Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (742)

Search Parameters:
Keywords = air flow transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2179 KiB  
Article
Low-Speed Airfoil Optimization for Improved Off-Design Performance
by Guilherme F. S. Pangas and Pedro V. Gamboa
Aerospace 2025, 12(8), 685; https://doi.org/10.3390/aerospace12080685 - 31 Jul 2025
Viewed by 150
Abstract
The advancement of computational capabilities has allowed for more efficient airfoil analysis and design. Consequently, it has become possible to expand the design space and explore new geometries and configurations. However, the current state of development does not yet support a fully automated [...] Read more.
The advancement of computational capabilities has allowed for more efficient airfoil analysis and design. Consequently, it has become possible to expand the design space and explore new geometries and configurations. However, the current state of development does not yet support a fully automated optimization process. Instead, the newly introduced capabilities have effectively transferred the previously trial-and-error-based approach used in geometry design to the formulation of the optimization problem. The goal of this work is to study the formulation of an optimization problem and propose a new methodology that better portrays the aircraft’s requirements for airfoil performance. The new objective function, added to an existing tool, estimates the main performance parameters of an aircraft for the Air Cargo Challenge (ACC) 2022 competition using a method that extrapolates the characteristics of the airfoil into the aircraft’s performance. In addition, the traditional relative aerodynamic property improvements, in this work, are coupled with the performance results to smooth the polar curve of the resulting airfoil. The optimization algorithm is based on the free-gradient technique Particle Swarm Optimization (PSO), using the B-spline parametrization and a coupled viscous/inviscid interaction method as the flow solver. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

13 pages, 3081 KiB  
Review
Surface Air-Cooled Oil Coolers (SACOCs) in Turbofan Engines: A Comprehensive Review of Design, Performance, and Optimization
by Wiktor Hoffmann and Magda Joachimiak
Energies 2025, 18(15), 4052; https://doi.org/10.3390/en18154052 - 30 Jul 2025
Viewed by 242
Abstract
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This [...] Read more.
Surface Air-Cooled Oil Coolers (SACOCs) can become a critical component in managing the increasing thermal loads of modern turbofan engines. Installed within the bypass duct, SACOCs utilize high-mass flow bypass air for convective heat rejection, reducing reliance on traditional Fuel-Oil Heat Exchangers. This review explores SACOC design principles, integration challenges, aerodynamic impacts, and performance trade-offs. Emphasis is placed on the balance between thermal efficiency and aerodynamic penalties such as pressure drop and flow distortion. Experimental techniques, including wind tunnel testing, are discussed alongside numerical methods, and Conjugate Heat Transfer modeling. Presented studies mostly demonstrate the impact of fin geometry and placement on both heat transfer and drag. Optimization strategies and Additive Manufacturing techniques are also covered. SACOCs are positioned to play a central role in future propulsion systems, especially in ultra-high bypass ratio and hybrid-electric architectures, where traditional cooling strategies are insufficient. This review highlights current advancements, identifies limitations, and outlines research directions to enhance SACOC efficiency in aerospace applications. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

28 pages, 10432 KiB  
Review
Rapid CFD Prediction Based on Machine Learning Surrogate Model in Built Environment: A Review
by Rui Mao, Yuer Lan, Linfeng Liang, Tao Yu, Minhao Mu, Wenjun Leng and Zhengwei Long
Fluids 2025, 10(8), 193; https://doi.org/10.3390/fluids10080193 - 28 Jul 2025
Viewed by 577
Abstract
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. [...] Read more.
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. In the field of built environment research, surrogate modeling has become a key technology to connect the needs of high-fidelity CFD simulation and rapid prediction, whereas the low-dimensional nature of traditional surrogate models is unable to match the physical complexity and prediction needs of built flow fields. Therefore, combining machine learning (ML) with CFD to predict flow fields in built environments offers a promising way to increase simulation speed while maintaining reasonable accuracy. This review briefly reviews traditional surrogate models and focuses on ML-based surrogate models, especially the specific application of neural network architectures in rapidly predicting flow fields in the built environment. The review indicates that ML accelerates the three core aspects of CFD, namely mesh preprocessing, numerical solving, and post-processing visualization, in order to achieve efficient coupled CFD simulation. Although ML surrogate models still face challenges such as data availability, multi-physics field coupling, and generalization capability, the emergence of physical information-driven data enhancement techniques effectively alleviates the above problems. Meanwhile, the integration of traditional methods with ML can further enhance the comprehensive performance of surrogate models. Notably, the online ministry of trained ML models using transfer learning strategies deserves further research. These advances will provide an important basis for advancing efficient and accurate operational solutions in sustainable building design and operation. Full article
(This article belongs to the Special Issue Feature Reviews for Fluids 2025–2026)
Show Figures

