Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,497)

Search Parameters:
Keywords = air quality modeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4758 KiB  
Article
On the Prediction and Forecasting of PMs and Air Pollution: An Application of Deep Hybrid AI-Based Models
by Youness El Mghouchi and Mihaela Tinca Udristioiu
Appl. Sci. 2025, 15(15), 8254; https://doi.org/10.3390/app15158254 - 24 Jul 2025
Abstract
Air pollution, particularly fine (PM2.5) and coarse (PM10) particulate matter, poses significant risks to public health and environmental sustainability. This study aims to develop robust predictive and forecasting models for hourly PM concentrations in Craiova, Romania, using advanced hybrid [...] Read more.
Air pollution, particularly fine (PM2.5) and coarse (PM10) particulate matter, poses significant risks to public health and environmental sustainability. This study aims to develop robust predictive and forecasting models for hourly PM concentrations in Craiova, Romania, using advanced hybrid Artificial Intelligence (AI) approaches. A five-year dataset (2020–2024), comprising 20 meteorological and pollution-related variables recorded by four air quality monitoring stations, was analyzed. The methodology consists of three main phases: (i) data preprocessing, including anomaly detection and missing value handling; (ii) exploratory analysis to identify trends and correlations between PM concentrations (PMs) and predictor variables; and (iii) model development using 23 machine learning and deep learning algorithms, enhanced by 50 feature selection techniques. A deep Nonlinear AutoRegressive Moving Average with eXogenous inputs (Deep-NARMAX) model was employed for multi-step-ahead forecasting. The best-performing models achieved R2 values of 0.85 for PM2.5 and 0.89 for PM10, with low RMSE and MAPE scores, demonstrating high accuracy and generalizability. The GEO-based feature selection method effectively identified the most relevant predictors, while the Deep-NARMAX model captured temporal dynamics for accurate forecasting. These results highlight the potential of hybrid AI models for air quality management and provide a scalable framework for urban pollution monitoring, predicting, and forecasting. Full article
(This article belongs to the Special Issue Advances in Air Pollution Detection and Air Quality Research)
19 pages, 2091 KiB  
Article
Distinct Regional and Seasonal Patterns of Atmospheric NH3 Observed from Satellite over East Asia
by Haklim Choi, Mi Eun Park and Jeong-Ho Bae
Remote Sens. 2025, 17(15), 2587; https://doi.org/10.3390/rs17152587 - 24 Jul 2025
Abstract
Ammonia (NH3), as a vital component of the nitrogen cycle, exerts significant influence on the biosphere, air quality, and climate by contributing to secondary aerosol formation through its reactions with sulfur dioxide (SO2) and nitrogen oxides (NOx). [...] Read more.
Ammonia (NH3), as a vital component of the nitrogen cycle, exerts significant influence on the biosphere, air quality, and climate by contributing to secondary aerosol formation through its reactions with sulfur dioxide (SO2) and nitrogen oxides (NOx). Despite its critical environmental role, NH3’s transient atmospheric lifetime and the variability in spatial and temporal distributions pose challenges for effective global monitoring and comprehensive impact assessment. Recognizing the inadequacies in current in situ measurement capabilities, this study embarked on an extensive analysis of NH3’s temporal and spatial characteristics over East Asia, using the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-B satellite from 2013 to 2024. The atmospheric NH3 concentrations exhibit clear seasonality, beginning to rise in spring, peaking in summer, and then decreasing in winter. Overall, atmospheric NH3 shows an annual increasing trend, with significant increases particularly evident in Eastern China, especially in June. The regional NH3 trends within China have varied, with steady increases across most regions, while the Northeastern China Plain remained stable until a recent rapid rise. South Korea continues to show consistent and accelerating growth. East Asia demonstrates similar NH3 emission characteristics, driven by farmland and livestock. The spatial and temporal inconsistencies between satellite data and global chemical transport models underscore the importance of establishing accurate NH3 emission inventories in East Asia. Full article
24 pages, 3182 KiB  
Article
Application of Indoor Greenhouses in the Production of Thermal Energy in Circular Buildings
by Eusébio Conceição, João Gomes, Maria Inês Conceição, Margarida Conceição, Maria Manuela Lúcio and Hazim Awbi
Energies 2025, 18(15), 3962; https://doi.org/10.3390/en18153962 - 24 Jul 2025
Abstract
The production of thermal energy in buildings using internal greenhouses makes it possible to obtain substantial gains in energy consumption and, at the same time, contribute to improving occupants’ thermal comfort (TC) levels. This article proposes a study on the producing and transporting [...] Read more.
The production of thermal energy in buildings using internal greenhouses makes it possible to obtain substantial gains in energy consumption and, at the same time, contribute to improving occupants’ thermal comfort (TC) levels. This article proposes a study on the producing and transporting of renewable thermal energy in a circular auditorium equipped with an enveloping semi-circular greenhouse. The numerical study is based on software that simulates the building geometry and the building thermal response (BTR) numerical model and assesses the TC level and indoor air quality (IAQ) provided to occupants in spaces ventilated by the proposed system. The building considered in this study is a circular auditorium constructed from three semi-circular auditoriums supplied with internal semi-circular greenhouses. Each of the semi-circular auditoriums faces south, northeast, and northwest, respectively. The semi-circular auditoriums are occupied by 80 people each: the one facing south throughout the day, while the one facing northeast is only occupied in the morning, and the one facing northwest is only occupied in the afternoon. The south-facing semi-circular greenhouse is used by itself to heat all three semi-circular auditoriums. The other two semi-circular greenhouses are only used to heat the interior space of the greenhouse. It was considered that the building is located in a Mediterranean-type climate and subject to the typical characteristics of clear winter days. The results allow us to verify that the proposed heating system, in which the heat provided to the occupied spaces is generated only in the semi-circular greenhouse facing south, can guarantee acceptable TC conditions for the occupants throughout the occupancy cycle. Full article
Show Figures

