Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = air dehumidification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5214 KiB  
Article
Geothermal–Peltier Hybrid System for Air Cooling and Water Recovery
by Michele Spagnolo, Paolo Maria Congedo, Alessandro Buscemi, Gianluca Falcicchia Ferrara, Marina Bonomolo and Cristina Baglivo
Energies 2025, 18(15), 4115; https://doi.org/10.3390/en18154115 - 3 Aug 2025
Viewed by 71
Abstract
This study proposes a new air treatment system that integrates dehumidification, cooling, and water recovery using a Horizontal Air–Ground Heat Exchanger (HAGHE) combined with Peltier cells. The airflow generated by a fan flows through an HAGHE until it meets a septum on which [...] Read more.
This study proposes a new air treatment system that integrates dehumidification, cooling, and water recovery using a Horizontal Air–Ground Heat Exchanger (HAGHE) combined with Peltier cells. The airflow generated by a fan flows through an HAGHE until it meets a septum on which Peltier cells are placed, and then separates into two distinct streams that lap the two surfaces of the Peltier cells: one stream passes through the cold surfaces, undergoing both sensible and latent cooling with dehumidification; the other stream passes through the hot surfaces, increasing its temperature. The two treated air streams may then pass through a mixing chamber, where they are combined in the appropriate proportions to achieve the desired air supply conditions and ensure thermal comfort in the indoor environment. A Computational Fluid Dynamics (CFD) analysis was carried out to simulate the thermal interaction between the HAGHE and the surrounding soil. The simulation focused on a system installed under the subtropical climate conditions of Nairobi, Africa. The simulation results demonstrate that the HAGHE system is capable of reducing the air temperature by several degrees under typical summer conditions, with enhanced performance observed when the soil is moist. Condensation phenomena were triggered when the relative humidity of the inlet air exceeded 60%, contributing additional cooling through latent heat extraction. The proposed HAGHE–Peltier system can be easily powered by renewable energy sources and configured for stand-alone operation, making it particularly suitable for off-grid applications. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

42 pages, 4568 KiB  
Review
Comprehensive Review on Evaporative Cooling and Desiccant Dehumidification Technologies for Agricultural Greenhouses
by Fakhar Abbas, Muhammad Sultan, Muhammad Wakil Shahzad, Muhammad Farooq, Hafiz M. U. Raza, Muhammad Hamid Mahmood, Uzair Sajjad and Zhaoli Zhang
AgriEngineering 2025, 7(7), 222; https://doi.org/10.3390/agriengineering7070222 - 8 Jul 2025
Viewed by 1341
Abstract
Greenhouses are crucial for maintaining an ideal temperature and humidity level for plant growth; however, attaining ideal levels remains a challenge. Energy-efficient and sustainable alternatives are needed because traditional temperature/humidity control practices and vapor compression air conditioning systems depend on climate conditions and [...] Read more.
Greenhouses are crucial for maintaining an ideal temperature and humidity level for plant growth; however, attaining ideal levels remains a challenge. Energy-efficient and sustainable alternatives are needed because traditional temperature/humidity control practices and vapor compression air conditioning systems depend on climate conditions and harmful refrigerants. Advanced alternative technologies like evaporative cooling and desiccant dehumidification have emerged that maintain the ideal greenhouse temperature and humidity while using the least amount of energy. This study reviews direct evaporative cooling, indirect evaporative cooling, and Maisotsenko-cycle evaporative cooling (MEC) systems and solid and liquid desiccant dehumidification systems. In addition, integrated desiccant and evaporative cooling systems and hybrid systems are reviewed in this study. The results show that the MEC system effectively reduces the ambient temperature up to the ideal range while maintaining the humidity ratio, and both dehumidification systems effectively reduce the humidity level and improve evaporative cooling efficiency. The integrated systems and hybrid systems have the ability to increase energy efficiency and controlled climatic stability in greenhouses. Regular maintenance, initial system cost, economic feasibility, and system scalability are significant challenges to implement these advanced temperature and humidity control systems for greenhouses. These findings will assist agricultural practitioners, engineers, and researchers in seeking alternate efficient cooling methods for greenhouse applications. Future research directions are suggested to manufacture high-efficiency, low-energy consumption, and efficient greenhouse temperature control systems while considering the present challenges. Full article
Show Figures

