Insights into Aeration Intensification in Biofilm Reactors for Efficient Wastewater Treatment
Abstract
1. Introduction
2. Effect of Aeration on the Performance of Biofilm-Technology-Based Wastewater Treatment
2.1. Dissolved Oxygen
2.2. Pollutant Removal
2.3. Biofilm Thickness and Microbial Compositions
3. Oxygen Transfer Rate in Biological Wastewater Treatment
4. Future Challenges and Prospects Regarding Aeration Optimization
4.1. Oxygen Transfer Between Media Types
4.2. Heterogeneous Oxygen Distribution
4.3. Biofilm Carrier Motion and Oxygen Transfer
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Feng, B.; Wang, P.; Guo, W.; Li, X.; Gao, H. Revealing factors influencing spatial variation in the quantity and quality of rural domestic sewage discharge across China. Process Saf. Environ. Prot. 2022, 162, 200–210. [Google Scholar] [CrossRef]
- Mohamed, R.M.S.R.; Al-Gheethi, A.; Khalifa, N.A.; Fitriani, N.; Adeleke, A.; Ebenehi, I.Y.; Siti Asmah Bakar, S.A. Greywater treatment using pottery waste ceramic filter. J. Kej. 2021, 33, 891–901. [Google Scholar] [CrossRef]
- Dicataldo, G.; Desmond, P.; Al-Maas, M.; Adham, S. Feasibility and application of membrane aerated biofilm reactors for industrial wastewater treatment. Water Res. 2025, 280, 123523. [Google Scholar] [CrossRef] [PubMed]
- Kagami, K.; Kitajima, M.; Watanave, H.; Hamada, T.; Kobayashi, Y.; Kubo, H.; Oono, S.; Takai, H.; Ota, S.; Nagakura, T.; et al. Association between confirmed COVID-19 cases at hospitals and SARS-CoV-2 levels in municipal wastewater during the pandemic and endemic phases. Environ. Int. 2025, 197, 109342. [Google Scholar] [CrossRef]
- Widyarani; Wulan, D.R.; Hamidah, U.; Komarulzaman, A.; Rosmalina, R.T.; Sintawardani, N. Domestic wastewater in Indonesia: Generation, characteristics and treatment. Environ. Sci. Pollut. Res. 2022, 29, 32397–32414. [Google Scholar] [CrossRef]
- Ang, S.Y.; Goh, H.W.; Bashirah Mohd Fazli, B.M.; Haris, H.; Nor Ariza Azizan, N.A.; Zakaria, N.A.; Johar, Z. Heavy metals removal from domestic sewage in batch mesocosm constructed wetlands using tropical wetland plants. Water 2023, 15, 797. [Google Scholar] [CrossRef]
- Compaoré, C.O.T.; Ouili, A.S.; Zongo, S.G.; Dabré, D.; Maiga, Y.; Mogmenga, I.; Palé, D.; Tindouré, R.G.N.; Nikiema, M.; Ouattara, C.A.T.; et al. Assessing greywater characteristics in the sahel region and perception of the local population on its reuse in agriculture. Heliyon 2024, 10, e33473. [Google Scholar] [CrossRef]
- Shaikh, I.N.; Ahammed, M.M. Effect of washing method and detergent type on laundry greywater characteristics. J. Water Process Eng. 2024, 66, 106103. [Google Scholar] [CrossRef]
- Roy, I.R.W.; Raj, A.S.; Viaroli, S. Microplastic removal, identification and characterization in Chennai sewage treatment plants. J. Environ. Manag. 2025, 380, 125120. [Google Scholar] [CrossRef]
- Rafaai, N.H.; Lee, K.E.; Nazir, N.Z.M.; Rahim, A.R.A.; Goh, T.L.; Mokhtar, M.; Abdullah, W.A.R.W.; Husain, H.; Mamat, R.B.R. Mapping sewage treatment plants for wastewater reclamation and reuse in industrial parks of Peninsular Malaysia: A path towards water security. Water Resour. Ind. 2025, 33, 100284. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, S.; Gao, X.; Gu, Y.; Yu, Y.; Li, M.; Chen, X.; Fan, M.; Jia, Y.; Tian, L.; et al. Typical emerging contaminants in sewage treatment plant effluent, and related watersheds in the Pearl River Basin: Ecological risks and source identification. J. Hazard. Mater. 2024, 476, 135046. [Google Scholar] [CrossRef]
