Geothermal–Peltier Hybrid System for Air Cooling and Water Recovery
Abstract
1. Introduction
2. Materials and Methods
2.1. Pre-Treatment Phase: The HAGHE Model
- -
- is the average annual temperature.
- -
- is the annual temperature range/2.
- -
- is the days with the lowest temperatures.
- -
- is the hours of the year in question.
- -
- is the diffusivity of the soil.
- -
- is the burial depth.
- -
- is the period of the sinusoid.
2.2. Post-Treatment Phase: The Peltier Cells
- Qc: cooling power transferred from the cold side of the Peltier cell (W).
- W: electrical power absorbed by the module (W).
3. Results and Discussion
3.1. Analysis of the HAGHE System
3.2. Analysis of the HAGHE–Peltier System
3.3. Optimisation of Results: Regulation Technique
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Specific heat of soil [J·kg−1·K−1] | |
Mass flow rate of water [g·h−1] | |
Annual average value of the air temperature [K] | |
Annual temperature range/2 [K] | |
Days with the lowest temperature [K] | |
Hours of the year [h] | |
Burial depth [m] | |
Max temperature difference at , and Q = 0 W [°C] | |
Max current at [A] | |
Max voltage at [V] | |
Max cooling capacity at , and T = 0 °C [W] | |
Greek letters | |
Thermal diffusivity of soil [m2·s−1] | |
Thermal conductivity of soil [W·m−1·K−1] | |
Density of soil [kg·m−3] | |
Period of the sinusoid [day] | |
Acronyms | |
EAHX | Earth-to-Air Heat Exchanger system |
HAGHE | Horizontal Air–Ground Heat Exchanger system |
References
- Kumar, A.; Alam, T. A review on geothermal energy systems and various approaches to enhance the system’s performance. Energy Build. 2025, 344, 115962. [Google Scholar] [CrossRef]
- Nkinyam, C.M.; Ujah, C.O.; Asadu, C.O.; Kallon, D.V. Exploring Geothermal Energy as a Sustainable Source of Energy: A systemic Review. Unconv. Resour. 2025, 6, 100149. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Abdeltwab, M.M.; Tawfik, M.H.M. Ground-source heat pumps (GSHPs): Materials, models, applications, and sustainability. Energy Build. 2023, 299, 113560. [Google Scholar] [CrossRef]
- Ben, H.; Brown, C.S.; Kolo, I.; Falcone, G.; Walker, S. Decarbonising well-insulated buildings in a warming climate: The case of adaptive thermal comfort with geothermal space heating. Energy Build. 2024, 319, 114466. [Google Scholar] [CrossRef]
- Violante, A.C.; Donato, F.; Guidi, G.; Proposito, M. Comparative life cycle assessment of the ground source heat pump vs air source heat pump. Renew. Energy 2022, 188, 1029–1037. [Google Scholar] [CrossRef]
- Bina, S.M.; Fujii, H.; Qaisova, D.; Lein, R.; Rahmatov, J.; Inagaki, F. Ground source heat pump systems in Central Asia: A case study from Dushanbe, Tajikistan. Geothermics 2025, 128, 10328. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Wang, Y.; Tu, J. An integrated predictive model of the long-term performance of ground source heat pump (GSHP) systems. Energy Build. 2018, 159, 309–318. [Google Scholar] [CrossRef]
- Zhou, S.; Jia, H.; Zhou, B.; Liu, J.; Cui, P.; Yu, M. Study on the ground temperature response induced by GSHP system operation under different geological conditions. Geothermics 2025, 130, 103333. [Google Scholar] [CrossRef]
- Bhutta, M.M.A.; Hayat, N.; Bashir, M.H.; Khan, A.R.; Ahmad, K.N.; Khan, S. CFD applications in various heat exchangers design: A review. Appl. Therm. Eng. 2012, 32, 1–12. [Google Scholar] [CrossRef]
