Modeling of Droplet Deposition in Air-Assisted Spraying
Abstract
1. Introduction
2. Materials and Methods
2.1. Orchard Sprayer
2.2. Meteorological Monitoring
2.3. Tracers and Analytical Instruments
2.4. Solution Preparation and Instrument Calibration
2.5. Orthogonal Experimental Design
2.6. Data Analysis
2.7. Validation of the Experimental Design
3. Results
3.1. Recovery Rate
3.2. Measurement Results for Sprayer Travel Speed and Nozzle Flow
3.3. Results of Orthogonal Trials
3.4. Results of Validation Trials
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, D.; Yang, H.; Zhou, H.; Ru, Y.; Zheng, J.; Nan, Y. Droplet deposition performance of ground-level low-capacity profiling spraying in densely planted dwarf tea plantation. Trans. Chin. Soc. Agric. Mach. 2019, 50, 10. [Google Scholar]
- Gu, C.; Zhai, C.; Wang, X.; Wang, S. CMPC: An innovative LiDAR-based method to estimate tree canopy meshing-profile volumes for orchard target-oriented spray. Sensors 2021, 21, 4252. [Google Scholar] [CrossRef]
- Dou, H.; Zhai, C.; Zhang, Y.; Chen, L.; Gu, C.; Yang, S. Research on decoupled air speed and air volume adjustment methods for air-assisted spraying in orchards. Front. Plant Sci. 2023, 14, 1250773. [Google Scholar] [CrossRef] [PubMed]
- Hočevar, M.; Jejčič, V.; Godeša, T.; Širok, B.; Malneršic, A.; Štancar, A.; Lešnik, M.; Stajnko, D. Design and testing of an ultrasound system for targeted spraying in orchards. J. Mech. Eng. 2010, 57, 587–598. [Google Scholar]
- Kise, M.; Zhang, Q. Development of a stereovision sensing system for 3D crop row structure mapping and tractor guidance. Biosyst. Eng. 2008, 101, 191–198. [Google Scholar] [CrossRef]
- Zhang, R.R.; Li, L.L.; Fu, W.; Chen, L.P.; Yi, T.C.; Tang, Q.; Hewitt, J.A. Spraying atomization performance by pulse width modulated variable and droplet deposition characteristics in wind tunnel. Trans. Chin. Soc. Agric. Eng. 2019, 35, 10. [Google Scholar]
- Gil, E.; Gallart, M.; Balsari, P.; Marucco, P.; Llop, J. Influence of wind velocity and wind direction on measurements of spray drift potential of boom sprayers using drift test bench. Agric. For. Meteorol. 2015, 202, 94–101. [Google Scholar] [CrossRef]
- Wei, Z.; Yongrui, H.; Xin, L.; Qi, L.; Xiaoming, F.; Bo, Z.; Haiyang, W.; Yingqian, W. Wind tunnel experimental study on droplet drift reduction by a conical electrostatic nozzle for pesticide spraying. Int. J. Agric. Biol. Eng. 2017, 10, 87–94. [Google Scholar]
- Balan, M.G.; Abi-Saab, O.J.G.; Silva, C.G.D.; Rio, A.D. Deposition of the spraying suspension for three spray nozzles under different meteorological conditions. Semina Cienc. Agrar. 2008, 29, 293–298. [Google Scholar] [CrossRef]
- Li, J.; Cui, H.; Ma, Y.; Xun, L.; Lu, H. Orchard spray study: A prediction model of droplet deposition states on leaf surfaces. Agronomy 2020, 10, 747. [Google Scholar] [CrossRef]
