of energy. This study reviews direct evaporative cooling, indirect evaporative cooling, and Maisotsenko-cycle evaporative cooling (MEC) systems and solid and liquid desiccant dehumidification systems. In addition, integrated desiccant and evaporative cooling systems and hybrid systems are reviewed in this study. The results show that the MEC system effectively reduces the ambient temperature up to the ideal range while maintaining the humidity ratio, and both dehumidification systems effectively reduce the humidity level and improve evaporative cooling efficiency. The integrated systems and hybrid systems have the ability to increase energy efficiency and controlled climatic stability in greenhouses. Regular maintenance, initial system cost, economic feasibility, and system scalability are significant challenges to implement these advanced temperature and humidity control systems for greenhouses. These findings will assist agricultural practitioners, engineers, and researchers in seeking alternate efficient cooling methods for greenhouse applications. Future research directions are suggested to manufacture high-efficiency, low-energy consumption, and efficient greenhouse temperature control systems while considering the present challenges. Full article
Show Figures

Figure 1

20 pages, 1517 KiB  
Article
Development of a Linking System Between Vehicle’s Computer and Alexa Auto
by Jaime Paúl Ayala Taco, Kimberly Sharlenka Cerón, Alfredo Leonel Bautista, Alexander Ibarra Jácome and Diego Arcos Avilés
Designs 2025, 9(4), 84; https://doi.org/10.3390/designs9040084 - 2 Jul 2025
Viewed by 423
Abstract
The integration of intelligent voice-control systems represents a critical pathway for enhancing driver comfort and reducing cognitive distraction in modern vehicles. Currently, voice assistants capable of accessing real-time vehicular data (e.g., engine parameters) or controlling actuators (e.g., door locks) remain exclusive to premium [...] Read more.
The integration of intelligent voice-control systems represents a critical pathway for enhancing driver comfort and reducing cognitive distraction in modern vehicles. Currently, voice assistants capable of accessing real-time vehicular data (e.g., engine parameters) or controlling actuators (e.g., door locks) remain exclusive to premium brands. While aftermarket solutions like Amazon’s Echo Auto provide multimedia functionality, they lack access to critical vehicle systems. To address this gap, we develop a novel architecture leveraging the OBD-II port to enable voice-controlled telematics and actuation in mass-production vehicles. Our system interfaces with a Toyota Hilux (2020) and Mazda CX-3 SUV (2021), utilizing an MCP2515 CAN controller for engine control unit (ECU) communication, an Arduino Nano for data processing, and an ESP01 Wi-Fi module for cloud transmission. The Blynk IoT platform orchestrates data flow and provides user interfaces, while a Voiceflow-programmed Alexa skill enables natural language commands (e.g., “unlock doors”) via Alexa Auto. Experimental validation confirms the successful real-time monitoring of engine variables (coolant temperature, air–fuel ratio, ignition timing) and secure door-lock control. This work demonstrates that high-end vehicle capabilities—previously restricted to luxury segments—can be effectively implemented in series-production automobiles through standardized OBD-II protocols and IoT integration, establishing a scalable framework for next-generation in-vehicle assistants. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

28 pages, 4804 KiB  
Article
Towards Automatic Detection of Pneumothorax in Emergency Care with Deep Learning Using Multi-Source Chest X-ray Data
by Santiago Ibañez Caturla, Juan de Dios Berná Mestre and Oscar Martinez Mozos
Future Internet 2025, 17(7), 292; https://doi.org/10.3390/fi17070292 - 29 Jun 2025
Viewed by 481
Abstract
Pneumothorax is a potentially life-threatening condition defined as the collapse of the lung due to air leakage into the chest cavity. Delays in the diagnosis of pneumothorax can lead to severe complications and even mortality. A significant challenge in pneumothorax diagnosis is the [...] Read more.
Pneumothorax is a potentially life-threatening condition defined as the collapse of the lung due to air leakage into the chest cavity. Delays in the diagnosis of pneumothorax can lead to severe complications and even mortality. A significant challenge in pneumothorax diagnosis is the shortage of radiologists, resulting in the absence of written reports in plain X-rays and, consequently, impacting patient care. In this paper, we propose an automatic triage system for pneumothorax detection in X-ray images based on deep learning. We address this problem from the perspective of multi-source domain adaptation where different datasets available on the Internet are used for training and testing. In particular, we use datasets which contain chest X-ray images corresponding to different conditions (including pneumothorax). A convolutional neural network (CNN) with an EfficientNet architecture is trained and optimized to identify radiographic signs of pneumothorax using those public datasets. We present the results using cross-dataset validation, demonstrating the robustness and generalization capabilities of our multi-source solution across different datasets. The experimental results demonstrate the model’s potential to assist clinicians in prioritizing and correctly detecting urgent cases of pneumothorax using different integrated deployment strategies. Full article
(This article belongs to the Special Issue Artificial Intelligence-Enabled Smart Healthcare)
Show Figures