Figure 1

24 pages, 6601 KiB  
Article
Micromechanical Finite Element Model Investigation of Cracking Behavior and Construction-Related Deficiencies in Asphalt Mixtures
by Liu Yang, Suwei Hou and Haibo Yu
Materials 2025, 18(15), 3426; https://doi.org/10.3390/ma18153426 - 22 Jul 2025
Viewed by 20
Abstract
This study investigated the fracture behavior of asphalt mixtures under indirect tensile loading by comparing the performance of homogenized and micromechanical finite element (FEMs) models based on the cohesive zone model (CZM). Five asphalt mixture types were tested experimentally, and both models were [...] Read more.
This study investigated the fracture behavior of asphalt mixtures under indirect tensile loading by comparing the performance of homogenized and micromechanical finite element (FEMs) models based on the cohesive zone model (CZM). Five asphalt mixture types were tested experimentally, and both models were calibrated and validated using load–displacement curves from indirect tensile tests (IDTs). The micromechanical model, incorporating random aggregate generation and three-phase material definition, exhibited significantly higher predictive accuracy (R2 = 0.86–0.98) than the homogenized model (R2 = 0.66–0.77). The validated micromechanical model was further applied to quantify the impact of construction-related deficiencies—namely, increased air voids, non-continuous gradation, and aggregate segregation. The simulation results showed that higher void content (from 4% to 10%) reduced peak load by up to 35% and increased localized stress concentrations by up to 40%. Discontinuous gradation and uneven aggregate distribution also led to premature crack initiation and more complex fracture paths. These findings demonstrated the value of micromechanical modeling for evaluating sensitivity to mix design and compaction quality, providing a foundation for performance-based asphalt mixture optimization and durability improvement. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 4190 KiB  
Article
Calibration of Building Performance Simulations for Zero Carbon Ready Homes: Two Open Access Case Studies Under Controlled Conditions
by Christopher Tsang, Richard Fitton, Xinyi Zhang, Grant Henshaw, Heidi Paola Díaz-Hernández, David Farmer, David Allinson, Anestis Sitmalidis, Mohamed Dgali, Ljubomir Jankovic and William Swan
Sustainability 2025, 17(15), 6673; https://doi.org/10.3390/su17156673 - 22 Jul 2025
Viewed by 51
Abstract
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. [...] Read more.
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. The two case study homes, “The Future Home” and “eHome2”, were constructed within the University of Salford’s Energy House 2.0, and high-quality data were collected over eight days. The calibration process involved updating U-values, air permeability rates, and modelling refinements, such as roof ventilation, ground temperatures, and sub-floor void exchange rates, set as boundary conditions. Results demonstrated a high level of accuracy, with performance gaps in whole-house heat transfer coefficient reduced to 0.5% for “The Future Home” and 0.6% for “eHome2”, falling within aggregate heat loss test uncertainty ranges by a significant amount. The study highlights the improved accuracy of calibrated dynamic thermal simulation models, compared to results from the steady-state Standard Assessment Procedure model. By providing openly accessible calibrated models and a clearly defined methodology, this research presents valuable resources for future building performance modelling studies. The findings support the UK’s transition to dynamic modelling approaches proposed in the recently introduced Home Energy Model approach, contributing to improved prediction of energy efficiency and aligning with goals for zero carbon ready and sustainable housing development. Full article
Show Figures