- Holterman, H.J.; van de Zande, J.C.; Huijsmans, J.F.; Wenneker, M. An empirical model based on phenological growth stage for predicting pesticide spray drift in pome fruit orchards. Biosyst. Eng. 2017, 154, 46–61. [Google Scholar] [CrossRef]
- Escolà, A.; Rosell-Polo, J.R.; Planas, S.; Gil, E.; Pomar, J.; Camp, F.; Llorens, J.; Solanelles, F. Variable rate sprayer. Part 1—Orchard prototype: Design, implementation and validation. Comput. Electron. Agric. 2013, 95, 122–135. [Google Scholar] [CrossRef]
- Walklate, P.J.; Cross, J.V. Regulated dose adjustment of commercial orchard spraying products. Crop Protect. 2013, 54, 65–73. [Google Scholar] [CrossRef]
- Gu, C.; Liu, Z.; Pan, G.; Pu, Y.; Yang, F. Optimization of working parameters for 3MGY-200 axial air-assisted sprayer in kiwifruit orchards. Int. J. Agric. Biol. Eng. 2020, 13, 81–91. [Google Scholar] [CrossRef]
- He, X.; Zeng, A.; He, J. Effect of wind velocity from orchard sprayer on droplet deposition distribution. Trans. Chin. Soc. Agric. Eng. 2002, 18, 3. [Google Scholar]
- Liu, H.; Zhu, H.; Shen, Y.; Chen, Y.; Ozkan, H.E. Development of digital flow control system for multi-channel variable-rate sprayers. Trans. ASABE 2014, 57, 273–281. [Google Scholar]
- Jiang, H.; Zhou, M.; Tong, J.; Liu, Y. PWM variable spray control based on Kalman filter. Trans. Chin. Soc. Agric. Mach. 2014, 45, 60–65. [Google Scholar]
- Lu, X.; Fu, X.; Wu, P.; Ding, S.; Zhou, L.; Yan, H. Influence of spray operating parameters on droplet deposition. Trans. Chin. Soc. Agric. Mach. 2011, 42, 70–75. [Google Scholar]
- Liu, W.; Wang, X.; Ding, W.; Qiu, W. Design and characteristics analysis of variable spraying control system for knapsack sprayer. Trans. Chin Soc. Agric. Eng. 2012, 28, 16–21. [Google Scholar]
- Zhou, L.; Xue, X.; Zhou, L.; Zhang, L.; Ding, S.; Chang, C.; Zhang, X.; Chen, C. Research status and progress analysis on orchard variable rate spraying technology. Trans. Chin. Soc. Agric. Eng. 2017, 33, 80–92. [Google Scholar]
- Balsari, P.; Marucco, P.; Oggero, G.; Tamagnone, M. Study of optimal air velocities for pesticide application in vineyard. Int. Adv. Pestic. Appl. 2008, 84, 417–423. [Google Scholar]
- Landers, A. Effective Vineyard Spraying: A Practical Guide for Growers; Effective Spraying: Athens, Greece, 2010. [Google Scholar]
- Osterman, A.; Godeša, T.; Hočevar, M.; Širok, B.; Stopar, M. Real-time positioning algorithm for variable-geometry air-assisted orchard sprayer. Comput. Electron. Agric. 2013, 98, 175–182. [Google Scholar] [CrossRef]
- Song, S.; Chen, J.; Hong, T.; Zhang, C.; Dai, Q.; Xue, X. Design and experiment of orchard flexible targeted spray device. Trans. Chin. Soc. Agric. Eng. 2015, 31, 57–63. [Google Scholar]