Figure 1

16 pages, 3686 KiB  
Article
Modeling of Droplet Deposition in Air-Assisted Spraying
by Jian Song, Zhichong Wang, Changyuan Zhai, Chenchen Gu, Kang Zheng, Xuecheng Li, Ronghua Jiang and Ke Xiao
Agronomy 2025, 15(7), 1580; https://doi.org/10.3390/agronomy15071580 - 28 Jun 2025
Viewed by 263
Abstract
Air-assisted spraying is the primary method of plant protection in orchards, and precision spraying according to the canopy characteristics of fruit trees can reduce waste and pollution due to pesticide drift. To facilitate targeted pesticide application in the canopy of fruit trees, this [...] Read more.
Air-assisted spraying is the primary method of plant protection in orchards, and precision spraying according to the canopy characteristics of fruit trees can reduce waste and pollution due to pesticide drift. To facilitate targeted pesticide application in the canopy of fruit trees, this study employed a newly developed wind-speed-adjustable orchard sprayer and established a prediction model for deposition based on data from orthogonal trials using a central composite design accounting for the coupling effect of three-dimensional spatial parameters. The experimental design systematically quantified the interaction effects of spray distance (1.5–2.5 m), fan wind speed (10–20 m/s), and deposition height (0.5–3 m) on the spatial distribution of droplets. Model significance was p < 0.0001 and the misfit term was significant (p = 0.2193), supporting its validity. The research found that wind speed and distance significantly interact in influencing deposition. By adjusting fan speed and spray distance, variable applications can be achieved in different canopy zones during plant protection operations. The response surface model developed in this study can be applied to variable-rate spraying control systems, thus providing a quantitative basis for dynamic droplet control guided by canopy characteristics. Validation tests revealed that the model’s accuracy was lower in high canopy regions and upwind spraying scenarios, indicating areas for further research. Full article
(This article belongs to the Special Issue Advances in Precision Pesticide Spraying Technology and Equipment)
Show Figures

Figure 1

16 pages, 3867 KiB  
Article
Ultralow-Resistance High-Voltage Loaded Woven Air Filter for Fine Particle/Bacteria Removal
by Weisi Fan, Sanqiang Wei, Ziyun Zhang, Lulu Shi, Jun Wang, Wenlan Hao, Kun Zhang and Qiuran Jiang
Polymers 2025, 17(13), 1765; https://doi.org/10.3390/polym17131765 - 26 Jun 2025
Viewed by 397
Abstract
Conventional filters for air filtration typically feature compact nonwoven structures, which not only lead to high pressure drop, significant energy consumption, and a decay in filtration efficacy, but are also uncleanable, resulting in substantial pollution upon disposal. In this study, filters with high-voltage [...] Read more.
Conventional filters for air filtration typically feature compact nonwoven structures, which not only lead to high pressure drop, significant energy consumption, and a decay in filtration efficacy, but are also uncleanable, resulting in substantial pollution upon disposal. In this study, filters with high-voltage electrostatic loading capability were developed with a dopamine binding layer to facilitate the establishment of an Ag conductive layer on the surface of ultraloose woven structure fabrics (pore size: 73.7 μm). The high-voltage-loaded woven structure filtration (VLWF) system was constructed with a negative-ion zone, a high-voltage filtration zone, and a grounded filter. The morphological, chemical, and electrical properties of the filters and the filtration performance of the VLWF system were evaluated. The single-pass filtration efficiencies for PM2.5 and E. coli were 67.4% and 97.0%, respectively. Notably, the pressure drop was reduced to 6.2 Pa, and the quality factor reached 0.1810 Pa−1 with no detectable ozone release. After three cycles of ultrasonic cleaning, approximately 58.4% of filtration efficiency was maintained without any increase in air resistance. The removal of PM2.5 and microorganisms by this system was not solely reliant on blocking and electrostatic attraction but may also involve induced repulsion and biostructure inactivation. By integrating the ultraloose woven structure with high-voltage assistance, this VLWF system effectively balanced the requirements for high filtration efficacy and low air resistance. More importantly, this VLWF system provided a cleanable filter model that reduced the pollution associated with conventional disposable filters and lowered costs for customers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

57 pages, 3664 KiB  
Review
Advancing Municipal Solid Waste Management Through Gasification Technology
by Uzeru Haruna Kun and Ewelina Ksepko
Processes 2025, 13(7), 2000; https://doi.org/10.3390/pr13072000 - 24 Jun 2025
Cited by 1 | Viewed by 844
Abstract
This review thoroughly evaluates gasification as a transformative alternative to conventional methods for managing municipal solid waste (MSW), highlighting its potential to convert carbonaceous materials into syngas for energy and chemical synthesis. A comparative evaluation of more than 350 papers and documents demonstrated [...] Read more.
This review thoroughly evaluates gasification as a transformative alternative to conventional methods for managing municipal solid waste (MSW), highlighting its potential to convert carbonaceous materials into syngas for energy and chemical synthesis. A comparative evaluation of more than 350 papers and documents demonstrated that gasification is superior to incineration and pyrolysis, resulting in lower harmful emissions and improved energy efficiency, which aligns with sustainability goals. Key operational findings indicate that adjusting the temperature to 800–900 °C leads to the consumption of CO2 and the production of CO via the Boudouard reaction. Air gasification produces syngas yields of up to 76.99 wt% at 703 °C, while oxygen gasification demonstrates a carbon conversion efficiency of 80.2%. Steam and CO2 gasification prove to be effective for producing H2 and CO, respectively. Catalysts, especially nickel-based ones, are effective in reducing tar and enhancing syngas quality. Innovative approaches, such as co-gasification, plasma and solar-assisted gasification, chemical looping, and integration with carbon capture, artificial intelligence (AI), and the Internet of Things (IoT), show promise in improving process performance and reducing technical and economic hurdles. The review identifies research gaps in catalyst development, feedstock variability, and system integration, emphasizing the need for integrated research, policy, and investment to fully realize the potential of gasification in the clean energy transition and sustainable MSW management. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design (2nd Edition))
Show Figures