Figure 1

25 pages, 5272 KiB  
Review
Research Progress of Heat Damage Prevention and Control Technology in Deep Mine
by Yujie Xu, Liu Chen, Jin Zhang and Haiwei Ji
Sustainability 2025, 17(13), 6200; https://doi.org/10.3390/su17136200 - 6 Jul 2025
Viewed by 339
Abstract
As mine mining extends to greater depths, the challenge of heat damage in high-temperature and high-humidity deep mines has emerged as a significant obstacle to the safe mining of deep mines. This paper reviews the causes of mine heat damage, evaluates heat damage [...] Read more.
As mine mining extends to greater depths, the challenge of heat damage in high-temperature and high-humidity deep mines has emerged as a significant obstacle to the safe mining of deep mines. This paper reviews the causes of mine heat damage, evaluates heat damage mechanisms, and explores deep mine cooling technologies. Traditional deep mine cooling technologies employ mechanical refrigeration to cool air. While these technologies can mitigate heat damage, they are associated with issues including high energy consumption, insufficient dehumidification, and significant cold loss. To address the high energy consumption and fully utilize geothermal resources, heat pump technology and combined cooling, heating, and power technology are employed to recover waste heat from deep mines, thereby achieving efficient mine cooling and energy utilization. To enhance the effectiveness of air dehumidification, the integration of deep dehumidification with mine cooling technology addresses the high humidity ratio in mine working faces. To enhance the refrigeration capacity of the system, liquid-phase-change refrigeration technology is employed to boost the refrigeration capacity. For the future development of deep mine cooling technology, this paper identifies four key directions: the integration of diverse technologies, collaboration cooling and geothermal mining, deep dehumidification and cooling, and intelligent control. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

8 pages, 1856 KiB  
Proceeding Paper
COP Enhancement of Peltier-Based Dehumidifiers
by Srithar Karuppiah, Venkatesan Raman, Rajkumar Natarajan and Saravanan Rajagopal
Eng. Proc. 2025, 95(1), 8; https://doi.org/10.3390/engproc2025095008 - 4 Jun 2025
Viewed by 447
Abstract
A vital procedure for eliminating moisture from the air, dehumidification is necessary for processes like desalination and air conditioning. The Peltier dehumidifier, sometimes referred to as a thermoelectric dehumidifier, removes moisture using the Peltier effect to generate a temperature differential across a Peltier [...] Read more.
A vital procedure for eliminating moisture from the air, dehumidification is necessary for processes like desalination and air conditioning. The Peltier dehumidifier, sometimes referred to as a thermoelectric dehumidifier, removes moisture using the Peltier effect to generate a temperature differential across a Peltier module. Nevertheless, inadequate heat removal from the hot side of the module and a low coefficient of performance (COP) are common problems with Peltier-based dehumidifiers. By combining baffles or turbulators with Peltier plates to increase heat transfer rates, this study overcomes these drawbacks and raises the dehumidifier’s COP and thermal enhancement factor (TEF). On the hot side of the Peltier module, airfoil-shaped baffles are used in the experimental setup to enhance heat dissipation and speed up turbulence. Performance significantly improved, as evidenced by the findings, with the TEF rising to 3.2. Furthermore, the COP improved from 0.06 to 0.45, and the water condensation rate rose to a high of 35 mL per hour. These improvements are ascribed to the higher heat transfer rates made possible by the baffles, which enable the more effective cooling of the Peltier module’s cold side. This study demonstrates how turbulators can increase Peltier-based dehumidifiers’ effectiveness and make them more practical for industrial settings, especially in areas with limited water supplies. According to the results, thermoelectric dehumidification systems can function much better overall if heat transmission on the Peltier module’s hot side is optimized. Full article
Show Figures