- de Freitas, R.M.P.; Souza, M.B.; Sotero, D.F.; Lopes, A.T.C.; Santos, M.A.; Oliveira, J.M.; Costa, D.C.; Filho, N.R.A.; Vieira, T.B.; Silva, D.M. Ecotoxicological consequences of urbanization: A multi-biomarker approach to assessing sewage treatment plant effects on free-living birds. Environ. Res. 2024, 258, 119424. [Google Scholar] [CrossRef]
- Liu, C.; Liu, F.; Andersen, M.N.; Wang, G.; Wu, K.; Zhao, Q.; Ye, Z. Domestic wastewater infiltration process in desert sandy soil and its irrigation prospect analysis. Ecotoxicol. Environ. Saf. 2021, 208, 111419. [Google Scholar] [CrossRef]
- Buslima, F.A.; Abu Hasan, H.; Sheikh Abdullah, S.R.; Othman, A.R. Water recovery from domestic wastewater using integrated biofilm-phytoremediation technology: A review. J. Water Process Eng. 2024, 65, 105875. [Google Scholar] [CrossRef]
- Li, J.; Xiao, Z.; Gu, J.; Yang, Z.; Dong, W.; Liu, Y.; Xu, Z.; Zhu, W. Brewery wastewater as an alternative external carbon source for full-scale municipal wastewater treatment plants: A performance, cost, and environmental assessment. J. Water Process Eng. 2025, 72, 107483. [Google Scholar] [CrossRef]
- Ali, A.A.A.; Naddeo, V.; Hasan, S.W.; Yousef, A.F. Correlation between bacterial community structure and performance efficiency of a full-scale wastewater treatment plant. J. Water Process Eng. 2020, 37, 101472. [Google Scholar] [CrossRef]
- Deng, S.; Liu, L.; Li, X.Y.; Xue, W.; Liang, L.; Yu, Z.; Lin, L. Rapid granulation of aerobic sludge for tretment of brewery wastewater: Aeration strategy and nitrogen removal mechanism. J. Environ. Chem. Eng. 2025, 13, 115108. [Google Scholar] [CrossRef]
- Benatti, J.C.B.; de Andrade, A.E.F.; Nour, E.A.A.; Cruz, L.M.O. Aeration-driven microbial aggregation in aerobic granular sludge systems for low-strength wastewater treatment. Desalin. Water Treat. 2025, 322, 101050. [Google Scholar] [CrossRef]
- Sadaf, S.; Singh, A.K.; Iqbal, J.; Kumar, R.N.; Sulejmanović, J.; Habila, M.A.; Américo-Pinheiro, J.H.; Sher, F. Advancements of sequencing batch biofilm reactor for slaughterhouse wastewater assisted with response surface methodology. Chemosphere 2022, 307, 135952. [Google Scholar] [CrossRef]
- Abdelaziz, H.A.; Fouad, M.; Mossad, M. Upgrading sequencing batch reactor using attached biofilm. Water Environ. Res. 2021, 93, 1700–1713. [Google Scholar] [CrossRef]
- Abu Bakar, S.N.H.; Abu Hasan, H.; Sheikh Abdullah, S.R.; Mohammad, A.W.; Muhamad, M.H. Interactions between operating parameters of moving bed biofilm reactors in treating palm oil mill effluent. Process Saf. Environ. Prot. 2022, 158, 567–575. [Google Scholar] [CrossRef]
- Dan, N.H.; Luu, T.L. High organic removal of landfill leachate using a continuous flow sequencing batch biofilm reactor (CF-SBBR) with different biocarriers. Sci. Total Environ. 2021, 787, 147680. [Google Scholar] [CrossRef] [PubMed]
- Rezai, B.; Allahkarami, E. Wastewater treatment processes—Techniques, technologies, challenges faced, and alternative solutions. In Soft Computing Techniques in Solid Waste and Wastewater Management; Karri, R.R., Ravindran, G., Dehghani, M.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Chapter 2; pp. 35–53. [Google Scholar]