Figure 1

32 pages, 3675 KiB  
Article
Gibbs Quantum Fields Computed by Action Mechanics Recycle Emissions Absorbed by Greenhouse Gases, Optimising the Elevation of the Troposphere and Surface Temperature Using the Virial Theorem
by Ivan R. Kennedy, Migdat Hodzic and Angus N. Crossan
Thermo 2025, 5(3), 25; https://doi.org/10.3390/thermo5030025 - 22 Jul 2025
Viewed by 227
Abstract
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow [...] Read more.
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow with coupled work processes in the atmosphere? Using statistical action mechanics to describe Carnot’s cycle, the maximum rate of work possible can be integrated for the working gases as equal to variations in the absolute Gibbs energy, estimated as sustaining field quanta consistent with Carnot’s definition of heat as caloric. His treatise of 1824 even gave equations expressing work potential as a function of differences in temperature and the logarithm of the change in density and volume. Second, Carnot’s mechanical principle of cooling caused by gas dilation or warming by compression can be applied to tropospheric heat–work cycles in anticyclones and cyclones. Third, the virial theorem of Lagrange and Clausius based on least action predicts a more accurate temperature gradient with altitude near 6.5–6.9 °C per km, requiring that the Gibbs rotational quantum energies of gas molecules exchange reversibly with gravitational potential. This predicts a diminished role for the radiative transfer of energy from the atmosphere to the surface, in contrast to the Trenberth global radiative budget of ≈330 watts per square metre as downwelling radiation. The spectral absorptivity of greenhouse gas for surface radiation into the troposphere enables thermal recycling, sustaining air masses in Lagrangian action. This obviates the current paradigm of cooling with altitude by adiabatic expansion. The virial-action theorem must also control non-reversible heat–work Carnot cycles, with turbulent friction raising the surface temperature. Dissipative surface warming raises the surface pressure by heating, sustaining the weight of the atmosphere to varying altitudes according to latitude and seasonal angles of insolation. New predictions for experimental testing are now emerging from this virial-action hypothesis for climate, linking vortical energy potential with convective and turbulent exchanges of work and heat, proposed as the efficient cause setting the thermal temperature of surface materials. Full article
Show Figures