Figure 1

26 pages, 5712 KiB  
Article
Investigation on the Role of Drying Air Humidity and Process Parameters in Shaping the Conditions of Spray Drying Using Model Feed Materials
by Alicja Barańska-Dołomisiewicz, Aleksandra Jedlińska and Katarzyna Samborska
Appl. Sci. 2025, 15(10), 5761; https://doi.org/10.3390/app15105761 - 21 May 2025
Viewed by 441
Abstract
A three-stage research using distilled water and maltodextrin as model feed solutions was conducted to study the influence of inlet air humidity on spray drying performance. In the first and second stage, spray drying of distilled water and 30% (solids, w/w [...] Read more.
A three-stage research using distilled water and maltodextrin as model feed solutions was conducted to study the influence of inlet air humidity on spray drying performance. In the first and second stage, spray drying of distilled water and 30% (solids, w/w) MD solutions were tested at variable feed rate (0.16–0.83 mL/s), inlet air humidity (0.1–0.3, 1.1–1.3, 9–10 g/m3) and inlet air temperature (80–120 °C). In the third stage, the optimization of MD solutions spray drying process variables (80–120 °C inlet air temperature, 0.1–0.3, 1.1–1.3, 9–10 g/m3 inlet air humidity, 10–30% feed solution concentration) were verified for maximum powder recovery and powders of low moisture content and activity. It was noted that inlet air humidity influenced the spray drying performance. Reduced humidity improved the process conditions, but the most satisfying powder properties were noted at 120 °C, thus decreasing inlet air temperature was not necessary to ameliorate the process performance. Optimization in the third stage of the study enabled us to estimate the most satisfying properties of maltodextrin powders. The highest powder recovery and the lowest moisture content and water activity were optimal for spray drying at inlet air temperature of 120 °C, inlet air humidity of 0.1 g/m3, and feed solution concentration of 29.571%. Full article
Show Figures

Figure 1

21 pages, 5567 KiB  
Article
Experimental Testing of a Heat Exchanger with Composite Material for Deep Dehumidification
by Valeria Palomba, Antonio Fotia, Fabio Costa, Davide La Rosa and Vincenza Brancato
Energies 2025, 18(10), 2418; https://doi.org/10.3390/en18102418 - 8 May 2025
Viewed by 554
Abstract
Deep dehumidification is crucial for industrial applications requiring ultra-low humidity levels. Traditional cooling-based dehumidification struggles to achieve low dew points efficiently due to excessive energy consumption and frost formation risks. As an alternative, desiccant-based methods, particularly solid desiccant systems, offer improved performance with [...] Read more.
Deep dehumidification is crucial for industrial applications requiring ultra-low humidity levels. Traditional cooling-based dehumidification struggles to achieve low dew points efficiently due to excessive energy consumption and frost formation risks. As an alternative, desiccant-based methods, particularly solid desiccant systems, offer improved performance with lower energy demands. This study experimentally investigates a fixed-bed dehumidification system utilizing a plate-fin heat exchanger filled with a silica gel/calcium chloride composite material. The performance evaluation focuses on the influence of ambient conditions and operating parameters, including air velocity and cooling fluid temperature. Among these, the most influential parameter was the velocity of air. For the tested heat exchanger, an optimum value in the range of 0.4–0.6 m/s was identified. Under optimal conditions, the tested HEX was able to reduce the dew point of air down to −2 °C, achieving a reduction in the humidity ratio up to 13 g/kg. The results indicate that air velocity significantly impacts also heat and mass transfer, with coefficients ranging from 80 to 140 W/(m2 K) and 0.015 to 0.060 kg/(m2 s), respectively. The findings highlight the potential of composite desiccant fixed-bed systems for efficient deep dehumidification, outperforming conventional lab-scale components in heat and mass transfer effectiveness. A comparison with other works in the literature indicated that up to 30% increased mass transfer coefficient was achieved and up to seven times higher heat transfer coefficient was measured. Full article
Show Figures