Figure 1

31 pages, 4435 KiB  
Article
A Low-Cost IoT Sensor and Preliminary Machine-Learning Feasibility Study for Monitoring In-Cabin Air Quality: A Pilot Case from Almaty
by Nurdaulet Tasmurzayev, Bibars Amangeldy, Gaukhar Smagulova, Zhanel Baigarayeva and Aigerim Imash
Sensors 2025, 25(14), 4521; https://doi.org/10.3390/s25144521 - 21 Jul 2025
Viewed by 176
Abstract
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular [...] Read more.
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular diseases. This study investigates the air quality along three of the city’s busiest transport corridors, analyzing how the concentrations of CO2, PM2.5, and PM10, as well as the temperature and relative humidity, fluctuate with the passenger density and time of day. Continuous measurements were collected using the Tynys mobile IoT device, which was bench-calibrated against a commercial reference sensor. Several machine learning models (logistic regression, decision tree, XGBoost, and random forest) were trained on synchronized environmental and occupancy data, with the XGBoost model achieving the highest predictive accuracy at 91.25%. Our analysis confirms that passenger occupancy is the primary driver of in-cabin pollution and that these machine learning models effectively capture the nonlinear relationships among environmental variables. Since the surveyed routes serve Almaty’s most densely populated districts, improving the ventilation on these lines is of immediate importance to public health. Furthermore, the high-temporal-resolution data revealed short-term pollution spikes that correspond with peak ridership, advancing the current understanding of exposure risks in transit. These findings highlight the urgent need to combine real-time monitoring with ventilation upgrades. They also demonstrate the practical value of using low-cost IoT technologies and data-driven analytics to safeguard public health in urban mobility systems. Full article
(This article belongs to the Special Issue IoT-Based Sensing Systems for Urban Air Quality Forecasting)
Show Figures

Figure 1

17 pages, 1884 KiB  
Article
A Habitat-Template Approach to Green Wall Design in Mediterranean Cities
by Miriam Patti, Carmelo Maria Musarella and Giovanni Spampinato
Buildings 2025, 15(14), 2557; https://doi.org/10.3390/buildings15142557 - 20 Jul 2025
Viewed by 160
Abstract
Integrating nature-based solutions into sustainable urban design has become increasingly important in response to rapid urbanization and climate-related environmental challenges. As part of these solutions, green walls not only enhance the thermal and acoustic performance of buildings but also contribute to urban ecosystem [...] Read more.
Integrating nature-based solutions into sustainable urban design has become increasingly important in response to rapid urbanization and climate-related environmental challenges. As part of these solutions, green walls not only enhance the thermal and acoustic performance of buildings but also contribute to urban ecosystem health by supporting biodiversity. In this context, the careful selection of plant species is essential to ensure ecological efficiency, resilience, and low maintenance. This study presents a model for selecting plant species suitable for natural green walls in Mediterranean cities, with a focus on habitats protected under Directive 92/43/EEC. The selection followed a multi-phase process applied to the native flora of Italy, using criteria such as chorological type, life form, ecological indicator values, altitudinal range, and habitat type. Alien and invasive species were excluded, favoring only native Mediterranean species adapted to local pedoclimatic conditions and capable of providing ecosystem, esthetic, and functional benefits. The outcome of this rigorous screening led to the identification of a pool of species suitable for green wall systems in Mediterranean urban settings. These selections offer a practical contribution to mitigating the urban heat island effect, improving air quality, and enhancing biodiversity, thus providing a valuable tool for designing more sustainable and climate-adaptive buildings. Full article
(This article belongs to the Special Issue Natural-Based Solution for Sustainable Buildings)
Show Figures