- Li, J.; Bian, Y.; Huo, P.; Wang, P.; Xue, C.; Yang, X. Design and experimental optimization of air-assisted annular nozzle spraying device for sprayers. Trans. Chin. Soc. Agric. Mach. 2021, 52, 10. [Google Scholar]
- Zhang, P.; Gao, Y.; Liu, Z.; Zhao, J.; Yang, J.; Fan, J.; Zhang, R.; Fan, R. Effect of nozzle pore diameter and spraying pressure on size and deposition distribution of droplets from two types of orchard spraying machines. J. Fruit Sci. 2021, 67, 199–208. [Google Scholar]
- Musiu, E.M.; Qi, L.; Wu, Y. Spray deposition and distribution on the targets and losses to the ground as affected by application volume rate, airflow rate and target position. Crop Protect. 2019, 116, 170–180. [Google Scholar] [CrossRef]
- Bahrouni, H.; Chaabane, H.; Marzougui, N.; Meriem, S.B.; Houcine, B.; Abdallah, M.A.B. Effect of sprayer parameters and wind speed on spray retention and soil deposits of pesticides: Case of artichoke cultivar. Plant Protect. Sci. 2021, 57, 333–343. [Google Scholar] [CrossRef]
- Deng, W.; Ding, W.; He, X. Spray characteristics of PWM-based intermittent pulse variable spray. Trans. Chin. Soc. Agric. Mach. 2009, 40, 74–78. [Google Scholar]
- Khaliq, A. Comparison of water sensitive paper and glass strip sampling approaches to assess spray deposit by UAV sprayers. Agronomy 2022, 12, 1302. [Google Scholar]
- Cui, H.; Wang, C.; Yu, S.; Xin, Z.; Liu, X.; Yuan, J. Two-stage CFD simulation of droplet deposition on deformed leaves of cotton canopy in air-assisted spraying. Comput. Electron. Agric. 2024, 224, 109228. [Google Scholar] [CrossRef]
- Zhou, H.; Ou, M.; Dong, X.; Zhou, W.; Dai, S.; Jia, W. Spraying performance and deposition characteristics of an improved air-assisted nozzle with induction charging. Front. Plant Sci. 2024, 15, 1309088. [Google Scholar] [CrossRef] [PubMed]
Level | Factor | ||
---|---|---|---|
Distance (m) | Wind Speed (m/s) | Height (m) | |
−1.682 | 1.50 | 10.00 | 0.50 |
−1 | 1.70 | 12.03 | 1.01 |
0 | 2.00 | 15.00 | 1.75 |
1 | 2.30 | 17.97 | 2.49 |
1.682 | 2.50 | 20.00 | 3.00 |
No. | Factor | ||
---|---|---|---|
Distance (m) | Wind Speed (m/s) | Height (m) | |
1 | 1.70 | 12.03 | 1.01 |
2 | 1.70 | 12.03 | 2.49 |
3 | 1.70 | 17.97 | 1.01 |
4 | 1.70 | 17.97 | 2.49 |
5 | 2.30 | 12.03 | 1.01 |
6 | 2.30 | 12.03 | 2.49 |
7 | 2.30 | 17.97 | 1.01 |
8 | 2.30 | 17.97 | 2.49 |
9 | 1.50 | 15.00 | 1.75 |
10 | 2.50 | 15.00 | 1.75 |
11 | 2.00 | 10.00 | 1.75 |
12 | 2.00 | 20.00 | 1.75 |
13 | 2.00 | 15.00 | 0.50 |
14 | 2.00 | 15.00 | 3.00 |
15 | 2.00 | 15.00 | 1.75 |
16 | 2.00 | 15.00 | 1.75 |
17 | 2.00 | 15.00 | 1.75 |
18 | 2.00 | 15.00 | 1.75 |
19 | 2.00 | 15.00 | 1.75 |
20 | 2.00 | 15.00 | 1.75 |
21 | 2.00 | 15.00 | 1.75 |
22 | 2.00 | 15.00 | 1.75 |
23 | 2.00 | 15.00 | 1.75 |
No. | Factor | ||
---|---|---|---|
Distance (m) | Wind Speed (m/s) | Height (m) | |
1 | 1.83 | 13.30 | 1.00 |
2 | 1.83 | 13.30 | 1.50 |
3 | 1.83 | 13.30 | 2.00 |