Figure 1

25 pages, 11601 KiB  
Article
Experimental Analysis of Energy Savings in a Combined Rotary Desiccant Dehumidifier with a Purge Section
by Jeongsu Yang and YoungIl Kim
Sustainability 2025, 17(9), 4126; https://doi.org/10.3390/su17094126 - 2 May 2025
Viewed by 727
Abstract
This study focuses on improving the performance of desiccant dehumidifiers using desiccant rotors, which are widely utilized in various industries, such as manufacturing, food, and construction, to enhance product quality and production efficiency. The combined desiccant dehumidifier can reduce energy consumption compared to [...] Read more.
This study focuses on improving the performance of desiccant dehumidifiers using desiccant rotors, which are widely utilized in various industries, such as manufacturing, food, and construction, to enhance product quality and production efficiency. The combined desiccant dehumidifier can reduce energy consumption compared to traditional standard or purge dehumidifiers. The system operates in normal mode during seasons with high outdoor humidity and in purge mode during seasons with low outdoor humidity. By utilizing dampers, the air passing through the dry desiccant rotor can either be directly discharged indoors or supplied to the regeneration section, allowing the system to operate in two modes within a single unit. The first part of the study involved comparing the performance of the equipment through experiments. The second part compared the results from the dehumidifier rotor performance simulation program to check for deviations and validate its effectiveness. In the first experiment, the energy consumption of the standard desiccant dehumidifier in normal mode was compared with that of the combined desiccant dehumidifier in normal mode. In the second experiment, the energy consumption of the standard desiccant dehumidifier in normal mode was compared with that of the combined desiccant dehumidifier in purge mode. The airflow, temperature, and humidity values used in each experiment were analyzed using a dehumidification performance simulation program, and the deviation was found to be within 10%. Therefore, the performance analysis via simulation was considered valid. The dehumidification performance of the combined desiccant dehumidifier was found to be 5% more efficient than the traditional standard desiccant dehumidifier and 9.5% more efficient than the purge dehumidifier. Furthermore, energy consumption simulations were conducted for representative regions in Korea. The results showed energy reductions of 65% in Seoul, 65% in Daejeon, and 67% in Busan. The findings of this study suggest that energy savings can be achieved by appropriately adjusting the operation mode between normal and purge modes based on outdoor conditions. Full article
(This article belongs to the Topic Sustainable Energy Systems)
Show Figures

Figure 1

19 pages, 5605 KiB  
Article
Toward a Sustainable Indoor Environment: Coupling Geothermal Cooling with Water Recovery Through EAHX Systems
by Cristina Baglivo, Alessandro Buscemi, Michele Spagnolo, Marina Bonomolo, Valerio Lo Brano and Paolo Maria Congedo
Energies 2025, 18(9), 2297; https://doi.org/10.3390/en18092297 - 30 Apr 2025
Viewed by 480
Abstract
This study presents a preliminary analysis of an innovative system that combines indoor air conditioning with water recovery and storage. The device integrates Peltier cells with a horizontal Earth-to-Air Heat Exchanger (EAHX), exploiting the ground stable temperature to enhance cooling and promote condensation. [...] Read more.
This study presents a preliminary analysis of an innovative system that combines indoor air conditioning with water recovery and storage. The device integrates Peltier cells with a horizontal Earth-to-Air Heat Exchanger (EAHX), exploiting the ground stable temperature to enhance cooling and promote condensation. Warm, humid air is pre-cooled via the geothermal pipe, then split by a fan into two streams: one passes over the cold side of the Peltier cells for cooling and dehumidification, while the other flows over the hot side and heats up. The two airstreams are then mixed in a water storage tank, which also serves as a thermal mixing chamber to regulate the final air temperature. The analysis investigates the influence of soil thermal conditions on condensation within the horizontal pipe and the resulting cooling effect in indoor spaces. A hybrid simulation approach was adopted, coupling a 3D model implemented in COMSOL Multiphysics® with a 1D analytical model. Boundary conditions and meteorological data were based on the Typical Meteorological Year (TMY) for Palermo. Two scenarios were considered. In Case A, during the hours when air conditioning is not operating (between 11 p.m. and 9 a.m.), air is circulated in the exchanger to pre-cool the ground and the air leaving the exchanger is rejected into the environment. In Case B, the no air is not circulated in the heat exchanger during non-conditioning periods. Results from the June–August period show that the EAHXs reduced the average outdoor air temperature from 27.81 °C to 25.45 °C, with relative humidity rising from 58.2% to 66.66%, while maintaining nearly constant specific humidity. The system exchanged average powers of 102 W (Case A) and 96 W (Case B), corresponding to energy removals of 225 kWh and 212 kWh, respectively. Case A, which included nighttime soil pre-cooling, showed a 6% increase in efficiency. Condensation water production values range from around 0.005 g/s with one Peltier cell to almost 0.5 g/s with seven Peltier cells. As the number of Peltier cells increases, the cooling effect becomes more pronounced, reducing the output temperature considerably. This solution is scalable and well-suited for implementation in developing countries, where it can be efficiently powered by stand-alone photovoltaic systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