Figure 1

17 pages, 2076 KiB  
Article
Threefold Threshold: Synergistic Air Pollution in Greater Athens Area, Greece
by Aggelos Kladakis, Kyriaki-Maria Fameli, Konstantinos Moustris, Vasiliki D. Assimakopoulos and Panagiotis T. Nastos
Atmosphere 2025, 16(7), 888; https://doi.org/10.3390/atmos16070888 - 19 Jul 2025
Viewed by 240
Abstract
This study investigates the health impacts of air pollution in the Greater Athens Area (GAA), Greece, by estimating the Relative Risk (RR) of hospital admissions (HA) for cardiovascular (CVD) and respiratory diseases (RD) from 2018 to 2020. The analysis focuses on daily exceedances [...] Read more.
This study investigates the health impacts of air pollution in the Greater Athens Area (GAA), Greece, by estimating the Relative Risk (RR) of hospital admissions (HA) for cardiovascular (CVD) and respiratory diseases (RD) from 2018 to 2020. The analysis focuses on daily exceedances of key air pollutants—PM10, O3, and NO2—based on the “Fair” threshold and above, as defined by the European Union Air Quality Index (EU AQI). Data from ten monitoring stations operated by the Ministry of Environment and Energy were spatially matched with six hospitals across the GAA. A Distributed Lag Non-linear Model (DLNM) was employed to capture both the delayed and non-linear exposure–response (ER) relationships between pollutant exceedances and daily HA. Additionally, the synergistic effects of pollutant interactions were assessed to provide a more comprehensive understanding of cumulative health risks. The combined exposure term showed a peak RR of 1.49 (95% CI: 0.79–2.78), indicating a notable amplification of risk when multiple pollutants exceed thresholds simultaneously. The study utilizes R for data processing and statistical modeling. Findings aim to inform public health strategies by identifying critical exposure thresholds and time-lagged effects, ultimately supporting targeted interventions in urban environments experiencing air quality challenges. Full article
(This article belongs to the Special Issue Urban Air Pollution Exposure and Health Vulnerability)
Show Figures

Figure 1

26 pages, 5914 KiB  
Article
BiDGCNLLM: A Graph–Language Model for Drone State Forecasting and Separation in Urban Air Mobility Using Digital Twin-Augmented Remote ID Data
by Zhang Wen, Junjie Zhao, An Zhang, Wenhao Bi, Boyu Kuang, Yu Su and Ruixin Wang
Drones 2025, 9(7), 508; https://doi.org/10.3390/drones9070508 - 19 Jul 2025
Viewed by 228
Abstract
Accurate prediction of drone motion within structured urban air corridors is essential for ensuring safe and efficient operations in Urban Air Mobility (UAM) systems. Although real-world Remote Identification (Remote ID) regulations require drones to broadcast critical flight information such as velocity, access to [...] Read more.
Accurate prediction of drone motion within structured urban air corridors is essential for ensuring safe and efficient operations in Urban Air Mobility (UAM) systems. Although real-world Remote Identification (Remote ID) regulations require drones to broadcast critical flight information such as velocity, access to large-scale, high-quality broadcast data remains limited. To address this, this study leverages a Digital Twin (DT) framework to augment Remote ID spatio-temporal broadcasts, emulating the sensing environment of dense urban airspace. Using Remote ID data, we propose BiDGCNLLM, a hybrid prediction framework that integrates a Bidirectional Graph Convolutional Network (BiGCN) with Dynamic Edge Weighting and a reprogrammed Large Language Model (LLM, Qwen2.5–0.5B) to capture spatial dependencies and temporal patterns in drone speed trajectories. The model forecasts near-future speed variations in surrounding drones, supporting proactive conflict avoidance in constrained air corridors. Results from the AirSUMO co-simulation platform and a DT replica of the Cranfield University campus show that BiDGCNLLM outperforms state-of-the-art time series models in short-term velocity prediction. Compared to Transformer-LSTM, BiDGCNLLM marginally improves the R2 by 11.59%. This study introduces the integration of LLMs into dynamic graph-based drone prediction. It shows the potential of Remote ID broadcasts to enable scalable, real-time airspace safety solutions in UAM. Full article
Show Figures