- Murshid, S.; Antonysamy, A.J.; Dhakshinamoorthy, G.P.; Jayaseelan, A.; Pugazhendhi, A. A review on biofilm-based reactors for wastewater treatment: Recent advancements in biofilm carriers, kinetics, reactors, economics, and future perspectives. Sci. Total Environ. 2023, 892, 164796. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, Y.; Zhang, Y.; Yang, Y.; Cui, R.; Ren, L.; Zhang, M.; Wang, Y. Highly efficient degradation of ethanol, acetaldehyde, and ethyl acetate removal by bio-trickling filter reactors with various fillers. Process Saf. Environ. Prot. 2024, 191, 1407–1418. [Google Scholar] [CrossRef]
- Martins, V.F.; da Silva, G.J.; Borges, A.C. Effects of packing media and the insertion of vegetation on the performance of biological trickling filters. Water 2021, 13, 1735. [Google Scholar] [CrossRef]
- Rahmadi, R.; Nugrohoputri, A.S.; Adam, M.S.; Astuti, A.D.; Cho, J.; Kurniawan, A. Biokinetic modeling approach to investigate the impact of rotational speed variations in modified rotating biological contactors for palm oil mill effluent treatment. Bioresour. Technol. Rep. 2024, 28, 101992. [Google Scholar] [CrossRef]
- Waqas, S.; Bilad, M.R. A review on rotating biological contactors. Indones. J. Sci. Technol. 2019, 4, 241–256. [Google Scholar] [CrossRef]
- Aslam, Z.; Alam, P.; Rather, N.A. Startup kinetics of aerobic Moving Bed Biofilm Reactors for phenolic wastewater treatment by mesophilic bacteria. J. Water Process Eng. 2025, 72, 107401. [Google Scholar] [CrossRef]
- Buhari, J.; Abu Hasan, H.; Setyo Budi Kurniawan, S.B.; Sheikh Abdullah, S.R.; Othman, A.R. Future and challenges of co-biofilm treatment on ammonia and Bisphenol A removal from wastewater. J. Water Process Eng. 2023, 54, 103969. [Google Scholar] [CrossRef]
- Kawan, J.A.; Abu Hasan, H.; Suja, F.; Jaafar, O.; Abd-Rahman, R. A review on sewage treatment and polishing using moving bed bioreactor (MBBR). J. Eng. Sci. Technol. 2016, 11, 1098–1120. [Google Scholar]
- Farhami, N.; Derrakhshandeh, M.; Hakki, H.K. Exploring COD and BOD removal from industrial wastewater using a Moving Bed Biofilm Reactor (MBBR). Desalin. Water Treat. 2025, 332, 101177. [Google Scholar] [CrossRef]
- Khudhair, D.N.; Hosseinzadeh, M.; Zwain, H.M.; Siadatmousavi, S.M.; Majdi, A.; Mojiri, A. Upgrading the MBBR process to reduce excess sludge production in activated sludge system treating sewage. Water 2023, 15, 408. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, J.; Yuan, S.; Sang, W.; Ban, Y.; Zhang, S. Impact of aeration frequency on performance of mixotrophic sequencing batch biofilm reactor (SBBR) treating real domestic wastewater: Removal efficiency, pathways, and mechanisms. J. Clean. Prod. 2023, 385, 135747. [Google Scholar] [CrossRef]
- Abu Hasan, H.; Sheikh Abdullah, S.R.; Kamarudin, S.K.; Tan Kofli, N. On-off control of aeration time in the simultaneous removal of ammonia and manganese using a biological aerated filter system. Process Saf. Environ. Prot. 2013, 91, 415–422. [Google Scholar] [CrossRef]
- Du, X.; Wang, J.; Jegatheesan, V.; Shi, G. Dissolved oxygen control in activated sludge process using a neural network-based adaptive PID algorithm. Appl. Sci. 2018, 8, 261. [Google Scholar] [CrossRef]