35 pages, 5370 KiB  
Review
Review Analysis for the Energy Performance of Integrated Air-Conditioning Systems
by Faisal Alghamdi and Moncef Krarti
Energies 2025, 18(7), 1611; https://doi.org/10.3390/en18071611 - 24 Mar 2025
Cited by 1 | Viewed by 1773
Abstract
In response to the significant increase in cooling needs for the built environment due to climate change, hybrid air conditioning units can provide energy efficient alternatives to vapor compression systems. This paper reviews the reported energy performance of integrated air conditioning systems consisting [...] Read more.
In response to the significant increase in cooling needs for the built environment due to climate change, hybrid air conditioning units can provide energy efficient alternatives to vapor compression systems. This paper reviews the reported energy performance of integrated air conditioning systems consisting of three types of hybrid options: direct expansion (DX) combined with evaporative cooling, DX with desiccant, and evaporative cooling combined with desiccant. In addition, the reported analyses of integrating these hybrid systems with phase change materials (PCMs) and/or photovoltaic (PV) systems are considered. The evaluated analyses generally confirm that integrated air conditioning systems offer substantial energy saving potential compared to traditional vapor compression cooling units, resulting in substantial economic and environmental benefits. Specifically, hybrid systems can reduce the annual energy consumption for space cooling by 87% compared to traditional air conditioning units. This review analysis indicates that hybrid systems can have a coefficient of performance (COP) ranging from 6 to 16 compared to merely 3 to 5 for conventional systems. Additionally, liquid desiccant cooling systems have reported notable improvements in dehumidification efficiency and energy savings, with payback periods as low as three years. Future work should focus more on real-building applications and on conducting more comprehensive cost–benefit analyses, especially when integrating more than two technologies together. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Performance in Buildings)
Show Figures

Figure 1

12 pages, 4060 KiB  
Article
Experimental Investigation of Rotating Wheel Speed and Regeneration Temperature Effects on Marine Dual-Stage Desiccant Dehumidification Fresh-Air Pre-Treatment System Performance
by Guanghai Yang, Wensheng Yu, Wu Chen and Shilong Jiao
Processes 2025, 13(3), 669; https://doi.org/10.3390/pr13030669 - 27 Feb 2025
Viewed by 668
Abstract
Marine air-conditioning systems face high energy consumption, particularly in humid marine environments. This study is an experimental investigation of the effects of rotating wheel speed and regeneration temperature on the performance of the system, which is a dual-stage desiccant dehumidification fresh-air pre-treatment system [...] Read more.
Marine air-conditioning systems face high energy consumption, particularly in humid marine environments. This study is an experimental investigation of the effects of rotating wheel speed and regeneration temperature on the performance of the system, which is a dual-stage desiccant dehumidification fresh-air pre-treatment system using ship waste heat as the regeneration heat source and seawater-assisted cooling to improve the efficiency of energy use. The results showed that the dehumidification capacity and efficiency of the system improved with an increase in the rotating wheel speed from 6 to 10 r/h and in the regeneration temperature from 80 °C to 110 °C. Optimal performance was achieved with a rotating wheel speed of 10 r/h and a regeneration temperature of 110 °C, balancing the maximum dehumidification capacity, energy efficiency, and waste heat utilization. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

18 pages, 2701 KiB  
Article
Stability of Adsorbent Sheets Under Accelerated-Aging Tests for Open-Cycle Adsorption Processes
by Emanuela Mastronardo, Stefano De Antonellis, Angelo Freni, Candida Milone and Luigi Calabrese
Energies 2025, 18(5), 1023; https://doi.org/10.3390/en18051023 - 20 Feb 2025
Cited by 1 | Viewed by 622
Abstract
This study aims to assess the stability of silica gel/polymer composites designed for open-cycle air dehumidification, humidification, and heat storage by employing a comprehensive set of characterization methods. To evaluate their resistance to various environmental factors, the materials were subjected to a series [...] Read more.
This study aims to assess the stability of silica gel/polymer composites designed for open-cycle air dehumidification, humidification, and heat storage by employing a comprehensive set of characterization methods. To evaluate their resistance to various environmental factors, the materials were subjected to a series of aging treatments: (i) repeated adsorption/desorption cycles under representative operational conditions; (ii) post-drying at 30 °C, 40 °C, and 60 °C; (iii) immersion in water for 30 days; (iv) exposure to a salt–fog environment for 30 days; and (v) accelerated aging by alternation between wet and dry cycles. Prolonged exposure to liquid water significantly reduced the material’s stability, resulting in an 83% reduction in tensile strength after 30 days of immersion. However, discontinuous exposure to liquid water at low drying temperatures did not critically affect the material’s mechanical properties during wet/dry cycles. Furthermore, post-drying (performed at 22 °C and 50% RH) allows the recovery of mechanical performance, with a tensile strength reached comparable to those of the unaged composites. Similarly, adsorption/desorption cycles in water vapor did not trigger degradation in the material, with its water vapor adsorption capacity remaining comparable to the unaged material after 100 cycles. The results confirm the reliability of these composite materials as to their potential uses in open-cycle dehumidification, humidification, and heat-storage applications. Full article
Show Figures

