Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,404)

Search Parameters:
Keywords = air quality indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 931 KiB  
Article
Evaluation of the Effects of Drying Techniques on the Physical and Nutritional Characteristics of Cricket (Gryllus bimaculatus) Powder for Use as Animal Feedstuff
by Warin Puangsap, Padsakorn Pootthachaya, Mutyarsih Oryza, Anusorn Cherdthong, Vibuntita Chankitisakul, Bundit Tengjaroensakul, Pheeraphong Phaengphairee and Sawitree Wongtangtintharn
Insects 2025, 16(8), 814; https://doi.org/10.3390/insects16080814 - 6 Aug 2025
Abstract
This study aimed to evaluate the effects of three drying methods, namely sun drying, microwave–vacuum drying, and hot-air-oven drying, on the physical and nutritional properties of cricket powder for use in poultry feed. The results showed that the drying method significantly affected color [...] Read more.
This study aimed to evaluate the effects of three drying methods, namely sun drying, microwave–vacuum drying, and hot-air-oven drying, on the physical and nutritional properties of cricket powder for use in poultry feed. The results showed that the drying method significantly affected color parameters (L*, a*, and b*; p < 0.05), and particle size distribution at 850 µm and 250 µm (p = 0.04 and p = 0.02, respectively). Microwave–vacuum drying produced the lightest powder with a higher proportion of coarse particles, while sun drying resulted in a darker color and greater particle retention at 850 µm. Hot-air-oven drying yielded the lowest moisture content (1.99%) and the highest gross energy (6126.43 kcal/kg), with no significant differences observed in crude protein (p = 0.61), ether extract (p = 0.08), crude fiber (p = 0.14), ash (p = 0.22), or amino acid profiles (p > 0.05). These findings indicate that all drying methods preserved the nutritional value of cricket powder, and based on the overall results, hot-air-oven drying is the most suitable method for producing high-quality cricket meal with optimal physical properties and feed value, while also providing a practical balance between drying efficiency and cost. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

11 pages, 1226 KiB  
Proceeding Paper
Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing
by Paloma C. Toscan, Alcindo Neckel, Emanuelle Goellner, Marcos L. S. Oliveira and Eduardo N. B. Pereira
Eng. Proc. 2025, 94(1), 15; https://doi.org/10.3390/engproc2025094015 - 5 Aug 2025
Abstract
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first [...] Read more.
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first phase involves mapping pollutants and assessing European guidelines, traditional monitoring methods, and emerging tools such as sensors and satellite data. The findings indicate gaps in spatial coverage, emphasizing the importance of integrating data from Sentinel-3, Sentinel-5P, local sensors, and drones. These insights establish a foundation for the next phase, which involves predictive modeling of NBS, LST, and pollutants using machine learning techniques to support data-driven policy-making. Full article
Show Figures

Figure 1

22 pages, 5033 KiB  
Article
Seasonal Variation of Air Purifier Effectiveness and Natural Ventilation Behavior: Implications for Sustainable Indoor Air Quality in London Nurseries
by Shuo Zhang, Didong Chen and Xiangyu Li
Sustainability 2025, 17(15), 7093; https://doi.org/10.3390/su17157093 - 5 Aug 2025
Abstract
This study investigates the seasonal effectiveness of high-efficiency particulate air (HEPA) purifiers and window-opening behaviors in three London nurseries, using continuous indoor and outdoor PM2.5 monitoring, window state and air purifier use, and occupant questionnaire data collected from March 2021 to February [...] Read more.
This study investigates the seasonal effectiveness of high-efficiency particulate air (HEPA) purifiers and window-opening behaviors in three London nurseries, using continuous indoor and outdoor PM2.5 monitoring, window state and air purifier use, and occupant questionnaire data collected from March 2021 to February 2022. Of the approximately 40–50 nurseries contacted, only three agreed to participate. Results show that HEPA purifiers substantially reduced indoor particulate matter (PM2.5), with the greatest effect observed during the heating season when windows remained closed for longer periods. Seasonal and behavioral analysis indicated more frequent and longer window opening in the non-heating season (windows were open 41.5% of the time on average, compared to 34.2% during the heating season) driven by both ventilation needs and heightened COVID-19 concerns. Predictive modeling identified indoor temperature as the main driver of window opening, while carbon dioxide (CO2) had a limited effect. In addition, window opening often increased indoor PM2.5 under prevailing outdoor air quality conditions, with mean concentrations rising from 2.73 µg/m3 (closed) to 3.45 µg/m3 (open), thus reducing the apparent benefit of air purifiers. These findings underscore the complex interplay between mechanical purification and occupant-controlled ventilation, highlighting the need to adapt indoor air quality (IAQ) strategies to both seasonal and behavioral factors in educational settings. Full article
(This article belongs to the Special Issue Sustainability and Indoor Environmental Quality)
Show Figures