- Wei, Y.; Yin, X.; Qi, L.; Wang, H.; Gong, Y.; Luo, Y. Effects of carrier-attached biofilm on oxygen transfer efficiency in a moving bed biofilm reactor. Front. Environ. Sci. Eng. 2016, 10, 569–577. [Google Scholar] [CrossRef]
- Drewnowski, J.; Remiszewska-Skwarek, A.; Duda, S.; Łagód, G. Aeration process in bioreactors as the main energy consumer in a wastewater treatment plant. Review of solutions and methods of process optimization. Processes 2019, 7, 311. [Google Scholar] [CrossRef]
- Rosso, D.; Larson, L.E.; Stenstrom, M.K. Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Sci. Technol. 2008, 57, 973–978. [Google Scholar] [CrossRef]
- Li, J.; Healy, M.G.; Zhan, X.; Norton, D.; Rodgers, M. Effect of aeration rate on nutrient removal from slaughterhouse wastewater in intermittently aerated sequencing batch reactors. Water Air Soil Pollut. 2008, 192, 251–261. [Google Scholar] [CrossRef]
- Khoshfetrat, A.B.; Nikakhtari, H.; Sadeghifar, M.; Khatibi, M.S. Influence of organic loading and aeration rates on performance of a lab-scale upflow aerated submerged fixed-film bioreactor. Process Saf. Environ. Prot. 2011, 89, 193–197. [Google Scholar] [CrossRef]
- Rahimi, Y.; Torabian, A.; Mehrdadi, N.; Habibi-Rezaie, M.; Pezeshk, H.; Nabi-Bidhendi, G.R. Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor. J. Hazard. Mater. 2011, 186, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Abu Hasan, H.; Sheikh Abdullah, S.R.; Kamarudin, S.K.; Tan Kofli, N.; Anuar, N. Simultaneous NH4⁺-N and Mn2⁺ removal from drinking water using a biological aerated filter system: Effects of different aeration rates. Sep. Purif. Technol. 2013, 118, 547–556. [Google Scholar] [CrossRef]
- Forouzesh, M.; Khoshfetrat, A.B.; Kordkandi, S.A. Partially aerated submerged fixed-film bioreactor for simultaneous removal of carbon and nutrients from high-strength nitrogen wastewaters: Effect of aeration rate and C:N:P ratio. Water Sci. Technol. 2017, 76, 877–884. [Google Scholar] [CrossRef]
- Ren, J.; Cheng, W.; Wan, T.; Wang, M.; Jiao, M. Effect of aeration rates on hydraulic characteristics and pollutant removal in an up-flow biological aerated filter. Environ. Sci. Water Res. Technol. 2018, 4, 2041–2050. [Google Scholar] [CrossRef]
- Ren, J.; Cheng, W.; Wan, T.; Wang, M.; Zhang, C. Effect of aeration rates and filter media heights on the performance of pollutant removal in an up-flow biological aerated filter. Water 2018, 10, 1244. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, X.; Cai, Y.; Yang, Z. An enhanced system with macrophytes and polyurethane sponge as an eco-technology for restoring eutrophic water: A pilot test. Water 2019, 11, 1828. [Google Scholar] [CrossRef]
- Singh, N.K.; Yadav, M.; Singh, R.P.; Kazmi, A.A. Efficacy analysis of a field scale IFAS reactor under different aeration strategies applied at high aeration rates: A statistical comparative analysis for practical feasibility. J. Water Process Eng. 2019, 27, 185–192. [Google Scholar] [CrossRef]
- Mehrabi, S.; Houweling, D.; Dagnew, M. Establishing mainstream nitrite shunt process in membrane aerated biofilm reactors: Impact of organic carbon and biofilm scouring intensity. J. Water Process Eng. 2020, 37, 101460. [Google Scholar] [CrossRef]