Figure 1

25 pages, 4844 KiB  
Article
Numerical Investigations and Optimized Design of the Active Cooling Performance with Phase Change for Aircraft Rudder Shaft
by Xiangchun Sun, Kaiyan Jin, Kuan Zhao, Hexuan Zhang, Guice Yao and Dongsheng Wen
Appl. Sci. 2025, 15(14), 8105; https://doi.org/10.3390/app15148105 - 21 Jul 2025
Viewed by 224
Abstract
During hypersonic flight, the air rudder shaft can undergo huge aerodynamic heating load, where it is necessary to design the thermal protection system of the air rudder shaft. Aiming to prevent the rudder shaft from thermal failure due to the heat endurance limit [...] Read more.
During hypersonic flight, the air rudder shaft can undergo huge aerodynamic heating load, where it is necessary to design the thermal protection system of the air rudder shaft. Aiming to prevent the rudder shaft from thermal failure due to the heat endurance limit of materials, numerical investigations are conducted systemically to predict the active cooling performance of the rudder shaft with liquid water considering phase change. The validation of the numerical simulation method considering phase-change heat transfer is further investigated by experiments. The effect of coolant injection flow velocity on the active cooling performance is further analyzed for both the steady state and transient state. Finally, to achieve better cooling performance, an optimized design of the cooling channels is performed in this work. The results of the transient numerical simulation show that, employing the initial cooling structures, it may undergo the heat transfer deterioration phenomenon under the coolant injection velocity below 0.2 m/s. For the rudder shaft with an optimized structure, the heat transfer deterioration can be significantly reduced, which significantly reduces the risk of thermal failure. Moreover, the total pressure drop of the optimized rudder shaft under the same coolant injection condition can be reduced by about 19% compared with the initial structure. This study provides a valuable contribution to the thermal protection performance for the rudder shaft, as a key component of aircraft under the aero heating process. Full article
Show Figures

Figure 1

23 pages, 9064 KiB  
Article
A Computational Thermo-Fluid Dynamics Simulation of Slot Jet Impingement Using a Generalized Two-Equation Turbulence Model
by Antonio Mezzacapo, Rossella D’Addio and Giuliano De Stefano
Energies 2025, 18(14), 3862; https://doi.org/10.3390/en18143862 - 20 Jul 2025
Viewed by 990
Abstract
In this study, a computational thermo-fluid dynamics simulation of a wide-slot jet impingement heating process is performed. The present configuration consists of a turbulent incompressible air jet impinging orthogonally on an isothermal cold plate at a Reynolds number of around 11,000. The two-dimensional [...] Read more.
In this study, a computational thermo-fluid dynamics simulation of a wide-slot jet impingement heating process is performed. The present configuration consists of a turbulent incompressible air jet impinging orthogonally on an isothermal cold plate at a Reynolds number of around 11,000. The two-dimensional mean turbulent flow field is numerically predicted by solving Reynolds-averaged Navier–Stokes (RANS) equations, where the two-equation eddy viscosity k-ω model is utilized for turbulence closure. As the commonly used shear stress transport variant overpredicts heat transfer at the plate due to excessive turbulent diffusion, the recently developed generalized k-ω (GEKO) model is considered for the present analysis, where the primary model coefficients are suitably tuned. Through a comparative analysis of the various solutions against one another, in addition to reference experimental and numerical data, the effectiveness of the generalized procedure in predicting both the jet flow characteristics and the heat transfer at the plate is thoroughly evaluated, while determining the optimal set of model parameters. By improving accuracy within the RANS framework, the importance of model adaptability and parameter tuning for this specific fluid engineering application is demonstrated. This study offers valuable insights for improving predictive capability in turbulent jet simulations with broad engineering implications, particularly for industrial heating or cooling systems relying on wide-slot jet impingement. Full article
(This article belongs to the Special Issue Computational Fluids Dynamics in Energy Conversion and Heat Transfer)
Show Figures

Figure 1

22 pages, 2359 KiB  
Article
Investigation of the Charging and Discharging Cycle of Packed-Bed Storage Tanks for Energy Storage Systems: A Numerical Study
by Ayah Marwan Rabi’, Jovana Radulovic and James M. Buick
Thermo 2025, 5(3), 24; https://doi.org/10.3390/thermo5030024 - 18 Jul 2025
Viewed by 198
Abstract
In recent years, packed-bed systems have emerged as an attractive design for thermal energy storage systems due to their high thermal efficiency and economic feasibility. As integral components of numerous large-scale applications systems, packed-bed thermal energy stores can be successfully paired with renewable [...] Read more.
In recent years, packed-bed systems have emerged as an attractive design for thermal energy storage systems due to their high thermal efficiency and economic feasibility. As integral components of numerous large-scale applications systems, packed-bed thermal energy stores can be successfully paired with renewable energy and waste heat to improve energy efficiency. An analysis of the thermal performances of two packed beds (hot and cold) during six-hour charging and discharging cycles has been conducted in this paper using COMSOL Multiphysics software, utilizing the optimal design parameters that have been determined in previous studies, including porosity (0.2), particle diameters (4 mm) for porous media, air as a heat transfer fluid, magnesia as a storage medium, mass flow rate (13.7 kg/s), and aspect ratio (1). The performance has been evaluated during both the charging and discharging cycles, in terms of the system’s capacity factor, the energy stored, and the thermal power, in order to understand the system’s performance and draw operational recommendations. Based on the results, operating the hot/cold storage in the range of 20–80% of the full charge was found to be a suitable range for the packed-bed system, ensuring that the charging/discharging power remains within 80% of the maximum. Full article
Show Figures