- Congedo, P.M.; Lorusso, C.; Baglivo, C.; Milanese, M.; Raimondo, L. Experimental validation of horizontal air-ground heat exchangers (HAGHE) for ventilation systems. Geothermics 2019, 80, 78–85. [Google Scholar] [CrossRef]
- Bordignon, S.; Carnieletto, L.; Zarrella, A. An all-in-one machine coupled with a horizontal ground heat exchanger for the air conditioning of a residential building. Build. Environ. 2022, 207, 108558. [Google Scholar] [CrossRef]
- Tong, C.; Li, X.; Ju, H.; Duanmu, L.; Huang, C. A hybrid numerical model for horizontal ground heat exchanger. Renew. Energy 2024, 230, 120825. [Google Scholar] [CrossRef]
- Lamarche, L.; Beauchamp, B. A new contribution to the finite line-source model for geothermal boreholes. Energy Build. 2007, 39, 188–198. [Google Scholar] [CrossRef]
- Priarone, A.; Fossa, M. Modeling the ground volume for numerically generating single borehole heat exchanger response factors according to the cylindrical source approach. Geothermics 2015, 58, 32–38. [Google Scholar] [CrossRef]
- Buscemi, A.; Beccali, M.; Guarino, S.; Brano, V.L. Coupling a road solar thermal collector and borehole thermal energy storage for building heating: First experimental and numerical results. Energy Convers. Manag. 2023, 291, 117279. [Google Scholar] [CrossRef]
- Misra, R.; Bansal, V.; Agrawal, G.D.; Mathur, J.; Aseri, T. Transient analysis based determination of derating factor for Earth Air Tunnel Heat Exchanger in winter. Energy Build. 2013, 58, 76–85. [Google Scholar] [CrossRef]
- Misra, R.; Bansal, V.; Agrawal, G.D.; Mathur, J.; Aseri, T. Transient analysis based determination of derating factor for earth air tunnel heat exchanger in summer. Energy Build. 2013, 58, 103–110. [Google Scholar] [CrossRef]
- Chiesa, G. EAHX–Earth-to-air heat exchanger: Simplified method and KPI for early building design phases. Build. Environ. 2018, 144, 142–158. [Google Scholar] [CrossRef]
- Li, J.; Jimenez-Bescos, C.; Calautit, J.K.; Yao, J. Evaluating the energy-saving potential of earth-air heat exchanger (EAHX) for Passivhaus standard buildings in different climates in China. Energy Build. 2023, 288, 113005. [Google Scholar] [CrossRef]
- Ougazzou, M.; El Maakoul, A.; Khay, I.; Degiovanni, A.; Bakhouya, M. Techno-economic and environmental analysis of a ground source heat pump for heating and cooling in Moroccan climate regions. Energy Convers. Manag. 2024, 304, 118250. [Google Scholar] [CrossRef]
- Saleem, A.; Ambreen, T.; Ugalde-Loo, C.E. Energy storage-integrated ground-source heat pumps for heating and cooling applications: A systematic review. J. Energy Storage 2024, 102, 114097. [Google Scholar] [CrossRef]
- Wakil, M.; Sghiouri, H.; Mghazli, M.O.; El Mghari, H.; Bakhouya, M.; Kaitouni, S.I. Integrating EAHX and ventilation systems through a decision-making algorithm for enhanced energy efficiency and thermal comfort in smart buildings. Energy Convers. Manag. 2025, 325, 119411. [Google Scholar] [CrossRef]
- Ghosal, M.K.; Tiwari, G.N. Modeling and parametric studies for thermal performance of an earth to air heat exchanger integrated with a greenhouse. Energy Convers. Manag. 2006, 47, 1779–1798. [Google Scholar] [CrossRef]
- Mannella, G.A.; La Carrubba, V.; Brucato, V. Peltier cells as temperature control elements: Experimental characterization and modeling. Appl. Therm. Eng. 2014, 63, 234–245. [Google Scholar] [CrossRef]