4 | 1.83 | 13.30 | 2.50 |
5 | 1.83 | 16.70 | 1.00 |
6 | 1.83 | 16.70 | 1.50 |
7 | 1.83 | 16.70 | 2.00 |
8 | 1.83 | 16.70 | 2.50 |
9 | 2.17 | 13.30 | 1.00 |
10 | 2.17 | 13.30 | 1.50 |
11 | 2.17 | 13.30 | 2.00 |
12 | 2.17 | 13.30 | 2.50 |
13 | 2.17 | 16.70 | 1.00 |
14 | 2.17 | 16.70 | 1.50 |
15 | 2.17 | 16.70 | 2.00 |
16 | 2.17 | 16.70 | 2.50 |
Treatment | 1st Concentration (µg/L) | 2nd Concentration (µg/L) | 3rd Concentration (µg/L) | Mean (µg/L) | Recovery Rate |
---|---|---|---|---|---|
Repeated washing after dripping on filter paper | 62.61 | 60.55 | 60.72 | 61.29 | 81.57% |
1st | 2nd | 3rd | Mean | |
---|---|---|---|---|
Distance (m) | 30 | 30 | 30 | 30 |
Time (s) | 56.68 | 57.59 | 56.95 | 57.07 |
Speed (m/s) | 0.529 | 0.521 | 0.527 | 0.526 |
Flow (mL) | Time (min) | Flow Rate (L/min) | Average Flow Rate (L/min) | ||
---|---|---|---|---|---|
Nozzle 1 | 1st | 950 | 1 | 0.95 | 0.96 |
2nd | 980 | 1 | 0.98 | ||
3rd | 950 | 1 | 0.95 | ||
Nozzle 2 | 1st | 1110 | 1 | 1.11 | 1.10 |
2nd | 1090 | 1 | 1.09 | ||
3rd | 1110 | 1 | 1.11 | ||
Nozzle 3 | 1st | 920 | 1 | 0.92 | 0.92 |
2nd | 930 | 1 | 0.93 | ||
3rd | 920 | 1 | 0.92 | ||
Nozzle 4 | 1st | 1110 | 1 | 1.11 | 1.08 |
2nd | 1080 | 1 | 1.08 | ||
3rd | 1050 | 1 | 1.05 |
No. | Distance (m) | Wind Speed (m/s) | Height (m) | Deposition Amount (µg/L) | Total Deposition (µg/L) | Normalization Coefficient | Deposition Amount Normalized Value (%) |
---|---|---|---|---|---|---|---|
1 | 1.70 | 12.03 | 1.01 | 159.66 | 487.73 | 0.2050 | 32.74 |
2 | 1.70 | 12.03 | 2.49 | 67.87 | 487.73 | 0.2050 | 13.92 |
3 | 1.70 | 17.97 | 1.01 | 194.83 | 561.26 | 0.1782 | 34.71 |
4 | 1.70 | 17.97 | 2.49 | 62.91 | 561.26 | 0.1782 | 11.21 |
5 | 2.30 | 12.03 | 1.01 | 94.34 | 378.35 | 0.2643 | 24.93 |
6 | 2.30 | 12.03 | 2.49 | 53.28 | 378.35 | 0.2643 | 14.08 |
7 | 2.30 | 17.97 | 1.01 | 92.70 | 421.89 | 0.2370 | 21.97 |
8 | 2.30 | 17.97 | 2.49 | 64.62 | 421.89 | 0.2370 | 15.32 |
9 | 1.50 | 15.00 | 1.75 | 116.18 | 604.39 | 0.1655 | 19.22 |
10 | 2.50 | 15.00 | 1.75 | 76.37 | 330.69 | 0.3024 | 23.09 |
11 | 2.00 | 10.00 | 1.75 | 116.05 | 346.52 | 0.2886 | 33.49 |
12 | 2.00 | 20.00 | 1.75 | 120.57 | 538.07 | 0.1858 | 22.41 |
13 | 2.00 | 15.00 | 0.50 | 57.29 | 587.01 | 0.1704 | 9.76 |
14 | 2.00 | 15.00 | 3.00 | 73.45 | 587.01 | 0.1704 | 12.51 |
15 | 2.00 | 15.00 | 1.75 | 123.46 | 478.99 | 0.2088 | 25.77 |
16 | 2.00 | 15.00 | 1.75 | 115.29 | 492.86 | 0.2029 | 23.39 |
17 | 2.00 | 15.00 | 1.75 | 150.70 | 540.64 | 0.1850 | 27.87 |
18 | 2.00 | 15.00 | 1.75 | 147.59 | 608.88 | 0.1642 | 24.24 |
19 | 2.00 | 15.00 | 1.75 | 174.38 | 638.34 | 0.1567 | 27.32 |
20 | 2.00 | 15.00 | 1.75 | 137.90 | 520.21 | 0.1922 | 26.51 |
21 | 2.00 | 15.00 | 1.75 | 119.64 | 404.35 | 0.2473 | 29.59 |
22 | 2.00 | 15.00 | 1.75 | 126.29 | 497.20 | 0.2011 | 25.40 |