18 pages, 1289 KiB  
Article
Novel Film-Forming Spray: Advancing Shelf Life Extension and Post-Harvest Loss Reduction in Eggs
by Nagesh Sonale, Rokade J. Jaydip, Akhilesh Kumar, Monika Madheswaran, Rohit Kumar, Prasad Wadajkar and Ashok Kumar Tiwari
Polymers 2025, 17(15), 2142; https://doi.org/10.3390/polym17152142 - 5 Aug 2025
Viewed by 28
Abstract
This study explores the development of a topical film-forming spray infused with phytobiotic herbs to extend egg shelf life and maintain its quality. Unlike traditional surface treatments, film-forming sprays provide uniform drug distribution, better bioavailability, effective CO2 retention by sealing pores, and [...] Read more.
This study explores the development of a topical film-forming spray infused with phytobiotic herbs to extend egg shelf life and maintain its quality. Unlike traditional surface treatments, film-forming sprays provide uniform drug distribution, better bioavailability, effective CO2 retention by sealing pores, and antibacterial effects. The spray includes a polymer to encapsulate phytoconstituents and form the film. The resulting film is highly water-resistant, glossy, transparent, and dries within two minutes. SEM analysis showed a fine, uniform morphology, while zeta analysis revealed a negative potential of −0.342 mV and conductivity of 0.390 mS/cm, indicating stable dispersion. The spray’s effectiveness was tested on 640 chicken eggs stored at varying temperatures. Eggs treated and kept at 2–8 °C showed the best results, with smaller air cells, higher specific gravity, and superior quality indicators such as pH, albumen weight, albumen height and index, Haugh unit, yolk weight, and yolk index. Additionally, the spray significantly reduced microbial load, including total plate count and E. coli. Eggs stored at 28 °C remained safe for 24–30 days, while those at 2–8 °C lasted over 42 days. This innovative film-forming spray offers a promising approach for preserving internal and external egg quality during storage. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

25 pages, 2973 KiB  
Article
Application of a DPSIR-Based Causal Framework for Sustainable Urban Riparian Forests: Insights from Text Mining and a Case Study in Seoul
by Taeheon Choi, Sangin Park and Joonsoon Kim
Forests 2025, 16(8), 1276; https://doi.org/10.3390/f16081276 - 4 Aug 2025
Viewed by 171
Abstract
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and [...] Read more.
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and sentence classification to 1001 abstracts from previous studies, structured within the DPSIR (Driver–Pressure–State–Impact–Response) model. The analysis identified six dominant thematic clusters—water quality, ecosystem services, basin and land use management, climate-related stressors, anthropogenic impacts, and greenhouse gas emissions—which reflect the multifaceted concerns surrounding urban riparian forest research. These themes were synthesized into a structured causal model that illustrates how urbanization, land use, and pollution contribute to ecological degradation, while also suggesting potential restoration pathways. To validate its applicability, the framework was applied to four major urban streams in Seoul, where indicator-based analysis and correlation mapping revealed meaningful linkages among urban drivers, biodiversity, air quality, and civic engagement. Ultimately, by integrating large-scale text mining with causal inference modeling, this study offers a transferable approach to support adaptive planning and evidence-based decision-making under the uncertainties posed by climate change. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

25 pages, 1105 KiB  
Review
Review and Decision-Making Tree for Methods to Balance Indoor Environmental Comfort and Energy Conservation During Building Operation
by Shan Lin, Yu Zhang, Xuanjiang Chen, Chengzhi Pan, Xianjun Dong, Xiang Xie and Long Chen
Sustainability 2025, 17(15), 7016; https://doi.org/10.3390/su17157016 - 1 Aug 2025
Viewed by 276
Abstract
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it [...] Read more.
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it challenging to identify the most suitable methods that simultaneously achieve both comfort and efficiency goals. Existing studies often lack a systematic framework that supports integrated decision-making under comfort constraints. This research aims to address this gap by proposing a decision-making tree for selecting energy conservation methods during building operation with an explicit consideration of indoor environmental comfort. A comprehensive literature review is conducted to identify four main energy-consuming components during building operation: the building envelope, HVAC systems, lighting systems, and plug loads and appliances. Three key comfort indicators—thermal comfort, lighting comfort, and air quality comfort—are defined, and energy conservation methods are categorized into three strategic groups: passive strategies, control optimization strategies, and behavioural intervention strategies. Each method is assessed using a defined set of evaluation criteria. Subsequently, a questionnaire survey is administered for the calibration of the decision tree, incorporating stakeholder preferences and expert judgement. The findings contribute to the advancement of understanding regarding the co-optimization of energy conservation and occupant comfort in building operations. Full article
(This article belongs to the Special Issue Novel Technologies and Digital Design in Smart Construction)
Show Figures

Figure 1

18 pages, 2865 KiB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 (registering DOI) - 1 Aug 2025
Viewed by 215
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

18 pages, 4489 KiB  
Article
Influence of Regional PM2.5 Sources on Air Quality: A Network-Based Spatiotemporal Analysis in Northern Thailand
by Khuanchanok Chaichana, Supanut Chaidee, Sayan Panma, Nattakorn Sukantamala, Neda Peyrone and Anchalee Khemphet
Mathematics 2025, 13(15), 2468; https://doi.org/10.3390/math13152468 - 31 Jul 2025
Viewed by 255
Abstract
Northern Thailand frequently suffers from severe PM2.5 air pollution, especially during the dry season, due to agricultural burning, local emissions, and transboundary haze. Understanding how pollution moves across regions and identifying source–receptor relationships are critical for effective air quality management. This study investigated [...] Read more.
Northern Thailand frequently suffers from severe PM2.5 air pollution, especially during the dry season, due to agricultural burning, local emissions, and transboundary haze. Understanding how pollution moves across regions and identifying source–receptor relationships are critical for effective air quality management. This study investigated the spatial and temporal dynamics of PM2.5 in northern Thailand. Specifically, it explored how pollution at one monitoring station influenced concentrations at others and revealed the seasonal structure of PM2.5 transmission using network-based analysis. We developed a Python-based framework to analyze daily PM2.5 data from 2022 to 2023, selecting nine representative stations across eight provinces based on spatial clustering and shape-based criteria. Delaunay triangulation was used to define spatial connections among stations, capturing the region’s irregular geography. Cross-correlation and Granger causality were applied to identify time-lagged relationships between stations for each season. Trophic coherence analysis was used to evaluate the hierarchical structure and seasonal stability of the resulting networks. The analysis revealed seasonal patterns of PM2.5 transmission, with certain stations, particularly in Chiang Mai and Lampang, consistently acting as source nodes. Provinces such as Phayao and Phrae were frequently identified as receptors, especially during the winter and rainy seasons. Trophic coherence varied by season, with the winter network showing the highest coherence, indicating a more hierarchical but less stable structure. The rainy season exhibited the lowest coherence, reflecting greater structural stability. PM2.5 spreads through structured, seasonal pathways in northern Thailand. Network patterns vary significantly across seasons, highlighting the need for adaptive air quality strategies. This framework can help identify influential monitoring stations for early warning and support more targeted, season-specific air quality management strategies in northern Thailand. Full article
(This article belongs to the Special Issue Application of Mathematical Theory in Data Science)
Show Figures

Figure 1

26 pages, 6390 KiB  
Article
The Impact of Land Use Patterns on Nitrogen Dioxide: A Case Study of Klaipėda City and Lithuanian Resort Areas
by Aistė Andriulė, Erika Vasiliauskienė, Remigijus Dailidė and Inga Dailidienė
Sustainability 2025, 17(15), 6939; https://doi.org/10.3390/su17156939 - 30 Jul 2025
Viewed by 313
Abstract
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. [...] Read more.
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. This study addresses this by examining the spatial distribution of nitrogen dioxide (NO2) concentrations in Klaipėda’s seaport city and several inland and coastal resort towns in Lithuania. The research specifically asks how different land cover types and demographic factors affect NO2 variability and population exposure risk. Data were collected using passive sampling methods and analyzed within a GIS environment. The results revealed clear air quality differences between industrial/port zones and greener resort areas, confirmed by statistically significant associations between land cover types and pollutant levels. Based on these findings, a Land Use Pollution Pressure index (LUPP) and its population-weighted variant (PLUPP) were developed to capture demographic sensitivity. These indices provide a practical decision-support tool for sustainable urban planning, enabling the assessment of pollution risks and the forecasting of air quality changes under different land use scenarios, while contributing to local climate adaptation and urban environmental governance. Full article
(This article belongs to the Special Issue Sustainable Land Use and Management, 2nd Edition)
Show Figures

Figure 1

19 pages, 15535 KiB  
Article
Impact of Landfill Sites on Coastal Contamination Using GIS and Multivariate Analysis: A Case from Al-Qunfudhah in Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy, Naji Rikan and Hamdi M. Algarni
Minerals 2025, 15(8), 802; https://doi.org/10.3390/min15080802 - 30 Jul 2025
Viewed by 204
Abstract
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi [...] Read more.
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi Arabia, on nearby coastal sediments by identifying the concentration, distribution, and ecological risk of potentially toxic elements (PTEs) using geospatial and multivariate analysis tools. The results indicate significant accumulation of Pb, Zn, Cu, and Fe, with Pb reaching alarming levels of up to 1160 mg/kg in the landfill area, compared to 120 mg/kg in the coastal sediments. Zn contamination also exhibited substantial elevation, with values reaching 278 mg/kg in landfill soil and 157 mg/kg in coastal sediment. The enrichment factor values indicate moderate to severe enrichment for Pb (up to 73.20) and Zn (up to 6.91), confirming anthropogenic influence. The contamination factor analysis categorized Pb contamination as very high (CF > 6), suggesting significant ecological risk. Comparison with sediment quality guidelines suggest that Pb, Zn, and Cu concentrations exceeded threshold effect levels (TEL) in some samples, posing potential risks to marine organisms. The spatial distribution maps revealed pollutant migration from the landfill toward the coastal zone, emphasizing the necessity of monitoring and mitigation strategies. As the first comprehensive study on landfill-induced PTEs contamination in Al-Qunfudhah, these findings provide essential insights for environmental management and pollution control policies along the Red Sea coast. Full article
Show Figures

Figure 1

17 pages, 5022 KiB  
Article
The Impact of Elevated Printing Speeds and Filament Color on the Dimensional Precision and Tensile Properties of FDM-Printed PLA Specimens
by Deian Dorel Ardeljan, Doina Frunzaverde, Vasile Cojocaru, Raul Rusalin Turiac, Nicoleta Bacescu, Costel Relu Ciubotariu and Gabriela Marginean
Polymers 2025, 17(15), 2090; https://doi.org/10.3390/polym17152090 - 30 Jul 2025
Viewed by 267
Abstract
This study examines the effect of elevated printing speeds (100–600 mm/s) on the dimensional accuracy and tensile strength of PLA components fabricated via fused deposition modeling (FDM). To isolate the influence of printing speed, all other parameters were kept constant, and two filament [...] Read more.
This study examines the effect of elevated printing speeds (100–600 mm/s) on the dimensional accuracy and tensile strength of PLA components fabricated via fused deposition modeling (FDM). To isolate the influence of printing speed, all other parameters were kept constant, and two filament variants—natural (unpigmented) and black PLA—were analyzed. ISO 527-2 type 1A specimens were produced and tested for dimensional deviations and ultimate tensile strength (UTS). The results indicate that printing speed has a marked impact on both geometric precision and mechanical performance. The optimal speed of 300 mm/s provided the best compromise between dimensional accuracy and tensile strength for both filaments. At speeds below 300 mm/s, under-extrusion caused weak layer bonding and air gaps, while speeds above 300 mm/s led to over-extrusion and structural defects due to thermal stress and rapid cooling. Black PLA yielded better dimensional accuracy at higher speeds, with cross-sectional deviations between 2.76% and 5.33%, while natural PLA showed larger deviations of up to 8.63%. However, natural PLA exhibited superior tensile strength, reaching up to 46.59 MPa, with black PLA showing up to 13.16% lower UTS values. The findings emphasize the importance of speed tuning and material selection for achieving high-quality, reliable, and efficient FDM prints. Full article
Show Figures

Figure 1

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 295
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

12 pages, 1285 KiB  
Article
Investigation of Humidity Regulation and Heart Rate Variability in Indoor Environments with Larix kaempferi Wood Interiors
by Su-Yeon Lee, Yoon-Seong Chang, Chang-Deuk Eom, Oh-Won Kwon and Chun-Young Park
Appl. Sci. 2025, 15(15), 8392; https://doi.org/10.3390/app15158392 - 29 Jul 2025
Viewed by 190
Abstract
Wood, as a natural material that stores carbon, is gaining increasing attention and has potential for use in interior architectural applications. Given the long indoor stay time characteristic of modern society, it is important to scientifically understand the effects of indoor wood application [...] Read more.
Wood, as a natural material that stores carbon, is gaining increasing attention and has potential for use in interior architectural applications. Given the long indoor stay time characteristic of modern society, it is important to scientifically understand the effects of indoor wood application on the occupants. In this study, three residential buildings with an identical area and structure were constructed with different degrees of wood coverage (0%, 45%, 90%) using Larix kaempferi. Subsequently, indoor air quality (IAQ) evaluations and relative humidity measurements were conducted to assess the physical and chemical changes in each environment. The IAQ in wooden and non-wooden environments met the recommended IAQ standards established in South Korea. The results of the 8-month observation showed that, the higher the wood coverage ratio, the more the indoor humidity fluctuations were alleviated, and, in the case of the 90% wood coverage ratio condition, the humidity was maintained 5.2% lower in the summer and 10.9% higher in the winter compared to the 0% condition. To further assess the physiological responses induced by the wooden environment, the heart rate variability (HRV) was measured and compared for 26 participants exposed to each environment for two hours. In environments with a 0% and 90% degree of wood coverage, no statistically significant differences were found in the participants’ HRV indicators. But, in the group exposed to the 45% wooden environment, the results showed an increase in HRV indicators, natural logarithm of high frequency power (lnHF): 4.87 → 5.40 (p < 0.05), and standard deviation of normal-to-normal intervals (SDNN): 30.57 → 38.48 (p < 0.05), which are known indicators of parasympathetic nervous system activation. Full article
Show Figures