Figure 1

18 pages, 6313 KiB  
Article
Unveiling PM2.5 Transport Pathways: A Trajectory-Channel Model Framework for Spatiotemporally Quantitative Source Apportionment
by Yong Pan, Jie Zheng, Fangxin Fang, Fanghui Liang, Mengrong Yang, Lei Tong and Hang Xiao
Atmosphere 2025, 16(7), 883; https://doi.org/10.3390/atmos16070883 - 18 Jul 2025
Viewed by 141
Abstract
In this study, we introduced a novel Trajectory-Channel Transport Model (TCTM) to unravel spatiotemporal dynamics of PM2.5 pollution. By integrating high-resolution simulations from the Weather Research and Forecasting (WRF) model with the Nested Air-Quality Prediction Modeling System (WRF-NAQPMS) and 72 h backward-trajectory [...] Read more.
In this study, we introduced a novel Trajectory-Channel Transport Model (TCTM) to unravel spatiotemporal dynamics of PM2.5 pollution. By integrating high-resolution simulations from the Weather Research and Forecasting (WRF) model with the Nested Air-Quality Prediction Modeling System (WRF-NAQPMS) and 72 h backward-trajectory analysis, TCTM enables the precise identification of source regions, the delineation of key transport corridors, and a quantitative assessment of regional contributions to receptor sites. Focusing on four Yangtze River Delta cities (Hangzhou, Shanghai, Nanjing, Hefei) during a January 2020 pollution event, the results demonstrate that TCTM’s Weighted Concentration Source (WCS) and Source Pollution Characteristic Index (SPCI) outperform traditional PSCF and CWT methods in source-attribution accuracy and resolution. Unlike receptor-based statistical approaches, TCTM reconstructs pollutant transport processes, quantifies spatial decay, and assigns contributions via physically interpretable metrics. This innovative framework offers actionable insights for targeted air-quality management strategies, highlighting its potential as a robust tool for pollution mitigation planning. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

24 pages, 2488 KiB  
Article
UAM Vertiport Network Design Considering Connectivity
by Wentao Zhang and Taesung Hwang
Systems 2025, 13(7), 607; https://doi.org/10.3390/systems13070607 - 18 Jul 2025
Viewed by 114
Abstract
Urban Air Mobility (UAM) is envisioned to revolutionize urban transportation by improving traffic efficiency and mitigating surface-level congestion. One of the fundamental challenges in implementing UAM systems lies in the optimal siting of vertiports, which requires a delicate balance among infrastructure construction costs, [...] Read more.
Urban Air Mobility (UAM) is envisioned to revolutionize urban transportation by improving traffic efficiency and mitigating surface-level congestion. One of the fundamental challenges in implementing UAM systems lies in the optimal siting of vertiports, which requires a delicate balance among infrastructure construction costs, passenger access costs to their assigned vertiports, and the operational connectivity of the resulting vertiport network. This study develops an integrated mathematical model for vertiport location decision, aiming to minimize total system cost while ensuring UAM network connectivity among the selected vertiport locations. To efficiently solve the problem and improve solution quality, a hybrid genetic algorithm is developed by incorporating a Minimum Spanning Tree (MST)-based connectivity enforcement mechanism, a fundamental concept in graph theory that connects all nodes in a given network with minimal total link cost, enhanced by a greedy initialization strategy. The effectiveness of the proposed algorithm is demonstrated through numerical experiments conducted on both synthetic datasets and the real-world transportation network of New York City. The results show that the proposed hybrid methodology not only yields high-quality solutions but also significantly reduces computational time, enabling faster convergence. Overall, this study provides practical insights for UAM infrastructure planning by emphasizing demand-oriented vertiport siting and inter-vertiport connectivity, thereby contributing to both theoretical development and large-scale implementation in complex urban environments. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