Figure 1

14 pages, 3515 KiB  
Article
Analysis of Heat Transfer and Fluid Flow in a Solar Air Heater with Sequentially Placed Rectangular Obstacles on the Fin Surface
by Byeong-Hwa An, Kwang-Am Moon, Seong-Bhin Kim and Hwi-Ung Choi
Energies 2025, 18(14), 3811; https://doi.org/10.3390/en18143811 - 17 Jul 2025
Viewed by 246
Abstract
A solar air heater (SAH) converts solar energy into heated air without causing environmental pollution. It features a low initial cost and easy maintenance due to its simple design. However, owing to air’s poor thermal conductivity, its thermal efficiency is relatively low compared [...] Read more.
A solar air heater (SAH) converts solar energy into heated air without causing environmental pollution. It features a low initial cost and easy maintenance due to its simple design. However, owing to air’s poor thermal conductivity, its thermal efficiency is relatively low compared to that of other solar systems. To improve its thermal performance, previous studies have aimed at either enlarging the heat transfer surface or increasing the convective heat transfer coefficient. In this study, a novel SAH with fins and sequentially placed obstacles on the fin surface—designed to achieve both surface extension through a finned channel and enhancement of the heat transfer coefficient via the obstacles—was investigated using computational fluid dynamics analysis. The results confirmed that the obstacles enhanced heat transfer performance by up to 2.602 times in the finned channel. However, the obstacles also caused a pressure loss. Therefore, the thermo-hydraulic performance was discussed, and it was concluded that the obstacles with a relative height of 0.12 and a relative pitch of 10 yielded the maximum THP values among the investigated conditions. Additionally, correlations for the Nusselt number and friction factor were derived and predicted the simulation values with good agreement. Full article
(This article belongs to the Special Issue Solar Energy and Resource Utilization—2nd Edition)
Show Figures

Figure 1

21 pages, 8232 KiB  
Article
Investigation of Complex ZnO-Porous Silicon Structures with Different Dimensions Obtained by Low-Temperature Synthesis
by Rashid Zhapakov, Danatbek Murzalinov, Mikhail Begunov, Tatyana Seredavina, Alena Gagarina, Yulia Spivak, Vyacheslav Moshnikov, Elena A. Dmitriyeva, Petr Osipov and Ainagul Kemelbekova
Processes 2025, 13(7), 2099; https://doi.org/10.3390/pr13072099 - 2 Jul 2025
Viewed by 378
Abstract
The study of the processes of low-temperature synthesis of one-dimensional particles, which are the basis for two- and three-dimensional structures, is relevant for materials science. The modified metal-stimulated electrochemical etching method made it possible to synthesize silicon nanowires with an average thickness of [...] Read more.
The study of the processes of low-temperature synthesis of one-dimensional particles, which are the basis for two- and three-dimensional structures, is relevant for materials science. The modified metal-stimulated electrochemical etching method made it possible to synthesize silicon nanowires with an average thickness of about 292.6 nm. Scanning electron microscopy has shown the formation of nanowires, flower-like structures, and clusters of matter after the deposition of zinc oxide on the porous surface. The hexagonal structure of ZnO crystallites was determined by X-ray diffraction spectroscopy. Studies of the initial sample by electron paramagnetic resonance (EPR) spectroscopy revealed a narrow signal in the center of the spectrum. The subtraction of the EPR spectra with a sequential increase in microwave power up to 8 mW shows the absence of saturation of the signal. This indicates an almost free flow of charges through the surface nanostructures under the influence of an external field. Heat treatment in an air atmosphere at 300 °C caused a significant increase in the intensity of the EPR spectrum. This led to an increase in the intensity of charge transfer through paramagnetic centers. Full article
Show Figures