- Ren, J.; Cheng, W.; Jiao, M.; Wan, T.; Wang, M.; Li, D. Characteristics of oxygen mass transfer and its impact on pollutant removal performance and microbial community structure in an aerobic fluidized bed biofilm reactor for treatment of municipal wastewater. Bioresour. Technol. 2021, 323, 124552. [Google Scholar] [CrossRef]
- Fanta, A.B.; Nair, A.M.; Sægrov, S.; Østerhus, S.W. Phosphorus removal from industrial discharge impacted municipal wastewater using sequencing batch moving bed biofilm reactor. J. Water Process Eng. 2021, 41, 102034. [Google Scholar] [CrossRef]
- Cai, Q.; Lai, C.; Yang, P. Biomass yield characteristics and removal kinetic model construction with mass transfer optimization of a moving bed and constructed wetland (MBCW) integrated bioreactor. Biochem. Eng. J. 2023, 200, 109085. [Google Scholar] [CrossRef]
- Wei, C.-H.; Zhai, X.-Y.; Jiang, Y.-D.; Rong, H.-W.; Zhao, L.-G.; Liang, P.; Huang, X.; Ngo, H.H. Simultaneous carbon, nitrogen, and phosphorus removal in sequencing batch membrane aerated biofilm reactor with biofilm thickness control via air scouring aided by computational fluid dynamics. Bioresour. Technol. 2024, 409, 131267. [Google Scholar] [CrossRef] [PubMed]
- Fanta, A.B.; Sægrov, S.; Azrague, K.; Østerhus, S.W. Experimental investigation of simultaneous nitrification-denitrification and phosphorus removal in pilot-scale sequencing batch moving bed biofilm reactors (SB-MBBRs). Water Resour. Ind. 2024, 31, 100258. [Google Scholar] [CrossRef]
- Aldilla Fajri, J.; Fujisawa, T.; Trianda, Y.; Ishiguro, Y.; Cui, G.; Li, F.; Yamada, T. Effect of aeration rates on removals of organic carbon and nitrogen in small onsite wastewater treatment system (Johkasou). MATEC Web Conf. 2018, 147, 04008. [Google Scholar] [CrossRef]
- Dezotti, M.; Lippel, G.; Bassin, J.P. Advanced Biological Processes for Wastewater Treatment: Emerging, Consolidated Technologies and Introduction to Molecular Techniques; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Kumari, M.; Tripathi, B.D. Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecol. Eng. 2014, 62, 48–53. [Google Scholar] [CrossRef]
- Hait, S.; Mazumd, D. High-rate wastewater treatment by a shaft-type activated sludge reactor. World Acad. Sci. Eng. Technol. 2011, 73, 22–27. [Google Scholar] [CrossRef]
- Nadayil, J.; Mohan, D.; Dileep, K.; Rose, M.; Rose, R.; Parambi, P. A study on effect of aeration on domestic wastewater. Int. J. Interdiscip. Res. Innov. 2015, 3, 10–15. [Google Scholar]
- Barge, P.; Malviya, R.K.; Parmar, N. A review on oxygen transfer rate, efficiency, capacity and their kinetic on aeration system in activated sludge process of sewage treatment plant. Int. J. Sci. Res. Publ. 2014, 4, 2250–3153. [Google Scholar]
- Garcia-Ochoa, F.; Gomez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 2009, 27, 153–176. [Google Scholar] [CrossRef]
- Jing, J.Y.; Feng, J.; Li, W.Y. Carrier effects on oxygen mass transfer behavior in a moving-bed biofilm reactor. Asia-Pac. J. Chem. Eng. 2009, 4, 618–623. [Google Scholar] [CrossRef]
- Strubbe, L.; van Dijk, E.J.H.; Deenekamp, P.J.M.; van Loosdrecht, M.C.M.; Volcke, E.I.P. Oxygen transfer efficiency in an aerobic granular sludge reactor: Dynamics and influencing factors of alpha. Chem. Eng. J. 2023, 452, 139548. [Google Scholar] [CrossRef]