25 pages, 2878 KiB  
Article
A Multi-Faceted Approach to Air Quality: Visibility Prediction and Public Health Risk Assessment Using Machine Learning and Dust Monitoring Data
by Lara Dronjak, Sofian Kanan, Tarig Ali, Reem Assim and Fatin Samara
Sustainability 2025, 17(14), 6581; https://doi.org/10.3390/su17146581 - 18 Jul 2025
Viewed by 326
Abstract
Clean and safe air quality is essential for public health, yet particulate matter (PM) significantly degrades air quality and poses serious health risks. The Gulf Cooperation Council (GCC) countries are particularly vulnerable to frequent and intense dust storms due to their vast desert [...] Read more.
Clean and safe air quality is essential for public health, yet particulate matter (PM) significantly degrades air quality and poses serious health risks. The Gulf Cooperation Council (GCC) countries are particularly vulnerable to frequent and intense dust storms due to their vast desert landscapes. This study presents the first health risk assessment of carcinogenic and non-carcinogenic risks associated with exposure to PM2.5 and PM10 bound heavy metals and polycyclic aromatic hydrocarbons (PAHs) based on air quality data collected during the years of 2016–2018 near Dubai International Airport and Abu Dhabi International Airport. The results reveal no significant carcinogenic risks for lead (Pb), cobalt (Co), nickel (Ni), and chromium (Cr). Additionally, AI-based regression analysis was applied to time-series dust monitoring data to enhance predictive capabilities in environmental monitoring systems. The estimated incremental lifetime cancer risk (ILCR) from PAH exposure exceeded the acceptable threshold (10−6) in several samples at both locations. The relationship between visibility and key environmental variables—PM1, PM2.5, PM10, total suspended particles (TSPs), wind speed, air pressure, and air temperature—was modeled using three machine learning algorithms: linear regression, support vector machine (SVM) with a radial basis function (RBF) kernel, and artificial neural networks (ANNs). Among these, SVM with an RBF kernel showed the highest accuracy in predicting visibility, effectively integrating meteorological data and particulate matter variables. These findings highlight the potential of machine learning models for environmental monitoring and the need for continued assessments of air quality and its health implications in the region. Full article
(This article belongs to the Special Issue Impact of AI on Business Sustainability and Efficiency)
Show Figures

Figure 1

10 pages, 332 KiB  
Article
An Empirical Theoretical Model for the Turbulent Diffusion Coefficient in Urban Atmospheric Dispersion
by George Efthimiou
Urban Sci. 2025, 9(7), 281; https://doi.org/10.3390/urbansci9070281 - 18 Jul 2025
Viewed by 420
Abstract
Turbulent diffusion plays a critical role in atmospheric pollutant dispersion, particularly in complex environments such as urban areas. This study proposes a novel theoretical approach to enhance the calculation of the turbulent diffusion coefficient in pollutant dispersion models. We propose a new expression [...] Read more.
Turbulent diffusion plays a critical role in atmospheric pollutant dispersion, particularly in complex environments such as urban areas. This study proposes a novel theoretical approach to enhance the calculation of the turbulent diffusion coefficient in pollutant dispersion models. We propose a new expression for the turbulent diffusion coefficient (KC), which incorporates both hydrodynamic and turbulence-related time scales. This formulation links the turbulent diffusion coefficient to pollutant travel time and turbulence intensity, offering more accurate predictions of pollutant concentration distributions. By addressing the limitations of existing empirical models, this approach improves the parameterization of turbulence and reduces uncertainties in predicting maximum individual exposure under various atmospheric conditions. The study presents a theoretical model designed to advance the current understanding of atmospheric dispersion modeling. Experimental validation, while recommended, is beyond the scope of this work and is suggested as a direction for future empirical research to confirm the practical utility of the model. This theoretical formulation could be integrated into urban air quality management frameworks, providing improved estimations of pollutant peaks in complex environments. Full article
Show Figures