23 | 2.00 | 15.00 | 1.75 | 160.10 | 594.58 | 0.1682 | 26.93 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F | p |
---|---|---|---|---|---|
Model | 1100.3722 | 13 | 84.6440 | 21.8490 | <0.0001 |
A | 7.4921 | 1 | 7.4921 | 1.9339 | 0.1978 |
B | 61.4103 | 1 | 61.4103 | 15.8518 | 0.0032 ** |
C | 3.7908 | 1 | 3.7908 | 0.9785 | 0.3484 |
AB | 0.1242 | 1 | 0.1242 | 0.0321 | 0.8619 |
AC | 76.9764 | 1 | 76.9764 | 19.8698 | 0.0016 ** |
BC | 0.0297 | 1 | 0.0297 | 0.0077 | 0.9321 |
A2 | 37.6069 | 1 | 37.6069 | 9.7074 | 0.0124 * |
B2 | 11.8240 | 1 | 11.8240 | 3.0521 | 0.1146 |
C2 | 410.3855 | 1 | 410.3855 | 105.9322 | <0.0001 ** |
ABC | 9.8622 | 1 | 9.8622 | 2.5457 | 0.1451 |
A2B | 29.5767 | 1 | 29.5767 | 7.6346 | 0.0220 * |
A2C | 228.1383 | 1 | 228.1383 | 58.8890 | <0.0001 ** |
AB2 | 33.5961 | 1 | 33.5961 | 8.6721 | 0.0164 * |
Residual | 34.8663 | 9 | 3.8740 | ||
Misfit term | 6.3355 | 1 | 6.3355 | 1.7765 | 0.2193 |
Pure error | 28.5309 | 8 | 3.5664 | ||
Total | 1135.2385 | 22 |
No. | Distance (m) | Wind Speed (m/s) | Height (m) | Normalized Deposition (%) | Calculated Normalized Deposition (%) | Error | Relative Error |
---|---|---|---|---|---|---|---|
1 | 1.70 | 12.03 | 1.01 | 32.74 | 32.17 | 0.57 | 1.73% |
2 | 1.70 | 12.03 | 2.49 | 13.92 | 13.35 | 0.57 | 4.07% |
3 | 1.70 | 17.97 | 1.01 | 34.71 | 34.15 | 0.56 | 1.62% |
4 | 1.70 | 17.97 | 2.49 | 11.21 | 10.65 | 0.56 | 4.98% |
5 | 2.30 | 12.03 | 1.01 | 24.93 | 24.37 | 0.56 | 2.26% |
6 | 2.30 | 12.03 | 2.49 | 14.08 | 13.51 | 0.57 | 4.06% |
7 | 2.30 | 17.97 | 1.01 | 21.97 | 21.43 | 0.54 | 2.47% |
8 | 2.30 | 17.97 | 2.49 | 15.32 | 14.77 | 0.55 | 3.57% |
9 | 1.50 | 15.00 | 1.75 | 19.22 | 20.02 | −0.80 | 4.14% |
10 | 2.50 | 15.00 | 1.75 | 23.09 | 23.89 | −0.79 | 3.44% |
11 | 2.00 | 10.00 | 1.75 | 33.49 | 34.28 | −0.79 | 2.35% |
12 | 2.00 | 20.00 | 1.75 | 22.41 | 23.21 | −0.80 | 3.57% |
13 | 2.00 | 15.00 | 0.50 | 9.76 | 10.56 | −0.80 | 8.20% |
14 | 2.00 | 15.00 | 3.00 | 12.51 | 13.32 | −0.81 | 6.43% |
15 | 2.00 | 15.00 | 1.75 | 25.77 | 26.31 | −0.54 | 2.08% |
16 | 2.00 | 15.00 | 1.75 | 23.39 | 26.31 | −2.92 | 12.48% |
17 | 2.00 | 15.00 | 1.75 | 27.87 | 26.31 | 1.56 | 5.61% |
18 | 2.00 | 15.00 | 1.75 | 24.24 | 26.31 | −2.07 | 8.54% |
19 | 2.00 | 15.00 | 1.75 | 27.32 | 26.31 | 1.01 | 3.69% |
20 | 2.00 | 15.00 | 1.75 | 26.51 | 26.31 | 0.20 | 0.75% |
21 | 2.00 | 15.00 | 1.75 | 29.59 | 26.31 | 3.28 | 11.08% |
22 | 2.00 | 15.00 | 1.75 | 25.40 | 26.31 | −0.91 | 3.58% |
23 | 2.00 | 15.00 | 1.75 | 26.93 | 26.31 | 0.62 | 2.29% |
No. | Distance (m) | Wind Speed (m/s) | Height (m) | Deposition Amount (µg/L) | Total Deposition (µg/L) | Normalization Coefficient | Deposition Amount, Normalized Value (%) |
---|---|---|---|---|---|---|---|
1 | 1.83 | 13.30 | 1.00 | 175.56 | 566.72 | 0.1765 | 30.98 |
2 | 1.83 | 13.30 | 1.50 | 160.87 | 566.72 | 0.1765 | 28.39 |
3 | 1.83 | 13.30 | 2.00 | 76.75 | 566.72 | 0.1765 | 13.54 |