Figure 1

18 pages, 3223 KiB  
Article
Design of a Metal Hydride Cartridge Heated by PEMFC Exhaust
by Tomoya Ezawa, Shan Miao, Koki Harano, Masami Sumita, Noboru Katayama and Kiyoshi Dowaki
Energies 2025, 18(13), 3399; https://doi.org/10.3390/en18133399 - 27 Jun 2025
Viewed by 395
Abstract
This study investigates the structure of a metal hydride (MH) cartridge as a hydrogen storage tank for small-scale fuel cells (FCs). This cartridge is designed to be stacked and used in layers, allowing flexible capacity adjustment according to demand. MH enables compact and [...] Read more.
This study investigates the structure of a metal hydride (MH) cartridge as a hydrogen storage tank for small-scale fuel cells (FCs). This cartridge is designed to be stacked and used in layers, allowing flexible capacity adjustment according to demand. MH enables compact and safe hydrogen storage for small-scale fuel cell (FC) applications due to its high energy density and low-pressure operation. However, because hydrogen desorption from MH is an endothermic reaction, an external heat supply is required for stable performance. To enhance both the heat transfer efficiency and cartridge usability, we propose a heat supply method that utilizes waste heat from an air-cooled proton-exchange membrane fuel cell (PEMFC). The proposed cartridge incorporates four cylindrical MH tanks that require uniform heat transfer. Therefore, we proposed the tank arrangements within the cartridge to minimize the non-uniformity of heat transfer distribution on the surface. The flow of exhaust air from the PEMFC into the cartridge was analyzed using computational fluid dynamics (CFD) simulations. In addition, an empirical correlation for the Nusselt number was developed to estimate the heat transfer coefficient. As a result, it was concluded that the heat utilization rate of the exhaust heat flowing into the cartridge was 13.2%. Full article
(This article belongs to the Special Issue Hydrogen Energy Storage: Materials, Methods and Perspectives)
Show Figures

Figure 1

20 pages, 4137 KiB  
Article
Numerical Simulation and Optimization of Coupled Hot-Air Anti-Icing Characteristics for a Nacelle Lip
by Ning Guan, Qiankun Zhu, Weijian Chen and Feng Chen
Aerospace 2025, 12(7), 582; https://doi.org/10.3390/aerospace12070582 - 27 Jun 2025
Viewed by 206
Abstract
This study investigates nacelle lip icing on a particular engine model, focusing on anti-icing solutions with hot air as the heating medium. By integrating numerical simulations with Latin Hypercube Sampling (LHS) and Kriging optimization methods, the most severe icing condition within the flight [...] Read more.
This study investigates nacelle lip icing on a particular engine model, focusing on anti-icing solutions with hot air as the heating medium. By integrating numerical simulations with Latin Hypercube Sampling (LHS) and Kriging optimization methods, the most severe icing condition within the flight envelope was identified and determined. Additionally, using coupled computational methods, the protective effectiveness of the proposed anti-icing structure was evaluated under these extreme conditions. Within the flight and icing envelopes, 30 distinct operating conditions were obtained using the LHS approach, and numerical simulations were conducted to model the icing conditions for each case. The calculated ice accretion served as the optimization criterion, and the Kriging optimization method was used to pinpoint the most severe icing condition within the flight envelope. The computational results indicate that under this severe condition, the ice thickness on the lip surface reaches 5.4 mm and 15.2 mm after 600 s and 1800 s, respectively, with a total ice accretion rate of 7.8 g/s, posing a significant threat to engine safety. The designed anti-icing structure can effectively provide thermal protection against this severe condition when the supply air temperature is set at 383.15 K, and the total air supply flow rate at the lip is 0.193 kg/s. Notably, the interior surface of the nacelle lip exhibits a 36.2% higher minimum convective heat transfer coefficient than the exterior surface, effectively preventing engine ice ingestion. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

26 pages, 1934 KiB  
Article
Multi-Objective Optimization of Gas Storage Compressor Units Based on NSGA-II
by Lianbin Zhao, Lilin Fan, Jun Lu, Mingmin He, Su Qian, Qingsong Wei, Guijiu Wang, Haoze Bai, Hu Zhou, Yongshuai Liu and Cheng Chang
Energies 2025, 18(13), 3377; https://doi.org/10.3390/en18133377 - 27 Jun 2025
Viewed by 337
Abstract
This study addresses the parallel operation of multiple compressor units in the gas injection process of gas storage facilities. A multi-objective optimization model based on the NSGA-II algorithm is proposed to maximize gas injection volume while minimizing energy consumption. Thermodynamic models of compressors [...] Read more.
This study addresses the parallel operation of multiple compressor units in the gas injection process of gas storage facilities. A multi-objective optimization model based on the NSGA-II algorithm is proposed to maximize gas injection volume while minimizing energy consumption. Thermodynamic models of compressors and flow–heat transfer models of air coolers are established. The influence of key factors, including inlet and outlet pressures, temperatures, and natural gas composition, on compressor performance is analyzed using the control variable method. The results indicate that the first-stage inlet pressure has the most significant impact on gas throughput, and higher compression ratios lead to increased specific energy consumption. The NSGA-II algorithm is applied to optimize compressor start–stop strategies and air cooler speed matching under high, medium, and low compression ratio conditions. This study reveals that reducing the compression ratio significantly enhances the energy-saving potential. Under the investigated conditions, adjusting air cooler speed can achieve approximately 2% energy savings at high compression ratios, whereas at low compression ratios, the energy-saving potential reaches up to 8%. This research provides theoretical guidance and technical support for the efficient operation of gas storage compressor units. Full article
Show Figures