- Gillot, S.; Capela-Marsal, S.; Roustan, M.; Héduit, A. Predicting oxygen transfer of fine bubble diffused aeration systems—Model issued from dimensional analysis. Water Res. 2005, 39, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Gillot, S.; Héduit, A. Effect of air flow rate on oxygen transfer in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. Water Res. 2000, 34, 1756–1762. [Google Scholar] [CrossRef]
- Iranpour, R.; Stenstrom, M.K. Relationship Between Oxygen Transfer Rate and Airflow for Fine-Pore Aeration Under Process Conditions. Water Environ. Res. 2001, 73, 266–275. [Google Scholar] [CrossRef]
- Syron, E.; Casey, E. Performance of a pilot scale membrane aerated biofilm reactor for the treatment of landfill leachate. Procedia Eng. 2012, 44, 2082–2084. [Google Scholar] [CrossRef]
- Barwal, A.; Chaudhary, R. Impact of carrier filling ratio on oxygen uptake & transfer rate, volumetric oxygen transfer coefficient and energy saving potential in a lab-scale MBBR. J. Water Process Eng. 2015, 8, 202–208. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, H.; Wang, M.; Wang, M. The effect of bubble plume on oxygen transfer for moving bed biofilm reactor. J. Hydrodyn. 2014, 26, 664–667. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G. Oxygen transfer improvement in MBBR process. Environ. Sci. Pollut. Res. 2019, 26, 10727–10737. [Google Scholar] [CrossRef]
- Dias, J.; Bellingham, M.; Hassan, J.; Barrett, M.; Stephenson, T.; Soares, A. Impact of carrier media on oxygen transfer and wastewater hydrodynamics on a moving attached growth system. Chem. Eng. J. 2018, 351, 399–408. [Google Scholar] [CrossRef]
- Sander, S.; Behnisch, J.; Wagner, M. Energy, cost and design aspects of coarse- and fine-bubble aeration systems in the MBBR IFAS process. Water Sci. Technol. 2017, 75, 890–897. [Google Scholar] [CrossRef]
- Leung, S.M.; Little, J.C.; Holst, T.; Love, N.G. Air/water oxygen transfer in a biological aerated filter. J. Environ. Eng. 2006, 132, 181–189. [Google Scholar] [CrossRef]
- Veleva, I.; Van Weert, W.; Van Belzen, N.; Cornelissen, E.; Verliefde, A.; Vanoppen, M. Petrochemical condensate treatment by membrane aerated biofilm reactors: A pilot study. Chem. Eng. J. 2022, 428, 131013. [Google Scholar] [CrossRef]
- Elad, T.; Hallya, M.P.; Domingo-Félez, C.; Knoop, O.; Drewes, J.E.; Valverde-Pérez, B.; Smets, B.F. Exploring the effects of intermittent aeration on the performance of nitrifying membrane-aerated biofilm reactors. Sci. Total Environ. 2023, 891, 164329. [Google Scholar] [CrossRef]
- Campo, G.; Cerutti, A.; Zanetti, M.; Ruffino, B. Membrane aerated biological reactors (MABRs) to enhance the biological treatment process at a WWTP. J. Environ. Manag. 2024, 371, 122921. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Y.; Yuan, F.; Yang, Q. Optimization and control strategies of aeration in WWTPs: A review. J. Clean. Prod. 2023, 418, 138008. [Google Scholar] [CrossRef]
- Kadam, R.; Khanthong, K.; Park, B.; Jun, H.; Park, J. Realizable wastewater treatment process for carbon neutrality and energy sustainability: A review. J. Environ. Manag. 2023, 328, 116927. [Google Scholar] [CrossRef]
- SeyedSharifi, M.; Taheriyoun, M.; Qandari, H. Analyzing the effects of different patterns of diffuser layouts on air distribution and mixing quality in an aeration tank using CFD. Process Saf. Environ. Prot. 2024, 181, 182–194. [Google Scholar] [CrossRef]