Figure 1

21 pages, 5719 KiB  
Article
Exergy Analysis of a Convective Heat Pump Dryer Integrated with a Membrane Energy Recovery Ventilator
by Anand Balaraman, Md Ashiqur Rahman, Davide Ziviani and David M. Warsinger
Entropy 2025, 27(2), 197; https://doi.org/10.3390/e27020197 - 13 Feb 2025
Viewed by 1199
Abstract
To increase energy efficiency, heat pump dryers and membrane dryers have been proposed to replace conventional fossil fuel dryers. Both conventional and heat pump dryers require substantial energy for condensing and reheating, while “active” membrane systems require vacuum pumps that are insufficiently developed. [...] Read more.
To increase energy efficiency, heat pump dryers and membrane dryers have been proposed to replace conventional fossil fuel dryers. Both conventional and heat pump dryers require substantial energy for condensing and reheating, while “active” membrane systems require vacuum pumps that are insufficiently developed. Lower temperature dehumidification systems make efficient use of membrane energy recovery ventilators (MERVs) that do not need vacuum pumps, but their high heat losses and lack of vapor selectivity have prevented their use in industrial drying. In this work, we propose an insulating membrane energy recovery ventilator for moisture removal from drying exhaust air, thereby reducing sensible heat loss from the dehumidification process and reheating energy. The second law analysis of the proposed system is carried out and compared with a baseline convective heat pump dryer. Irreversibilities in each component under different ambient temperatures (5–35 °C) and relative humidity (5–95%) are identified. At an ambient temperature of 35 °C, the proposed system substantially reduces sensible heat loss (47–60%) in the dehumidification process, resulting in a large reduction in condenser load (45–50%) compared to the baseline system. The evaporator in the proposed system accounts for up to 59% less irreversibility than the baseline system. A maximum of 24.5% reduction in overall exergy input is also observed. The highest exergy efficiency of 10.2% is obtained at an ambient condition of 35 °C and 5% relative humidity, which is more than twice the efficiency of the baseline system under the same operating condition. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Energy Systems)
Show Figures

Figure 1

42 pages, 7520 KiB  
Review
Applications of MOF-Based Nanocomposites in Heat Exchangers: Innovations, Challenges, and Future Directions
by Talha Bin Nadeem, Muhammad Imran and Emad Tandis
Nanomaterials 2025, 15(3), 205; https://doi.org/10.3390/nano15030205 - 27 Jan 2025
Cited by 3 | Viewed by 2110
Abstract
Metal–organic frameworks (MOFs) have garnered significant attention in recent years for their potential to revolutionize heat exchanger performance, thanks to their high surface area, tunable porosity, and exceptional adsorption capabilities. This review focuses on the integration of MOFs into heat exchangers to enhance [...] Read more.
Metal–organic frameworks (MOFs) have garnered significant attention in recent years for their potential to revolutionize heat exchanger performance, thanks to their high surface area, tunable porosity, and exceptional adsorption capabilities. This review focuses on the integration of MOFs into heat exchangers to enhance heat transfer efficiency, improve moisture management, and reduce energy consumption in Heating, Ventilation and Air Conditioning (HVAC) and related systems. Recent studies demonstrate that MOF-based coatings can outperform traditional materials like silica gel, achieving superior water adsorption and desorption rates, which is crucial for applications in air conditioning and dehumidification. Innovations in synthesis techniques, such as microwave-assisted and surface functionalization methods, have enabled more cost-effective and scalable production of MOFs, while also enhancing their thermal stability and mechanical strength. However, challenges related to the high costs of MOF synthesis, stability under industrial conditions, and large-scale integration remain significant barriers. Future developments in hybrid nanocomposites and collaborative efforts between academia and industry will be key to advancing the practical adoption of MOFs in heat exchanger technologies. This review aims to provide a comprehensive understanding of current advancements, challenges, and opportunities, with the goal of guiding future research toward more sustainable and efficient thermal management solutions. Full article
(This article belongs to the Special Issue Metal Organic Framework (MOF)-Based Micro/Nanoscale Materials)
Show Figures

