Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,100)

Search Parameters:
Keywords = air quality control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 966 KiB  
Article
Microclimate Modification, Evapotranspiration, Growth and Essential Oil Yield of Six Medicinal Plants Cultivated Beneath a Dynamic Agrivoltaic System in Southern Italy
by Grazia Disciglio, Antonio Stasi, Annalisa Tarantino and Laura Frabboni
Plants 2025, 14(15), 2428; https://doi.org/10.3390/plants14152428 - 5 Aug 2025
Abstract
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus [...] Read more.
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus (Pers.) Schreb. ar. ‘Aureus’), common thyme (Thymus vulgaris L.), rosemary (Salvia rosmarinus Spenn. ‘Severn seas’), mint (Mentha spicata L. ‘Moroccan’), and sage (Salvia officinalis L. subsp. Officinalis). Due to the rotating solar panels, two distinct ground zones were identified: a consistently shaded area under the panels (UP), and a partially shaded area between the panels (BP). These were compared to an adjacent full-sun control area (T). Microclimate parameters, including solar radiation, air and leaf infrared temperature, and soil temperature, were recorded throughout the cultivation season. Reference evapotranspiration (ETO) was calculated using Turc’s method, and crop evapotranspiration (ETC) was estimated with species-specific crop coefficients (KC). Results showed significantly lower microclimatic values in the UP plot compared to both BP and especially T, resulting in ETC reductions of 81.1% in UP and 13.1% in BP relative to T, an advantage in water-scarce environments. Growth and yield responses varied among species and treatment plots. Except for mint, all species showed a significant reduction in fresh biomass (40.1% to 48.8%) under the high shading of UP compared to T. However, no biomass reductions were observed in BP. Notably, essential oil yields were higher in both UP and BP plots (0.60–2.63%) compared to the T plot (0.51–1.90%). These findings demonstrate that dynamic AV systems can enhance water use efficiency and essential oil yield, offering promising opportunities for sustainable, high-quality medicinal crop production in arid and semi-arid regions. Full article
22 pages, 5033 KiB  
Article
Seasonal Variation of Air Purifier Effectiveness and Natural Ventilation Behavior: Implications for Sustainable Indoor Air Quality in London Nurseries
by Shuo Zhang, Didong Chen and Xiangyu Li
Sustainability 2025, 17(15), 7093; https://doi.org/10.3390/su17157093 - 5 Aug 2025
Abstract
This study investigates the seasonal effectiveness of high-efficiency particulate air (HEPA) purifiers and window-opening behaviors in three London nurseries, using continuous indoor and outdoor PM2.5 monitoring, window state and air purifier use, and occupant questionnaire data collected from March 2021 to February [...] Read more.
This study investigates the seasonal effectiveness of high-efficiency particulate air (HEPA) purifiers and window-opening behaviors in three London nurseries, using continuous indoor and outdoor PM2.5 monitoring, window state and air purifier use, and occupant questionnaire data collected from March 2021 to February 2022. Of the approximately 40–50 nurseries contacted, only three agreed to participate. Results show that HEPA purifiers substantially reduced indoor particulate matter (PM2.5), with the greatest effect observed during the heating season when windows remained closed for longer periods. Seasonal and behavioral analysis indicated more frequent and longer window opening in the non-heating season (windows were open 41.5% of the time on average, compared to 34.2% during the heating season) driven by both ventilation needs and heightened COVID-19 concerns. Predictive modeling identified indoor temperature as the main driver of window opening, while carbon dioxide (CO2) had a limited effect. In addition, window opening often increased indoor PM2.5 under prevailing outdoor air quality conditions, with mean concentrations rising from 2.73 µg/m3 (closed) to 3.45 µg/m3 (open), thus reducing the apparent benefit of air purifiers. These findings underscore the complex interplay between mechanical purification and occupant-controlled ventilation, highlighting the need to adapt indoor air quality (IAQ) strategies to both seasonal and behavioral factors in educational settings. Full article
(This article belongs to the Special Issue Sustainability and Indoor Environmental Quality)
Show Figures

25 pages, 1105 KiB  
Review
Review and Decision-Making Tree for Methods to Balance Indoor Environmental Comfort and Energy Conservation During Building Operation
by Shan Lin, Yu Zhang, Xuanjiang Chen, Chengzhi Pan, Xianjun Dong, Xiang Xie and Long Chen
Sustainability 2025, 17(15), 7016; https://doi.org/10.3390/su17157016 - 1 Aug 2025
Viewed by 213
Abstract
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it [...] Read more.
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it challenging to identify the most suitable methods that simultaneously achieve both comfort and efficiency goals. Existing studies often lack a systematic framework that supports integrated decision-making under comfort constraints. This research aims to address this gap by proposing a decision-making tree for selecting energy conservation methods during building operation with an explicit consideration of indoor environmental comfort. A comprehensive literature review is conducted to identify four main energy-consuming components during building operation: the building envelope, HVAC systems, lighting systems, and plug loads and appliances. Three key comfort indicators—thermal comfort, lighting comfort, and air quality comfort—are defined, and energy conservation methods are categorized into three strategic groups: passive strategies, control optimization strategies, and behavioural intervention strategies. Each method is assessed using a defined set of evaluation criteria. Subsequently, a questionnaire survey is administered for the calibration of the decision tree, incorporating stakeholder preferences and expert judgement. The findings contribute to the advancement of understanding regarding the co-optimization of energy conservation and occupant comfort in building operations. Full article
(This article belongs to the Special Issue Novel Technologies and Digital Design in Smart Construction)
Show Figures

Figure 1

15 pages, 1071 KiB  
Article
A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels
by Yumin Li, Jun Wang, Yuntong Fan, Chuchu Chen, Jaime Campos Gutiérrez, Ling Huang, Zhenxing Lin, Siyuan Li and Yu Lei
Sustainability 2025, 17(15), 6997; https://doi.org/10.3390/su17156997 - 1 Aug 2025
Viewed by 177
Abstract
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O [...] Read more.
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O3) are closely tied to both public health and long-term sustainability goals. However, traditional chemical transport models often face challenges in accurately estimating emission changes and providing timely assessments. In contrast, statistical approaches such as the difference-in-differences (DID) model utilize observational data to improve evaluation accuracy and efficiency. This study leverages the synthetic difference-in-differences (SDID) approach, which integrates the strengths of both DID and the synthetic control method (SCM), to provide a more reliable and accurate analysis of the impacts of interventions on city-level air quality. Using Shanghai’s 2022 lockdown as a case study, we compare the deweathered ozone (O3) concentration in Shanghai to a counterfactual constructed from a weighted average of cities in the Yangtze River Delta (YRD) that did not undergo lockdown. The quasi-natural experiment reveals an average increase of 4.4 μg/m3 (95% CI: 0.24–8.56) in Shanghai’s maximum daily 8 h O3 concentration attributable to the lockdown. The SDID method reduces reliance on the parallel trends assumption and improves the estimate stability through unit- and time-specific weights. Multiple robustness checks confirm the reliability of these findings, underscoring the efficacy of the SDID approach in quantitatively evaluating the causal impact of emission perturbations on air quality. This study provides credible causal evidence of the environmental impact of short-term policy interventions, highlighting the utility of SDID in informing adaptive air quality management. The findings support the development of timely, evidence-based strategies for sustainable urban governance and environmental policy design. Full article
Show Figures

Figure 1

19 pages, 4690 KiB  
Article
Immune-Redox Biomarker Responses to Short- and Long-Term Exposure to Naturally Emitted Compounds from Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa): In Vivo Study
by Hui Ma, Jiyoon Yang, Chang-Deuk Eom, Johny Bajgai, Md. Habibur Rahman, Thu Thao Pham, Haiyang Zhang, Won-Joung Hwang, Seong Hoon Goh, Bomi Kim, Cheol-Su Kim, Keon-Ho Kim and Kyu-Jae Lee
Toxics 2025, 13(8), 650; https://doi.org/10.3390/toxics13080650 - 31 Jul 2025
Viewed by 222
Abstract
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert [...] Read more.
Volatile organic compounds (VOCs) are highly volatile chemicals in natural and anthropogenic environments, significantly affecting indoor air quality. Major sources of indoor VOCs include emissions from building materials, furnishings, and consumer products. Natural wood products release VOCs, including terpenes and aldehydes, which exert diverse health effects ranging from mild respiratory irritation to severe outcomes, such as formaldehyde-induced carcinogenicity. The temporal dynamics of VOC emissions were investigated, and the toxicological and physiological effects of the VOCs emitted by two types of natural wood, Korean Red Pine (Pinus densiflora) and Japanese Cypress (Chamaecyparis obtusa), were evaluated. Using female C57BL/6 mice as an animal model, the exposure setups included phytoncides, formaldehyde, and intact wood samples over short- and long-term durations. The exposure effects were assessed using oxidative stress markers, antioxidant enzyme activity, hepatic and renal biomarkers, and inflammatory cytokine profiles. Long-term exposure to Korean Red Pine and Japanese Cypress wood VOCs did not induce significant pathological changes. Japanese Cypress exhibited more distinct benefits, including enhanced oxidative stress mitigation, reduced systemic toxicity, and lower pro-inflammatory cytokine levels compared to the negative control group, attributable to its more favorable VOC emission profile. These findings highlight the potential health and environmental benefits of natural wood VOCs and offer valuable insights for optimizing timber use, improving indoor air quality, and informing public health policies. Full article
Show Figures

Figure 1

31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 401
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

19 pages, 15535 KiB  
Article
Impact of Landfill Sites on Coastal Contamination Using GIS and Multivariate Analysis: A Case from Al-Qunfudhah in Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy, Naji Rikan and Hamdi M. Algarni
Minerals 2025, 15(8), 802; https://doi.org/10.3390/min15080802 - 30 Jul 2025
Viewed by 170
Abstract
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi [...] Read more.
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi Arabia, on nearby coastal sediments by identifying the concentration, distribution, and ecological risk of potentially toxic elements (PTEs) using geospatial and multivariate analysis tools. The results indicate significant accumulation of Pb, Zn, Cu, and Fe, with Pb reaching alarming levels of up to 1160 mg/kg in the landfill area, compared to 120 mg/kg in the coastal sediments. Zn contamination also exhibited substantial elevation, with values reaching 278 mg/kg in landfill soil and 157 mg/kg in coastal sediment. The enrichment factor values indicate moderate to severe enrichment for Pb (up to 73.20) and Zn (up to 6.91), confirming anthropogenic influence. The contamination factor analysis categorized Pb contamination as very high (CF > 6), suggesting significant ecological risk. Comparison with sediment quality guidelines suggest that Pb, Zn, and Cu concentrations exceeded threshold effect levels (TEL) in some samples, posing potential risks to marine organisms. The spatial distribution maps revealed pollutant migration from the landfill toward the coastal zone, emphasizing the necessity of monitoring and mitigation strategies. As the first comprehensive study on landfill-induced PTEs contamination in Al-Qunfudhah, these findings provide essential insights for environmental management and pollution control policies along the Red Sea coast. Full article
Show Figures

Figure 1

40 pages, 910 KiB  
Review
Impact of Indoor Air Quality, Including Thermal Conditions, in Educational Buildings on Health, Wellbeing, and Performance: A Scoping Review
by Duncan Grassie, Kaja Milczewska, Stijn Renneboog, Francesco Scuderi and Sani Dimitroulopoulou
Environments 2025, 12(8), 261; https://doi.org/10.3390/environments12080261 - 30 Jul 2025
Viewed by 437
Abstract
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences [...] Read more.
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences of poor—and benefits of good—IAQ and thermal conditions are evaluated, focusing on source control, ventilation and air purification interventions. Economic impacts of interventions in educational buildings have been evaluated to enable the assessment of tangible building-related costs and savings, alongside less easily quantifiable improvements in educational attainment and reduced healthcare. Key recommendations are provided to assist decision makers in pathways to provide clean air, at an optimal temperature for students’ learning and health outcomes. Although the role of educational buildings can be challenging to isolate from other socio-economic confounders, secondary short- and long-term impacts on attainment and absenteeism have been demonstrated from the health effects associated with various pollutants. Sometimes overlooked, source control and repairing existing damage can be important cost-effective methods in minimising generation and preventing ingress of pollutants. Existing ventilation standards are often not met, even when mechanical and hybrid ventilation systems are already in place, but can often be achieved with a fraction of a typical school budget through operational and maintenance improvements, and small-scale air-cleaning and ventilation technologies, where necessary. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

26 pages, 11108 KiB  
Article
Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage
by Priscila Marlys Sá Rivas, Fernando Bonifácio-Anacleto, Ivan Schuster, Carlos Alberto Martinez and Ana Lilia Alzate-Marin
Genes 2025, 16(8), 913; https://doi.org/10.3390/genes16080913 (registering DOI) - 30 Jul 2025
Viewed by 297
Abstract
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to [...] Read more.
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to warming and elevated CO2 on progeny physiology, genetic diversity, and population structure in Stylosanthes capitata, a resilient forage legume native to Brazil. Methods: Maternal plants were cultivated under controlled treatments, including ambient conditions (control), elevated CO2 at 600 ppm (eCO2), elevated temperature at +2 °C (eTE), and their combined exposure (eTEeCO2), within a Trop-T-FACE field facility (Temperature Free-Air Controlled Enhancement and Free-Air Carbon Dioxide Enrichment). Seed traits (seeds per inflorescence, hundred-seed mass, abortion, non-viable seeds, coat color, germination at 32, 40, 71 weeks) and abnormal seedling rates were quantified. Genetic diversity metrics included the average (A) and effective (Ae) number of alleles, observed (Ho) and expected (He) heterozygosity, and inbreeding coefficient (Fis). Population structure was assessed using Principal Coordinates Analysis (PCoA), Analysis of Molecular Variance (AMOVA), number of migrants per generation (Nm), and genetic differentiation index (Fst). Two- and three-way Analysis of Variance (ANOVA) were used to evaluate factor effects. Results: Compared to control conditions, warming increased seeds per inflorescence (+46%), reduced abortion (−42.9%), non-viable seeds (−57%), and altered coat color. The germination speed index (GSI +23.5%) and germination rate (Gr +11%) improved with warming; combined treatments decreased germination time (GT −9.6%). Storage preserved germination traits, with warming enhancing performance over time and reducing abnormal seedlings (−54.5%). Conversely, elevated CO2 shortened GSI in late stages, impairing germination efficiency. Warming reduced Ae (−35%), He (−20%), and raised Fis (maternal 0.50, progeny 0.58), consistent with the species’ mixed mating system; A and Ho were unaffected. Allele frequency shifts suggested selective pressure under eTE. Warming induced slight structure in PCoA, and AMOVA detected 1% (maternal) and 9% (progeny) variation. Fst = 0.06 and Nm = 3.8 imply environmental influence without isolation. Conclusions: Warming significantly shapes seed quality, reproductive success, and genetic diversity in S. capitata. Improved reproduction and germination suggest adaptive advantages, but higher inbreeding and reduced diversity may constrain long-term resilience. The findings underscore the need for genetic monitoring and broader genetic bases in cultivars confronting environmental stressors. Full article
(This article belongs to the Special Issue Genetics and Breeding of Forage)
Show Figures

Graphical abstract

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 232
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

18 pages, 11346 KiB  
Article
Comparative CFD Analysis Using RANS and LES Models for NOx Dispersion in Urban Streets with Active Public Interventions in Medellín, Colombia
by Juan Felipe Rodríguez Berrio, Fabian Andres Castaño Usuga, Mauricio Andres Correa, Francisco Rodríguez Cortes and Julio Cesar Saldarriaga
Sustainability 2025, 17(15), 6872; https://doi.org/10.3390/su17156872 - 29 Jul 2025
Viewed by 193
Abstract
The Latin American and Caribbean (LAC) region faces persistent challenges of inequality, climate change vulnerability, and deteriorating air quality. The Aburrá Valley, where Medellín is located, is a narrow tropical valley with complex topography, strong thermal inversions, and unstable atmospheric conditions, all of [...] Read more.
The Latin American and Caribbean (LAC) region faces persistent challenges of inequality, climate change vulnerability, and deteriorating air quality. The Aburrá Valley, where Medellín is located, is a narrow tropical valley with complex topography, strong thermal inversions, and unstable atmospheric conditions, all of which exacerbate the accumulation of pollutants. In Medellín, NO2 concentrations have remained nearly unchanged over the past eight years, consistently approaching critical thresholds, despite the implementation of air quality control strategies. These persistent high concentrations are closely linked to the variability of the atmospheric boundary layer (ABL) and are often intensified by prolonged dry periods. This study focuses on a representative street canyon in Medellín that has undergone recent urban interventions, including the construction of new public spaces and pedestrian areas, without explicitly considering their impact on NOx dispersion. Using Computational Fluid Dynamics (CFD) simulations, this work evaluates the influence of urban morphology on NOx accumulation. The results reveal that areas with high Aspect Ratios (AR > 0.65) and dense vegetation exhibit reduced wind speeds at the pedestrian level—up to 40% lower compared to open zones—and higher NO2 concentrations, with maximum simulated values exceeding 50 μg/m3. This study demonstrates that the design of pedestrian corridors in complex urban environments like Medellín can unintentionally create pollutant accumulation zones, underscoring the importance of integrating air quality considerations into urban planning. The findings provide actionable insights for policymakers, emphasizing the need for comprehensive modeling and field validation to ensure healthier urban spaces in cities affected by persistent air quality issues. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

24 pages, 3726 KiB  
Article
Telemedicine-Supported CPAP Therapy in Patients with Obstructive Sleep Apnea: Association with Treatment Adherence and Clinical Outcomes
by Norbert Wellmann, Versavia Maria Ancusa, Monica Steluta Marc, Ana Adriana Trusculescu, Camelia Corina Pescaru, Flavia Gabriela Martis, Ioana Ciortea, Alexandru Florian Crisan, Adelina Maritescu, Madalina Alexandra Balica and Ovidiu Fira-Mladinescu
J. Clin. Med. 2025, 14(15), 5339; https://doi.org/10.3390/jcm14155339 - 29 Jul 2025
Viewed by 205
Abstract
Background/Objectives: Obstructive sleep apnea (OSA) is a highly prevalent disorder that significantly impacts quality of life and daily functioning. While continuous positive airway pressure (CPAP) therapy is effective, long-term adherence remains a challenge. This single-arm observational study aimed to evaluate clinical outcomes and [...] Read more.
Background/Objectives: Obstructive sleep apnea (OSA) is a highly prevalent disorder that significantly impacts quality of life and daily functioning. While continuous positive airway pressure (CPAP) therapy is effective, long-term adherence remains a challenge. This single-arm observational study aimed to evaluate clinical outcomes and adherence patterns during telemedicine-supported CPAP therapy and identify distinct phenotypic response clusters in Romanian patients with OSA. Methods: This prospective observational study included 86 adults diagnosed with OSA, treated with ResMed Auto CPAP devices at “Victor Babeș” University Hospital in Timișoara, Romania. All patients were remotely monitored via the AirView™ platform and received monthly telephone interventions to promote adherence when necessary. Clinical outcomes were assessed through objective telemonitoring data. K-means clustering and t-distributed stochastic neighbor embedding (t-SNE) were employed to explore phenotypic response patterns. Results: During telemedicine-supported CPAP therapy, significant clinical improvements were observed. The apnea–hypopnea index (AHI) decreased from 42.0 ± 21.1 to 1.9 ± 1.3 events/hour. CPAP adherence improved from 75.5% to 90.5% over six months. Average daily usage increased from 348.4 ± 85.8 to 384.2 ± 65.2 min. However, post hoc analysis revealed significant concerns about the validity of self-reported psychological improvements. Self-esteem changes showed negligible correlation with objective clinical measures (r < 0.2, all p > 0.1), with only 3.3% of variance being explained by measurable therapeutic factors (R2 = 0.033). Clustering analysis identified four distinct adherence and outcome profiles, yet paradoxically, patients with lower adherence showed greater self-esteem improvements, contradicting therapeutic causation. Conclusions: Telemedicine-supported CPAP therapy with structured monthly interventions was associated with substantial clinical improvements, including excellent AHI reduction (22-fold) and high adherence rates (+15% after 6 months). Data-driven phenotyping successfully identified distinct patient response profiles, supporting personalized management approaches. However, the single-arm design prevents definitive attribution of improvements to telemonitoring versus natural adaptation or placebo effects. Self-reported psychological outcomes showed concerning patterns suggesting predominant placebo responses rather than therapeutic benefits. While the overall findings demonstrate the potential value of structured telemonitoring for objective CPAP outcomes, controlled trials are essential to establishing true therapeutic efficacy and distinguishing intervention effects from measurement bias. Full article
(This article belongs to the Special Issue Advances in Pulmonary Disease Management and Innovation in Treatment)
Show Figures

Figure 1

28 pages, 10432 KiB  
Review
Rapid CFD Prediction Based on Machine Learning Surrogate Model in Built Environment: A Review
by Rui Mao, Yuer Lan, Linfeng Liang, Tao Yu, Minhao Mu, Wenjun Leng and Zhengwei Long
Fluids 2025, 10(8), 193; https://doi.org/10.3390/fluids10080193 - 28 Jul 2025
Viewed by 577
Abstract
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. [...] Read more.
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. In the field of built environment research, surrogate modeling has become a key technology to connect the needs of high-fidelity CFD simulation and rapid prediction, whereas the low-dimensional nature of traditional surrogate models is unable to match the physical complexity and prediction needs of built flow fields. Therefore, combining machine learning (ML) with CFD to predict flow fields in built environments offers a promising way to increase simulation speed while maintaining reasonable accuracy. This review briefly reviews traditional surrogate models and focuses on ML-based surrogate models, especially the specific application of neural network architectures in rapidly predicting flow fields in the built environment. The review indicates that ML accelerates the three core aspects of CFD, namely mesh preprocessing, numerical solving, and post-processing visualization, in order to achieve efficient coupled CFD simulation. Although ML surrogate models still face challenges such as data availability, multi-physics field coupling, and generalization capability, the emergence of physical information-driven data enhancement techniques effectively alleviates the above problems. Meanwhile, the integration of traditional methods with ML can further enhance the comprehensive performance of surrogate models. Notably, the online ministry of trained ML models using transfer learning strategies deserves further research. These advances will provide an important basis for advancing efficient and accurate operational solutions in sustainable building design and operation. Full article
(This article belongs to the Special Issue Feature Reviews for Fluids 2025–2026)
Show Figures

Figure 1

17 pages, 3579 KiB  
Article
Source Apportionment of PM2.5 in a Chinese Megacity During Special Periods: Unveiling Impacts of COVID-19 and Spring Festival
by Kejin Tang, Xing Peng, Yuqi Liu, Sizhe Liu, Shihai Tang, Jiang Wu, Shaoxia Wang, Tingting Xie and Tingting Yao
Atmosphere 2025, 16(8), 908; https://doi.org/10.3390/atmos16080908 - 26 Jul 2025
Viewed by 229
Abstract
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the [...] Read more.
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the long-term impact of coronavirus disease 2019 and the short-term impact of the Spring Festival on PM2.5 levels. The measured average PM2.5 concentration during the research period was 22.5 μg/m3, with organic matter (OM) being the dominant component. Vehicle emissions, secondary sulfate, secondary nitrate, and secondary organic aerosol were identified by receptor model as the primary sources of PM2.5 during the observational periods. The pandemic led to a decrease of between 30% and 50% in the contributions of most anthropogenic sources in 2022 compared to 2021, followed by a rebound. PM2.5 levels in January–March 2024 dropped by 1.4 μg/m3 compared to 2021, mainly due to reduced vehicle emissions, secondary sulfate, fugitive dust, biomass burning, and industrial emissions, reflecting Shenzhen’s and nearby cities’ effective control measures. However, secondary nitrate and fireworks-related emissions rose significantly. During the Spring Festival, PM2.5 concentrations were 23% lower than before the festival, but the contributions of fireworks burning exhibited a marked increase in both 2023 and 2024. Specifically, during intense peak events, fireworks burning triggered sharp, short-term spikes in characteristic metal concentrations, accounting for over 50% of PM2.5 on those peak days. In the future, strict control over vehicle emissions and enhanced management of fireworks burning during special periods like the Spring Festival are necessary to reduce PM2.5 concentration and improve air quality. Full article
(This article belongs to the Special Issue New Insights in Air Quality Assessment: Forecasting and Monitoring)
Show Figures

Figure 1

22 pages, 4190 KiB  
Article
Calibration of Building Performance Simulations for Zero Carbon Ready Homes: Two Open Access Case Studies Under Controlled Conditions
by Christopher Tsang, Richard Fitton, Xinyi Zhang, Grant Henshaw, Heidi Paola Díaz-Hernández, David Farmer, David Allinson, Anestis Sitmalidis, Mohamed Dgali, Ljubomir Jankovic and William Swan
Sustainability 2025, 17(15), 6673; https://doi.org/10.3390/su17156673 - 22 Jul 2025
Viewed by 372
Abstract
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. [...] Read more.
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. The two case study homes, “The Future Home” and “eHome2”, were constructed within the University of Salford’s Energy House 2.0, and high-quality data were collected over eight days. The calibration process involved updating U-values, air permeability rates, and modelling refinements, such as roof ventilation, ground temperatures, and sub-floor void exchange rates, set as boundary conditions. Results demonstrated a high level of accuracy, with performance gaps in whole-house heat transfer coefficient reduced to 0.5% for “The Future Home” and 0.6% for “eHome2”, falling within aggregate heat loss test uncertainty ranges by a significant amount. The study highlights the improved accuracy of calibrated dynamic thermal simulation models, compared to results from the steady-state Standard Assessment Procedure model. By providing openly accessible calibrated models and a clearly defined methodology, this research presents valuable resources for future building performance modelling studies. The findings support the UK’s transition to dynamic modelling approaches proposed in the recently introduced Home Energy Model approach, contributing to improved prediction of energy efficiency and aligning with goals for zero carbon ready and sustainable housing development. Full article
Show Figures

Figure 1

Back to TopTop