4 | 1.83 | 13.30 | 2.50 | 26.14 | 566.72 | 0.1765 | 4.61 |
5 | 1.83 | 16.70 | 1.00 | 148.11 | 551.43 | 0.1813 | 26.86 |
6 | 1.83 | 16.70 | 1.50 | 184.45 | 551.43 | 0.1813 | 33.45 |
7 | 1.83 | 16.70 | 2.00 | 125.99 | 551.43 | 0.1813 | 22.85 |
8 | 1.83 | 16.70 | 2.50 | 63.30 | 551.43 | 0.1813 | 11.48 |
9 | 2.17 | 13.30 | 1.00 | 141.05 | 616.57 | 0.1622 | 22.88 |
10 | 2.17 | 13.30 | 1.50 | 182.30 | 616.57 | 0.1622 | 29.57 |
11 | 2.17 | 13.30 | 2.00 | 102.63 | 616.57 | 0.1622 | 16.64 |
12 | 2.17 | 13.30 | 2.50 | 59.98 | 616.57 | 0.1622 | 9.73 |
13 | 2.17 | 16.70 | 1.00 | 98.19 | 248.29 | 0.4028 | 39.55 |
14 | 2.17 | 16.70 | 1.50 | 43.34 | 248.29 | 0.4028 | 17.46 |
15 | 2.17 | 16.70 | 2.00 | 9.36 | 248.29 | 0.4028 | 3.77 |
16 | 2.17 | 16.70 | 2.50 | 10.76 | 248.29 | 0.4028 | 4.33 |
No. | Distance (m) | Wind Speed (m/s) | Height (m) | Normalized Deposition (%) | Calculated Normalized Deposition (%) | Error | Relative Error |
---|---|---|---|---|---|---|---|
1 | 1.83 | 13.30 | 1.00 | 30.98 | 25.36 | 5.62 | 18.13% |
2 | 1.83 | 13.30 | 1.50 | 28.39 | 27.83 | 0.55 | 1.95% |
3 | 1.83 | 13.30 | 2.00 | 13.54 | 25.66 | −12.12 | 89.49% |
4 | 1.83 | 13.30 | 2.50 | 4.61 | 18.86 | −14.25 | 308.92% |
5 | 1.83 | 16.70 | 1.00 | 26.86 | 23.57 | 3.29 | 12.24% |
6 | 1.83 | 16.70 | 1.50 | 33.45 | 25.51 | 7.94 | 23.73% |
7 | 1.83 | 16.70 | 2.00 | 22.85 | 22.81 | 0.04 | 0.16% |
8 | 1.83 | 16.70 | 2.50 | 11.48 | 15.47 | −3.99 | 34.78% |
9 | 2.17 | 13.30 | 1.00 | 22.88 | 22.73 | 0.14 | 0.63% |
10 | 2.17 | 13.30 | 1.50 | 29.57 | 27.09 | 2.48 | 8.37% |
11 | 2.17 | 13.30 | 2.00 | 16.64 | 26.81 | −10.17 | 61.08% |
12 | 2.17 | 13.30 | 2.50 | 9.73 | 21.89 | −12.17 | 125.06% |
13 | 2.17 | 16.70 | 1.00 | 39.55 | 19.33 | 20.22 | 51.12% |
14 | 2.17 | 16.70 | 1.50 | 17.46 | 24.13 | −6.67 | 38.23% |
15 | 2.17 | 16.70 | 2.00 | 3.77 | 24.29 | −20.52 | 544.52% |
16 | 2.17 | 16.70 | 2.50 | 4.33 | 19.81 | −15.48 | 357.19% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Wang, Z.; Zhai, C.; Gu, C.; Zheng, K.; Li, X.; Jiang, R.; Xiao, K. Modeling of Droplet Deposition in Air-Assisted Spraying. Agronomy 2025, 15, 1580. https://doi.org/10.3390/agronomy15071580
Song J, Wang Z, Zhai C, Gu C, Zheng K, Li X, Jiang R, Xiao K. Modeling of Droplet Deposition in Air-Assisted Spraying. Agronomy. 2025; 15(7):1580. https://doi.org/10.3390/agronomy15071580
Chicago/Turabian StyleSong, Jian, Zhichong Wang, Changyuan Zhai, Chenchen Gu, Kang Zheng, Xuecheng Li, Ronghua Jiang, and Ke Xiao. 2025. "Modeling of Droplet Deposition in Air-Assisted Spraying" Agronomy 15, no. 7: 1580. https://doi.org/10.3390/agronomy15071580
APA StyleSong, J., Wang, Z., Zhai, C., Gu, C., Zheng, K., Li, X., Jiang, R., & Xiao, K. (2025). Modeling of Droplet Deposition in Air-Assisted Spraying. Agronomy, 15(7), 1580. https://doi.org/10.3390/agronomy15071580