Figure 1

23 pages, 5565 KiB  
Article
Advanced Numerical Analysis of Heat Transfer in Medium and Large-Scale Heat Sinks Using Cascaded Lattice Boltzmann Method
by Fatima Zahra Laktaoui Amine, Mustapha El Alami, Elalami Semma, Hamza Faraji, Ayoub Gounni and Amina Mourid
Appl. Sci. 2025, 15(13), 7205; https://doi.org/10.3390/app15137205 - 26 Jun 2025
Viewed by 310
Abstract
Medium- and large-scale heat sinks are critical for thermal load management in high-performance systems. However, their high heat flux densities and limited space complicate cooling, leading to risks of overheating, performance degradation, or failure. This study employs the Cascaded Lattice Boltzmann Method (CLBM) [...] Read more.
Medium- and large-scale heat sinks are critical for thermal load management in high-performance systems. However, their high heat flux densities and limited space complicate cooling, leading to risks of overheating, performance degradation, or failure. This study employs the Cascaded Lattice Boltzmann Method (CLBM) to enhance their thermal performance. This numerical approach is known for being stable, accurate when dealing with complex boundaries, and efficient when computing in parallel. The numerical code was validated against a benchmark configuration and an experimental setup to ensure its reliability and accuracy. While previous studies have explored mixed convection in cavities or heat sinks, few have addressed configurations involving side air injection and boundary conditions periodicity in the transition-to-turbulent regime. This gap limits the understanding of realistic cooling strategies for compact systems. Focusing on mixed convection in the transition-to-turbulent regime, where buoyancy and forced convection interact, the study investigates the impact of Rayleigh number values (5×107 to 5×108) and Reynolds number values (103 to 3×103) on heat transfer. Simulations were conducted in a rectangular cavity with periodic boundary conditions on the vertical walls. Two heat sources are located on the bottom wall (Th = 50 °C). Two openings, one on each side of the two hot sources, force a jet of fresh air in from below. An opening at the level of the cavity ceiling’s axis of symmetry evacuates the hot air. Mixed convection drives the flow, exhibiting complex multicellular structures influenced by the control parameters. Calculating the average Nusselt number (Nu) across the surfaces of the heat sink reveals significant dependencies on the Reynolds number. The proposed correlation between Nu and Re, developed specifically for this configuration, fills the current gap and provides valuable insights for optimizing heat transfer efficiency in engineering applications. Full article
(This article belongs to the Special Issue Recent Research on Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 3372 KiB  
Article
Combustion Air Humidifier for a Biomass Boiler with Flue Gas Condensation
by Jan Havlík and Tomáš Dlouhý
ChemEngineering 2025, 9(4), 68; https://doi.org/10.3390/chemengineering9040068 - 25 Jun 2025
Viewed by 299
Abstract
This paper deals with combustion air humidification for application with a biomass boiler and a spray flue gas condenser. The use of a combustion air humidifier increases the dew point temperature of the flue gas, thereby increasing the potential for heat recovery in [...] Read more.
This paper deals with combustion air humidification for application with a biomass boiler and a spray flue gas condenser. The use of a combustion air humidifier increases the dew point temperature of the flue gas, thereby increasing the potential for heat recovery in the flue gas condenser and increasing the amount of heat supplied to the thermal system. The air humidification process in a counter current spray humidifier was experimentally analysed under conditions corresponding to the use before a biomass boiler with a flue gas condenser. For air heating and humidification, temperature factor values of up to 0.90 can be obtained; this value is mainly influenced by the ratio of the spray water and humidified air flow rates. The volumetric heat transfer coefficient is significantly affected by the humidified air velocity, although this velocity is negligible compared to the counter current spray water velocity. The volumetric heat transfer coefficient reaches higher values at higher spray water temperatures and therefore higher air heating. The whole process is also affected by the saturation of the incoming air, where the dew point temperature of the air drawn in from the surroundings is lower than its temperature. These results can be used as basic information for the design of combustion air humidifiers, for the selection of their operating parameters, and for a basic balancing of the energy contribution of the combustion air humidifier before a more detailed design of the whole system. Full article
Show Figures

Figure 1

22 pages, 1097 KiB  
Review
Insights into Aeration Intensification in Biofilm Reactors for Efficient Wastewater Treatment
by Hassimi Abu Hasan, Nur Asyiqin Azahar and Mohd Hafizuddin Muhamad
Water 2025, 17(13), 1861; https://doi.org/10.3390/w17131861 - 23 Jun 2025
Viewed by 578
Abstract
Aeration used in wastewater treatment is energy-intensive, subsequently increasing the cost of treatment. Aeration is used to supply oxygen that is required for bacterial metabolism that degrades organic compounds in wastewater. In this review, we will focus on the effect of aeration rates [...] Read more.
Aeration used in wastewater treatment is energy-intensive, subsequently increasing the cost of treatment. Aeration is used to supply oxygen that is required for bacterial metabolism that degrades organic compounds in wastewater. In this review, we will focus on the effect of aeration rates on the performance of biofilm-based technologies for wastewater treatment and the evaluation of the oxygen transfer rate (OTR) of these technologies. The performance of biofilm reactors in terms of removal efficiency increases with air flow rate, as increased flow helps to increase the contact area between wastewater and the biofilm on the carrier. The same is true for the OTR due to the greater availability of oxygen at higher airflow rates. Excessive aeration can negatively affect wastewater treatment through biofilm shearing and detachment from the carrier. Through a critical review of these technologies, the optimal air flow rate and aeration methods can be determined in biofilm reactors to improve the quality of the treated water, increase the efficiency of the aeration system, and attain energy savings. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

Back to TopTop