- Casano, G.; Piva, S. Experimental investigation of the performance of a thermoelectric generator based on Peltier cells. Exp. Therm. Fluid Sci. 2011, 35, 660–669. [Google Scholar] [CrossRef]
- Shi, L.; Abed, A.M.; Fayed, M.; Abdulghani, Z.R.; Anqi, A.E.; Khadimallah, M.A.; Moria, H.; Wae-Hayee, M. Economic cost analysis of air-cooling process using different numbers of Peltier modules; Experimental case study. Case Stud. Therm. Eng. 2023, 41, 102627. [Google Scholar] [CrossRef]
- Freire, L.O.; Navarrete, L.M.; Corrales, B.P.; Castillo, J.N. Efficiency in thermoelectric generators based on Peltier cells. Energy Rep. 2021, 7, 355–361. [Google Scholar] [CrossRef]
- Dipova, N. Design and development of peltier assisted infrared drying based soil moisture content device. KSCE J. Civ. Eng. 2019, 23, 29–36. [Google Scholar] [CrossRef]
- Congedo, P.M.; Baglivo, C.; Negro, G. A New Device Hypothesis for Water Extraction from Air and Basic Air Condition System in 487 Developing Countries. Energies 2021, 14, 4507. [Google Scholar] [CrossRef]
- Baglivo, C.; Buscemi, A.; Spagnolo, M.; Bonomolo, M.; Lo Brano, V.; Congedo, P.M. Toward a Sustainable Indoor Environment: Coupling Geothermal Cooling with Water Recovery Through EAHX Systems. Energies 2025, 18, 2297. [Google Scholar] [CrossRef]
- Meteonorm; Handbook part I: Software; Meteotest: Bern, Switzerland, 2020.
- Remund, J.S.C.M.; Müller, S.C.; Schilter, C.; Rihm, B. The use of Meteonorm weather generator for climate change studies. In Proceedings of the 10th European Conference on Applications of Meteorology (ECAM), Zürich, Switzerland, 13–17 September 2010. [Google Scholar]
- Meteonorm. Global Meteorological Database; Meteotest: Bern, Switzerland, 2012; Available online: https://meteonorm.com/en/ (accessed on 26 June 2025).
- Congedo, P.M.; Lorusso, C.; De Giorgi, M.G.; Laforgia, D. Computational fluid dynamic modeling of horizontal air-ground heat exchangers (HAGHE) for HVAC systems. Energies 2014, 7, 8465–8482. [Google Scholar] [CrossRef]
Cells | Faces | Nodes |
---|---|---|
2,814,400 | 8,531,488 | 2,903,730 |
[Kg/m3] | [W/m·K] | [J/kg·K] | [m2/day] |
---|---|---|---|
1850 | 2.00 | 1340 | 6.97 × |
[K] | [K] | [Day] | [Day] |
---|---|---|---|
292.02 | 293.9 | 359 | 365 |
Operating Temperature | −150 °C to +200 °C |
External Depth | 3.3 mm |
External Length/Height | 40 mm |
83 W | |
73 °C | |
Internal Resistance | 2.44 Ω ± 10% |
6.7 A | |
20 V | |
Solder Melting Point | 232 °C |
Max Compress. | 1 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spagnolo, M.; Congedo, P.M.; Buscemi, A.; Falcicchia Ferrara, G.; Bonomolo, M.; Baglivo, C. Geothermal–Peltier Hybrid System for Air Cooling and Water Recovery. Energies 2025, 18, 4115. https://doi.org/10.3390/en18154115
Spagnolo M, Congedo PM, Buscemi A, Falcicchia Ferrara G, Bonomolo M, Baglivo C. Geothermal–Peltier Hybrid System for Air Cooling and Water Recovery. Energies. 2025; 18(15):4115. https://doi.org/10.3390/en18154115
Chicago/Turabian StyleSpagnolo, Michele, Paolo Maria Congedo, Alessandro Buscemi, Gianluca Falcicchia Ferrara, Marina Bonomolo, and Cristina Baglivo. 2025. "Geothermal–Peltier Hybrid System for Air Cooling and Water Recovery" Energies 18, no. 15: 4115. https://doi.org/10.3390/en18154115
APA StyleSpagnolo, M., Congedo, P. M., Buscemi, A., Falcicchia Ferrara, G., Bonomolo, M., & Baglivo, C. (2025). Geothermal–Peltier Hybrid System for Air Cooling and Water Recovery. Energies, 18(15), 4115. https://doi.org/10.3390/en18154115