- Ao, Z.; Li, H.; Chen, J.; Yuan, J.; Xia, Z.; Zhang, J.; Chen, H.; Wang, H.; Liu, G.; Qi, L. A new approach to optimizing aeration using XGB-Bi-LSTM via the online monitoring of oxygen transfer efficiency and oxygen uptake rate. Environ. Res. 2023, 238, 117142. [Google Scholar] [CrossRef]
- Campo, G.; Miggiano, A.; Panepinto, D.; Zanetti, M. Enhancing the energy efficiency of wastewater treatment plants through the optimization of the aeration systems. Energies 2023, 16, 2819. [Google Scholar] [CrossRef]
- Rathnaweera, S.S.; Rusten, B.; Manamperuma, L.D.; Wang, S.; Helland, B. Innovative, compact and energy-efficient biofilm process for nutrient removal from wastewater. Water Sci. Technol. 2020, 81, 1941–1950. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ramadan, H.; Elsamahy, T.; Eltawab, R.; Mostafa, S.; Zhou, X.; Cheng, L. Multifaced features and sustainability of using pure oxygen in biological wastewater treatment: A review. J. Water Process Eng. 2023, 53, 103883. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, R.; Liang, Y.; Wei, G.; Wei, C.; Chen, H.; Wu, H. Carrier with cyclodextrin and quorum sensing synergy: An efficient method for selective enrichment of anammox bacteria. Chem. Eng. J. 2024, 481, 148461. [Google Scholar] [CrossRef]
- Li, X.; Li, G.; Yu, Y.; Jia, H.; Ma, X.; Yang, H.; Opoku, P.A. Hydraulic characterization and start-up of a novel circulating flow bio-carriers. Sci. Rep. 2024, 14, 6384. [Google Scholar] [CrossRef] [PubMed]
- Zetterlund, S.; Schwartz, O.; Sandberg, M.; Venkatesh, G. Computational modelling to advise and inform optimization for aeration and nutrient-dosing in wastewater treatment: Case study from pulp and paper mill in south-central Sweden. J. Water Process Eng. 2023, 56, 104508. [Google Scholar] [CrossRef]
Air flowrate | Type of Biofilm Reactor | Dimension | Type of Wastewater | DO (mg/L) | Removal Performance | Reference |
---|---|---|---|---|---|---|
0.2 L/min, 0.4 L/min, 0.8 L/min, 1.2 L/min | SBR | 10 L D: 194 mm H: 400 mm | Slaughterhouse wastewater | <6.0 |
COD—90% TP—90% TN—34%
COD—97% TP—95% TN—97% | [40] |
4 L/min, 8 L/min | UP-ASFF | 17.9 L D: 14.4 cm H: 110 cm | Synthetic wastewater | 2.1–5.8 |
COD—74–90%
COD—90% | [41] |
42 L/h, 85 L/h, 151 L/h, 296 L/h, 380 L/h | MBBR-MBR | 35 L MBBR: 25 L MBR: 10 L | Synthetic wastewater | <2.0 | Not specified in detail | [42] |
0.3 L/min, 0.6 L/min, 1.0 L/min, 2.0 L/min | BAF | 15 L D: 0.16 m H: 1.5 m | Polluted drinking water | 2.94–5.26 | pH—4.1–6.4
NH4+-N—53.2% COD-96.1—97.9%
NH4+-N—80.8% COD-96.1–97.9%
NH4+-N—88.6% COD-96.1—97.9%
NH4+-N < 0.65 mg/L COD-96.1—97.9%
COD—44.2% NH4+-N—45.3% | [43] |
60 L/h | MBBR | 8.66 L ID: 17 cm | Synthetic wastewater | - | COD—70% NH4+-N—95% | [37] |
1.5 L/min, 3 L/min, 4.5 L/min | UP/ ASFF | 7.6 L D: 90 cm H: 11 cm | Synthetic wastewater | - |
COD—95%
COD—100%
COD—100% | [44] |
40 L/h, 65 L/h, 90 L/h | UBAF | H: 1470 mm D: 350 mm Support zone H: 200 mm D: 10–30 mm | Synthetic wastewater | 8.0–9.21 |
COD-89.5 ± 5.5% NH4+-N—49.7 ± 4.0% NO3−-N—74.6 ± 14.0% TP—11.0 ± 9.5%
COD—91.9 ± 3.5% NH4+-N—48.2 ± 11.8% NO3−-N—77.6 ± 17.0% TP—49.6 ± 5.5%
COD—90.6 ± 2.8% NH4+-N—42.2 ± 5.2% NO3−-N—68.4 ± 13.0% TP—56.7 ± 3.4% | [45] |
40 L/h, 65 L/h, 90 L/h | UBAF | H: 1470 mm D: 350 mm Support zone H: 200 mm D: 10–30 mm | Synthetic wastewater | 8.0–9.21 |
COD—89.49% NH4+-N—55.48% NO3−-N—86.89%