Figure 1

17 pages, 5116 KiB  
Article
Impact of Real-Time Boundary Conditions from the CAMS Database on CHIMERE Model Predictions
by Anita Tóth and Zita Ferenczi
Air 2025, 3(3), 19; https://doi.org/10.3390/air3030019 - 18 Jul 2025
Viewed by 111
Abstract
Air quality forecasts play a crucial role in informing the public about atmospheric pollutant levels that pose risks to human health and the environment. The accuracy of these forecasts strongly depends on the quality and resolution of the input data used in the [...] Read more.
Air quality forecasts play a crucial role in informing the public about atmospheric pollutant levels that pose risks to human health and the environment. The accuracy of these forecasts strongly depends on the quality and resolution of the input data used in the modelling process. At HungaroMet, the Hungarian Meteorological Service, the CHIMERE chemical transport model is used to provide two-day air quality forecasts for the territory of Hungary. This study compares two configurations of the CHIMERE model: the current operational setup, which uses climatological averages from the LMDz-INCA database for boundary conditions, and a test configuration that incorporates real-time boundary conditions from the CAMS global forecast. The primary objective of this work was to assess how the use of real-time versus climatological boundary conditions affects modelled concentrations of key pollutants, including NO2, O3, PM10, and PM2.5. The model results were evaluated against observational data from the Hungarian Air Quality Monitoring Network using a range of statistical metrics. The results indicate that the use of real-time boundary conditions, particularly for aerosol-type pollutants, improves the accuracy of PM10 forecasts. This improvement is most significant under meteorological conditions that favour the long-range transport of particulate matter, such as during Saharan dust or wildfire episodes. These findings highlight the importance of incorporating dynamic, up-to-date boundary data, especially for particulate matter forecasting—given the increasing frequency of transboundary dust events. Full article
Show Figures

Figure 1

20 pages, 523 KiB  
Article
Improved Probability-Weighted Moments and Two-Stage Order Statistics Methods of Generalized Extreme Value Distribution
by Autcha Araveeporn
Mathematics 2025, 13(14), 2295; https://doi.org/10.3390/math13142295 - 17 Jul 2025
Viewed by 185
Abstract
This study evaluates six parameter estimation methods for the generalized extreme value (GEV) distribution: maximum likelihood estimation (MLE), two probability-weighted moments (PWM-UE and PWM-PP), and three robust two-stage order statistics estimators (TSOS-ME, TSOS-LMS, and TSOS-LTS). Their performance was assessed using simulation experiments under [...] Read more.
This study evaluates six parameter estimation methods for the generalized extreme value (GEV) distribution: maximum likelihood estimation (MLE), two probability-weighted moments (PWM-UE and PWM-PP), and three robust two-stage order statistics estimators (TSOS-ME, TSOS-LMS, and TSOS-LTS). Their performance was assessed using simulation experiments under varying tail behaviors, represented by three types of GEV distributions: Weibull (short-tailed), Gumbel (light-tailed), and Fréchet (heavy-tailed) distributions, based on the mean squared error (MSE) and mean absolute percentage error (MAPE). The results showed that TSOS-LTS consistently achieved the lowest MSE and MAPE, indicating high robustness and forecasting accuracy, particularly for short-tailed distributions. Notably, PWM-PP performed well for the light-tailed distribution, providing accurate and efficient estimates in this specific setting. For heavy-tailed distributions, TSOS-LTS exhibited superior estimation accuracy, while PWM-PP showed a better predictive performance in terms of MAPE. The methods were further applied to real-world monthly maximum PM2.5 data from three air quality stations in Bangkok. TSOS-LTS again demonstrated superior performance, especially at Thon Buri station. This research highlights the importance of tailoring estimation techniques to the distribution’s tail behavior and supports the use of robust approaches for modeling environmental extremes. Full article
(This article belongs to the Section D1: Probability and Statistics)
Show Figures

Figure 1

Back to TopTop