Figure 1

19 pages, 4360 KiB  
Article
A Feasibility Study on UV Nanosecond Laser Ablation for Removing Polyamide Insulation from Platinum Micro-Wires
by Danial Rahnama, Graziano Chila and Sivakumar Narayanswamy
J. Manuf. Mater. Process. 2025, 9(7), 208; https://doi.org/10.3390/jmmp9070208 - 21 Jun 2025
Cited by 1 | Viewed by 587
Abstract
This study presents the optimization of a laser ablation process designed to achieve the precise removal of polyamide coatings from ultra-thin platinum wires. Removing polymer coatings is a critical challenge in high-reliability manufacturing processes such as aerospace thermocouple fabrication. The ablation process must [...] Read more.
This study presents the optimization of a laser ablation process designed to achieve the precise removal of polyamide coatings from ultra-thin platinum wires. Removing polymer coatings is a critical challenge in high-reliability manufacturing processes such as aerospace thermocouple fabrication. The ablation process must not only ensure the complete removal of the polyamide insulation but also maintain the tensile strength of the wire to withstand mechanical handling in subsequent manufacturing stages. Additionally, the exposed platinum surface must exhibit low surface roughness to enable effective soldering and be free of thermal damage or residual debris to pass strict visual inspections. The wires have a total diameter of 65 µm, consisting of a 50 µm platinum core encased in a 15 µm polyamide coating. By utilizing a UV laser with a wavelength of 355 nm, average power of 3 W, a repetition rate range of 20 to 200 kHz, and a high-speed marking system, the process parameters were systematically refined. Initial attempts to perform the ablation in an air medium were unsuccessful due to inadequate thermal control and incomplete removal of the polyamide coating. Hence, a water-assisted ablation technique was explored to address these limitations. Experimental results demonstrated that a scanning speed of 1200 mm/s, coupled with a line spacing of 1 µm and a single ablation pass, resulted in complete coating removal while ensuring the integrity of the platinum substrate. The incorporation of a water layer above the ablation region was considered crucial for effective heat dissipation, preventing substrate overheating and ensuring uniform ablation. The laser’s spot diameter of 20 µm in air and a focal length of 130 mm introduced challenges related to overlap control between successive passes, requiring precise calibration to maintain consistency in coating removal. This research demonstrates the feasibility and reliability of water-assisted laser ablation as a method for a high-precision, non-contact coating material. Full article
(This article belongs to the Special Issue Advances in Laser-Assisted Manufacturing Techniques)
Show Figures

Figure 1

20 pages, 3672 KiB  
Article
Comparative Analysis of Transcritical CO2 Heat Pump Systems With and Without Ejector: Performance, Exergy, and Economic Perspective
by Xiang Qin, Shihao Lei, Heyu Liu, Yinghao Zeng, Yajun Liu, Caiyan Pang and Jiaheng Chen
Energies 2025, 18(12), 3223; https://doi.org/10.3390/en18123223 - 19 Jun 2025
Viewed by 666
Abstract
To promote renewable energy utilization and enhance the environmental friendliness of refrigerants, this study presents a novel experimental investigation on a transcritical CO2 double-evaporator heat pump water heater integrating both air and water sources, designed for high-temperature hot water production. A key [...] Read more.
To promote renewable energy utilization and enhance the environmental friendliness of refrigerants, this study presents a novel experimental investigation on a transcritical CO2 double-evaporator heat pump water heater integrating both air and water sources, designed for high-temperature hot water production. A key innovation of this work lies in the integration of an ejector into the dual-source system, aiming to improve system performance and energy efficiency. This study systematically compares the conventional circulation mode and the proposed ejector-assisted circulation mode in terms of system performance, exergy efficiency, and the economic payback period. Experimental results reveal that the ejector-assisted mode not only achieves a higher water outlet temperature and reduces compressor power consumption but also improves the system’s exergy efficiency by 6.6% under the condition of the maximum outlet water temperature. Although the addition of the ejector increases initial manufacturing and maintenance costs, the payback periods of the two modes remain nearly the same. These findings confirm the feasibility and advantage of incorporating an ejector into a transcritical CO2 compression/ejection heat pump system with integrated air and water sources, offering a promising solution for efficient and environmentally friendly high-temperature water heating applications. Full article
(This article belongs to the Special Issue Advances in Supercritical Carbon Dioxide Cycle)
Show Figures

Figure 1

Back to TopTop