Figure 1

28 pages, 10432 KiB  
Review
Rapid CFD Prediction Based on Machine Learning Surrogate Model in Built Environment: A Review
by Rui Mao, Yuer Lan, Linfeng Liang, Tao Yu, Minhao Mu, Wenjun Leng and Zhengwei Long
Fluids 2025, 10(8), 193; https://doi.org/10.3390/fluids10080193 - 28 Jul 2025
Viewed by 666
Abstract
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. [...] Read more.
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. In the field of built environment research, surrogate modeling has become a key technology to connect the needs of high-fidelity CFD simulation and rapid prediction, whereas the low-dimensional nature of traditional surrogate models is unable to match the physical complexity and prediction needs of built flow fields. Therefore, combining machine learning (ML) with CFD to predict flow fields in built environments offers a promising way to increase simulation speed while maintaining reasonable accuracy. This review briefly reviews traditional surrogate models and focuses on ML-based surrogate models, especially the specific application of neural network architectures in rapidly predicting flow fields in the built environment. The review indicates that ML accelerates the three core aspects of CFD, namely mesh preprocessing, numerical solving, and post-processing visualization, in order to achieve efficient coupled CFD simulation. Although ML surrogate models still face challenges such as data availability, multi-physics field coupling, and generalization capability, the emergence of physical information-driven data enhancement techniques effectively alleviates the above problems. Meanwhile, the integration of traditional methods with ML can further enhance the comprehensive performance of surrogate models. Notably, the online ministry of trained ML models using transfer learning strategies deserves further research. These advances will provide an important basis for advancing efficient and accurate operational solutions in sustainable building design and operation. Full article
(This article belongs to the Special Issue Feature Reviews for Fluids 2025–2026)
Show Figures

Figure 1

41 pages, 1835 KiB  
Review
A Comprehensive Review of Vertical Forest Buildings: Integrating Structural, Energy, Forestry, and Occupant Comfort Aspects in Renovation Modeling
by Vachan Vanian, Theodora Fanaradelli and Theodoros Rousakis
Fibers 2025, 13(8), 101; https://doi.org/10.3390/fib13080101 - 25 Jul 2025
Viewed by 153
Abstract
This current review examines modeling approaches for renovating reinforced concrete (RC) buildings for vertical forest (VF) application, taking into account structural retrofitting, energy systems, forestry integration, and occupant comfort. The study assesses research conducted with an advanced 3D finite element analysis and the [...] Read more.
This current review examines modeling approaches for renovating reinforced concrete (RC) buildings for vertical forest (VF) application, taking into account structural retrofitting, energy systems, forestry integration, and occupant comfort. The study assesses research conducted with an advanced 3D finite element analysis and the use of retrofitting modeling techniques, including textile-reinforced mortar (TRM), fiber-reinforced polymer (FRP), seismic joints, and green concrete applications. The energy system modeling methods are reviewed, taking into account the complexity of incorporating vegetation and seasonal variations. During forestry integration, three main design parameters are identified, namely, root systems, trunks, and crowns, for their critical role in the structural stability and optimal environmental performance. The comfort models are identified evolving from static to adaptive models incorporating thermal, acoustic, visual and air quality parameters. The current review consists of more than one hundred studies indicating that the integration of natural systems to buildings requires a multidimensional and multidisciplinary approach with sophisticated systems. The findings of this review provide the basis for implementing VF models to RC buildings, while highlighting areas requiring further research and validation. Full article
(This article belongs to the Collection Review Papers of Fibers)
Show Figures

Figure 1

Back to TopTop