Figure 1

24 pages, 9561 KiB  
Article
Theoretical and Experimental Study of Positive-Pressure Condensation Heat and Mass Transfer Processes in Bent-Tube Heat Exchangers
by Jiaming Xing and Qing Cheng
Buildings 2025, 15(1), 83; https://doi.org/10.3390/buildings15010083 - 30 Dec 2024
Cited by 1 | Viewed by 1035
Abstract
Condensation dehumidification is currently the mainstream means of dehumidification, and the idea is to precipitate moisture by cooling the air below the dew point temperature; however, this process requires the use of a chiller to provide a low-temperature cooling source, which triggers reheat [...] Read more.
Condensation dehumidification is currently the mainstream means of dehumidification, and the idea is to precipitate moisture by cooling the air below the dew point temperature; however, this process requires the use of a chiller to provide a low-temperature cooling source, which triggers reheat losses. By positive-pressure condensation, the dew point temperature can be increased, thereby increasing the cooling source temperature. In this paper, the dehumidification process in the bent-tube heat exchanger is investigated theoretically and experimentally. The bent-tube heat exchanger efficiently removes moisture from the air and increases the dehumidification efficiency through positive-pressure condensation. Experiments on positive-pressure condensation and dehumidification were conducted at varying pressures, with the results demonstrating that the model’s accuracy is within ±17%. As the fluid flow rate and pipe diameter rise, so do the dehumidification capacity and heat transfer coefficient. Furthermore, the findings show that the air humidity after dehumidification drops from 16.2 g/kg to 12.9 g/kg, meaning it is just over half of the value at atmospheric pressure, within the pressure that ranges from 100 kPa to 800 kPa. Increasing pressure enhances the heat transfer coefficient, while increasing humidity exacerbates this effect. With a 20% increase in wet air humidity, the heat transfer coefficient varies between 18% and 37%. Full article
(This article belongs to the Special Issue Research on Indoor Air Environment and Energy Conservation)
Show Figures

Figure 1

17 pages, 10644 KiB  
Article
Research on the Green Construction Technology of Stilt Houses Based on the Climate Adaptation of Transitional Seasons
by Ning Zhang, Yunzhu Cai, Yue Jin, Hua Cai, Yingfeng Qin, Wenxuan Li, Yue Ren, Junshi He and Ziyi Liu
Buildings 2024, 14(11), 3415; https://doi.org/10.3390/buildings14113415 - 27 Oct 2024
Cited by 1 | Viewed by 1818
Abstract
Stilt houses are extremely adaptable to terrain and climate. However, current indoor thermal environment research in transitional seasons is not prominent. Therefore, in this research, a typical stilt house in southwest China was chosen as the research object and analyzed by combining Climate [...] Read more.
Stilt houses are extremely adaptable to terrain and climate. However, current indoor thermal environment research in transitional seasons is not prominent. Therefore, in this research, a typical stilt house in southwest China was chosen as the research object and analyzed by combining Climate Consultant climate analysis software and field measurement data. The results showed that the indoor thermal stability of a stilt house was excellent during the transition season, and the attic had the most obvious climate regulation, with the maximum temperature difference between indoors and outdoors being 9 °C when the outdoor temperature was the highest. The difference between the mean radiant temperature and the average air temperature was only 0.04 °C, and the radiant effect of the enclosure on the interior was small. The indoor relative humidity ranged from 63.2% to 85.1%, showing high relative humidity, but the fluctuation was relatively stable. Stilt floors did not play a significant role in climate regulation during the transition season, and the semi-open space structure was more prone to moisture accumulation when the outdoor humidity was high. Regarding practical application, the climate adaptation strategies of shading, cooling, and dehumidification were applied in the transition season, but dehumidification was ineffective. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop