Advanced Numerical Analysis of Heat Transfer in Medium and Large-Scale Heat Sinks Using Cascaded Lattice Boltzmann Method
Abstract
1. Introduction
2. Mathematical and Physical Formulation
2.1. Studying Problem and Governing Equations
- Initial conditions:
- Dynamic and thermal boundary conditions:
2.2. Cascaded Lattice Boltzmann Method (CLBM)
- The choice of the model
- Problem Description and Governing Parameters
2.2.1. CLBM for the Flow Field
2.2.2. CLBM for the Temperature Field
3. Computational Implementation
3.1. Heat Exchange
3.2. Numerical Meshing
3.3. Validation of the CLBM Code
4. Results and Discussion
4.1. Flow Structure and Thermal Fields
4.1.1. Dynamic and Thermal Fields for
4.1.2. Flow and Thermal Fields for
4.2. Heat Transfer
- regression coefficient
- confidence interval: [0.00274, 0.00358]
- regression coefficient
- confidence interval: [0.01941–0.02656].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
C | Speed [m/s] |
Propagation speed [m/s] | |
Sound speed [m/s] | |
D | Dimension (LBM) |
The tangential to the wall | |
particle velocity [m/s] | |
F | External forces [N] |
Body force [N] | |
Distribution function | |
Distribution function for a set of particles | |
Equilibrium distribution function | |
Gravity acceleration [m/] | |
Energy distribution function | |
Equilibrium energy distribution function | |
H | Dimensionless height of the cavity |
Dimensionless height of the wall | |
Central moment of order (m, n) | |
Equilibrium central moment of order (m, n) | |
Iteration Number | |
L | Dimensionless length of distance between heat sink |
Dimensionless length of heat sink | |
Dimensionless length of extraction opening | |
l | Dimensionless width of opening for supply air |
Transformation Matrix | |
n | Mesh |
Normal on the wall | |
N, | Shift Matrix |
Local Nusselt number | |
Global Nusselt number | |
Average global Nusselt number | |
Number of Nusselt on the right-hand side heat sink right | |
Number of Nusselt on the right-hand side heat sink left | |
Number of Nusselt on the left-hand side heat sink right | |
Number of Nusselt on the left-hand side heat sink left | |
Number of Nusselt of the source horizontal heat sink right | |
Number of Nusselt of the source horizontal heat sink left | |
p | Dimensionless static pressure |
Prandtl number | |
Q | Direction (LBM) |
Rayleigh number () | |
Reynolds number () | |
S | Source term |
T | Fluid temperature [] |
Reference temperature [] | |
Hot temperature [] | |
Cold temperature [] | |
reference time | |
dimensionless time | |
U | Dimensionless speed on ox |
V | Dimensionless speed on oy |
Γ | Moment [N·m] |
q | Dimensionless temperature () |
Dimensionless cold temperature | |
Dimensionless hot temperature | |
Thermal diffusivity [] | |
Expansion coefficient [] | |
Density [] | |
kinematic viscosity [] | |
Thermal conductivity [W/m.K] | |
Relaxation factor | |
Time variation [s] | |
τ | Dimensionless time |
References
- Adhikari, R.; Beyragh, D.; Pahlevani, M.; Wood, D. A numerical and experimental study of a novel heat sink design for natural convection cooling of LED grow lights. Energies 2020, 13, 4046. [Google Scholar] [CrossRef]
- Chen, H.-T.; Zhang, R.-X.; Yan, W.-M.; Amani, M.; Ochodek, T. Numerical and experimental study of inverse natural convection heat transfer for heat sink in a cavity with phase change material. Int. J. Heat Mass Transf. 2024, 224, 125333. [Google Scholar] [CrossRef]
- Siddiqa, S.; Naqvi, S.B.; Azam, M.; Aly, A.M.; Molla, M. Large-eddy-simulation of turbulent buoyant flow and conjugate heat transfer in a cubic cavity with fin ribbed radiators. Numer. Heat Transfer Part A Appl. 2023, 83, 900–918. [Google Scholar] [CrossRef]
- Ma, X.; Li, C. Lubrication flow law and cooling mechanism considering cavitation in mechanical seals with Rayleigh step pattern. Appl. Therm. Eng. 2024, 258, 124755. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J. Conjugate transient flow and thermal analysis of non-isothermal rubber curing process in autoclave system. Int. J. Heat Mass Transf. 2024, 228, 125641. [Google Scholar] [CrossRef]
- Javadzadegan, A.; Joshaghani, M.; Moshfegh, A.; Akbari, O.A.; Afrouzi, H.H.; Toghraie, D. Accurate meso-scale simulation of mixed convective heat transfer in a porous media for a vented square with hot elliptic obstacle: An LBM approach. Phys. A Stat. Mech. Its Appl. 2020, 537, 122439. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Zhang, J.; Rahmani, A.; Sajadi, S.M.; Zarringhalam, M.; Toghraie, D. Numerical study of mixed convection of nanofluid inside an inlet/outlet inclined cavity under the effect of Brownian motion using Lattice Boltzmann Method (LBM). Int. Commun. Heat Mass Transf. 2021, 126, 105428. [Google Scholar] [CrossRef]
- Oh, H.; Jo, H.J. Numerical study of turbulent flow boiling heat transfer in structured cooling channels using lattice Boltzmann method with advanced outlet boundary conditions. In Proceedings of the 33rd Conference on Discrete Simulation of Fluid Dynamics, Zürich, Switzerland, 9–12 July 2024; AIP Publishing: Melville, NY, USA, 2025. Available online: https://pubs.aip.org/aip/pof/article/37/1/013349/3330671 (accessed on 13 May 2025).
- Kefayati, G. Lattice Boltzmann simulation of cavity flows driven by shear and internal heat generation for both Newtonian and viscoplastic fluids. Phys. Fluids 2023, 35, 093111. [Google Scholar] [CrossRef]
- Shojaeefard, M.H.; Jourabian, M.; Darzi, A.A.R. Rectangular heat sink filled with PCM/hybrid nanoparticles composites and cooled by intruded T-shaped cavity: Numerical investigation of thermal performance. Int. Commun. Heat Mass Transf. 2021, 127, 105527. [Google Scholar] [CrossRef]
- Yan, G.; Alizadeh, A.; Rahmani, A.; Zarringhalam, M.; Shamsborhan, M.; Nasajpour-Esfahani, N.; Akrami, M. Natural convection of rectangular cavity enhanced by obstacle and fin to simulate phase change material melting process using Lattice Boltzmann method. Alex. Eng. J. 2023, 81, 319–336. [Google Scholar] [CrossRef]
- Abouricha, N.; El Alami, M.; Gounni, A. Lattice Boltzmann Modeling of Natural Convection in a Large-Scale Cavity Heated From Below by a Centered Source. J. Heat Transf. 2019, 141, 062501. [Google Scholar] [CrossRef]
- Abouricha, N.; El Alami, M.; Souhar, K. Lattice Boltzmann modeling of convective flows in a large-scale cavity heated from below by two imposed temperature profiles. Int. J. Numer. Methods Heat Fluid Flow 2019, 30, 2759–2779. [Google Scholar] [CrossRef]
- Abouricha, N.; EL Alami, M.; Souhar, K. Numerical study of heat transfer by natural convection in a large-scale cavity heated from below. In Proceedings of the 2016 International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 14–17 November 2016; pp. 565–570. [Google Scholar] [CrossRef]
- Harizi, W.; Vitali, M.; Corvaro, F.; Marchetti, B.; Chrigui, M. Experimental and numerical study of mixed convection heat transfer in a vented cavity partially filled with a porous medium: Effects of reynolds and rayleigh numbers on Nusselt number and flow regimes. Numer. Heat Transf. Part A Appl. 2024, 86, 5006–5028. [Google Scholar] [CrossRef]
- El Alami, M. Contribution à L’étude Thermique et Dynamique des Ecoulements le Long D’une Paroi non Uniformément Chauffée Dans une Cavité à Grand Nombre de Rayleigh. Ph.D. Thesis, Indian National Science Academy, Toulouse, France, 2025. Available online: https://www.ccdz.cerist.dz/admin/notice.php?id=128900 (accessed on 10 June 2025).
- El Alami, M.; Khabbazi, A.; El Khatib, H.; Javelas, R. Ecoulements au voisinage d’une paroi non isotherme dans une cavité à grand nombre de Rayleigh (Ra~1010): Étude par similitude. Ecoul. Au Voisin. Une Paroi Non Isotherme Dans Une Cavité À Gd. Nr. Rayleigh Ra1010 Étude Par Similitude 1994, 33, 641–648. [Google Scholar]
- Li, Y.; Jin, T.; Wu, S.; Wei, J.; Xia, J.; Karayiannis, T.G. Heat transfer performance of slush nitrogen in a horizontal circular pipe. Therm. Sci. Eng. Prog. 2018, 8, 66–77. [Google Scholar] [CrossRef]
- Han, F.; Jiang, Z.; Chen, H.; Mao, J.; Ding, X. Numerical investigations on the heat transfer characteristics of pin-fin heat sink for power converters in more electric aircraft. Int. Commun. Heat Mass Transf. 2025, 164, 108866. [Google Scholar] [CrossRef]
- Yakut, R. Determining the cooling performance of the optimized nozzle electrospray cooling system with uniquely designed lattice heat sink. Int. J. Therm. Sci. 2025, 215, 109972. [Google Scholar] [CrossRef]
- Teamah, A.M.; Hamed, M.S. Numerical study of electric motors cooling using an axial air flow. J. Fluid Flow Heat Mass Transf. (JFFHMT) 2022, 9, 101–105. [Google Scholar] [CrossRef]
- Vasilev, M.P.; Abiev, R.S.; Kumar, R. Effect of circular pin-fins geometry and their arrangement on heat transfer performance for laminar flow in microchannel heat sink. Int. J. Therm. Sci. 2021, 170, 107177. [Google Scholar] [CrossRef]
- Geier, M.; Greiner, A.; Korvink, J.G. Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys. Rev. E 2006, 73, 066705. [Google Scholar] [CrossRef]
- De Rosis, A. A central moments-based lattice Boltzmann scheme for shallow water equations. Comput. Methods Appl. Mech. Eng. 2017, 319, 379–392. [Google Scholar] [CrossRef]
- De Rosis, A. Alternative formulation to incorporate forcing terms in a lattice Boltzmann scheme with central moments. Phys. Rev. E 2017, 95, 023311. [Google Scholar] [CrossRef]
- Lycett-Brown, D.; Luo, K.H. Multiphase cascaded lattice Boltzmann method. Comput. Math. Appl. 2014, 67, 350–362. [Google Scholar] [CrossRef]
- Li, Q.; Luo, K.H. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. Phys. Rev. E 2014, 89, 053022. [Google Scholar] [CrossRef] [PubMed]
- Lycett-Brown, D.; Luo, K.H. Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers. Phys. Rev. E 2016, 94, 053313. [Google Scholar] [CrossRef] [PubMed]
- Premnath, K.N.; Banerjee, S. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments. Phys. Rev. E 2009, 80, 036702. [Google Scholar] [CrossRef]
- Fei, L.; Luo, K.H. Consistent forcing scheme in the cascaded lattice Boltzmann method. Phys. Rev. E 2017, 96, 053307. [Google Scholar] [CrossRef]
- Fei, L.; Luo, K.H. Cascaded lattice Boltzmann method for thermal flows on standard lattices. Int. J. Therm. Sci. 2018, 132, 368–377. [Google Scholar] [CrossRef]
- Shah, N.; Dhar, P.; Chinige, S.K.; Geier, M.; Pattamatta, A. Cascaded collision lattice Boltzmann model (CLBM) for simulating fluid and heat transport in porous media: Numerical Heat Transfer. Numer. Heat Transf. Part B Fundam. 2017, 72, 211–232. [Google Scholar] [CrossRef]
- Sharma, K.V.; Straka, R.; Tavares, F.W. New Cascaded Thermal Lattice Boltzmann Method for simulations of advection-diffusion and convective heat transfer. Int. J. Therm. Sci. 2017, 118, 259–277. [Google Scholar] [CrossRef]
- Asinari, P. Generalized local equilibrium in the cascaded lattice Boltzmann method. Phys. Rev. E 2008, 78, 016701. [Google Scholar] [CrossRef]
- Ning, Y.; Premnath, K.N.; Patil, D.V. Numerical study of the properties of the central moment lattice Boltzmann method. Int. J. Numer. Methods Fluids 2016, 82, 59–90. [Google Scholar] [CrossRef]
- He, X.; Shan, X.; Doolen, G.D. Discrete Boltzmann equation model for nonideal gases. Phys. Rev. E 1998, 57, R13–R16. [Google Scholar] [CrossRef]
- He, X.; Luo, L.-S. Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation. J. Stat. Phys. 1997, 88, 927–944. [Google Scholar] [CrossRef]
- BWan, D.C.; Patnaik, B.S.V.; Wei, G.W. A New Benchmark Quality Solution for the Buoyancy-Driven Cavity by Discrete Singular Convolution. Numer. Heat Transf. Part B Fundam. 2001, 40, 199–228. [Google Scholar] [CrossRef]
- Davis, G.D.V. Natural convection of air in a square cavity: A benchmark numerical solution. Numer. Methods Fluids 1983, 3, 249–264. [Google Scholar] [CrossRef]
- AlAmiri, A.; Khanafer, K.; Pop, I. Buoyancy-induced flow and heat transfer in a partially divided square enclosure. Int. J. Heat Mass Transf. 2009, 52, 3818–3828. [Google Scholar] [CrossRef]
- Corvaro, F.; Paroncini, M. An experimental study of natural convection in a differentially heated cavity through a 2D-PIV system. Int. J. Heat Mass Transf. 2009, 52, 355–365. [Google Scholar] [CrossRef]
(606,513) | (909,770) | |
(606,513) | (909,770) | |
(909,770) | (1200,1060) | |
(909,770) | (1500,1360) | |
(1200,1060) | (2000,1760) |
Present Study | Wan et al. [38] | Deviation (%) | Vahl Davis [39] | Deviation (%) | |
---|---|---|---|---|---|
8.90 | 8.81 | 1 | 8.80 | 1 | |
63.14 | 64.73 | 2.40 | 64.63 | 2 | |
220.71 | 220.40 | 0.14 | 219.26 | 1 | |
16.75 | 16.72 | 0.20 | 16.75 | 1 |
Present Study | Alamiri et al. [38] | Deviation % | Present Study | Alamiri et al. [38] | Deviation % | |
---|---|---|---|---|---|---|
0.228 | 0.240 | 5 | - | - | ||
0.340 | 0.356 | 4.49 | - | - | ||
0.0275 | 0.0290 | 5.172 | 0.0165 | 0.0174 | 5.172 |
1000 | 1500 | 2000 | 2500 | 3000 | |
76.94 | 78.8 | 80.54 | 81.87 | 83.3 |
Re | 1000 | 1500 | 2000 | 2500 |
120.1 | 133.25 | 143.19 | 155.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laktaoui Amine, F.Z.; El Alami, M.; Semma, E.; Faraji, H.; Gounni, A.; Mourid, A. Advanced Numerical Analysis of Heat Transfer in Medium and Large-Scale Heat Sinks Using Cascaded Lattice Boltzmann Method. Appl. Sci. 2025, 15, 7205. https://doi.org/10.3390/app15137205
Laktaoui Amine FZ, El Alami M, Semma E, Faraji H, Gounni A, Mourid A. Advanced Numerical Analysis of Heat Transfer in Medium and Large-Scale Heat Sinks Using Cascaded Lattice Boltzmann Method. Applied Sciences. 2025; 15(13):7205. https://doi.org/10.3390/app15137205
Chicago/Turabian StyleLaktaoui Amine, Fatima Zahra, Mustapha El Alami, Elalami Semma, Hamza Faraji, Ayoub Gounni, and Amina Mourid. 2025. "Advanced Numerical Analysis of Heat Transfer in Medium and Large-Scale Heat Sinks Using Cascaded Lattice Boltzmann Method" Applied Sciences 15, no. 13: 7205. https://doi.org/10.3390/app15137205
APA StyleLaktaoui Amine, F. Z., El Alami, M., Semma, E., Faraji, H., Gounni, A., & Mourid, A. (2025). Advanced Numerical Analysis of Heat Transfer in Medium and Large-Scale Heat Sinks Using Cascaded Lattice Boltzmann Method. Applied Sciences, 15(13), 7205. https://doi.org/10.3390/app15137205