COD—91.86%
COD—90.61% NH4+-N—46.48% NO3−-N—59.43% | [46] |
With aerator, without aerator | FBTS | 1.8 m × 1.0 m × 0.3 m | Sewage wastewater | 2.07–3.2 |
COD—69.6%% NH3-N—79% TN—85.2% TP—≈80%
COD—49.8%% NH3-N—64% | [47] |
110 m3/h (continuous aeration, intermittent aeration) | IFAS | 20 m3 3×2×3.34 m | Municipal wastewater | 4.5–5.0 | COD—86% (average)
TN—67.37%
COD—92.71% NH3-N—100% TN—58%
COD—89.87% NH3-N—100% TN—63%
COD—86.96% NH3-N—94.8% TN—55% | [48] |
15 mL/min (intermittent aeration) | MABR | 2 L (×6 reactor) Membrane surface area: 0.14 m2 | Chemically enhanced-primary-treated wastewater (CEPT) | 1.5 |
Ammonia—54%
Ammonia—42%
Ammonia—40% TN—57% | [49] |
0.064 L/(min·L), 0.096 L/(min·L), 0.128 L/(min·L) | AFBBR | 26 L D: 0.236 m H: 0.708 m | Municipal wastewater | 7.0–8.0 |
COD—93.43 ± 1.77%
COD—94.06 ± 2.57% TN—66.98 ± 4.23% NH4+-N—74.70 ± 2.30%
COD—94.11 ± 2.35% | [50] |
4.5 L/min | SB-MBBR | 14.7 L | Industrial-discharge-impacted municipal wastewater | 2.0–8.0 |
PO4-P—53.4 ± 31.2% N—22.9 ± 17.0% sCOD—82.7 ± 5.7%
PO4-P—81.14 ± 19.8% N—20.1 ± 14.5% sCOD—87.4 ± 10.5% | [51] |
1 L/min | SBBR | 10 L | Domestic wastewater | 5.0 | NH4+-N—83.74 ± 6.95% TN—54.41 ± 4.42% PO43−-P—90.45 ± 9.70% | [34] |
350 L/h | MBBR-CW | 45 L | Synthetic wastewater | - | COD—91.8% TN—81.5% | [52] |
3–9 L/min | MABR | 3 L L: 125 mm W: 35 mm H: 800 mm | Synthetic low-C/N wastewater | - | COD > 90% | [53] |
1.0–2.5 L/min | SB-MBBR | P-rich-industrial-discharge-influenced real municipal waste water | 0.5–4.6 | NH4-N—88.8% PO4-P—97.3% | [54] |
Type of Reactors | Airflow Rate | kLa | OTR | OUR | OTE | Reference |
---|---|---|---|---|---|---|
BAF | 8–40 Nm/h | 10–100 h−1 | - | - | - | [73] |
MBBR | 0.3 m3/h | 0.26 min−1 | - | - | - | [62] |
MBBR | 50 L/h | 5.2904 h−1 | - | - | 7.46% | [69] |
MBBR | 0.21 m3/h | 1.38 h−1 | - | 1.65 mg O2/L h | 12.02 mg O2/L.h | [68] |
60 L/h | N/A | - | - | 7–9% | [37] | |
MBBR-IFAS | 7–9 m/h (Fine-bubble aerator) | N/A | - | - | 5.09%/m (50 vol-%) | [72] |
Moving attached-growth system | 9.0 m3/m2 h | 25.57 h−1 | - | - | 3.62–5.56 %/m | [71] |
MBBR | 100 Nm3/h | N/A | 4.1 kg O2 h−1 | - | 13.8% | [70] |
FTBS | N/A | N/A | - | <0.35 mgO2/g h | - | [47] |
AFBBR | 0.096 L/(min·L) | 12 h−1 | - | <20 mg/L h | 80% | [50] |
MABR | ~10 L/h | - | 2 g O2/m2/d | 34% | [74] | |
MABR | 100 mL/min | - | - | - | 75% | [75] |
MABR | 0.078–0.206 NL/h | - | 6.21 g O2/m2/d | - | ~82% | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Hasan, H.; Azahar, N.A.; Muhamad, M.H. Insights into Aeration Intensification in Biofilm Reactors for Efficient Wastewater Treatment. Water 2025, 17, 1861. https://doi.org/10.3390/w17131861
Abu Hasan H, Azahar NA, Muhamad MH. Insights into Aeration Intensification in Biofilm Reactors for Efficient Wastewater Treatment. Water. 2025; 17(13):1861. https://doi.org/10.3390/w17131861
Chicago/Turabian StyleAbu Hasan, Hassimi, Nur Asyiqin Azahar, and Mohd Hafizuddin Muhamad. 2025. "Insights into Aeration Intensification in Biofilm Reactors for Efficient Wastewater Treatment" Water 17, no. 13: 1861. https://doi.org/10.3390/w17131861
APA StyleAbu Hasan, H., Azahar, N. A., & Muhamad, M. H. (2025). Insights into Aeration Intensification in Biofilm Reactors for Efficient Wastewater Treatment. Water, 17(13), 1861. https://doi.org/10.3390/w17131861