Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = air compressor pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 16089 KB  
Article
Broadband Sound Insulation Enhancement Using Multi-Layer Thin-Foil Acoustic Membranes: Design and Experimental Validation
by Chun Gong, Faisal Rafique and Fengpeng Yang
Appl. Sci. 2025, 15(17), 9279; https://doi.org/10.3390/app15179279 - 23 Aug 2025
Viewed by 54
Abstract
This study presents an acoustic membrane design utilizing a thin foil sound resonance mechanism to enhance sound absorption and insulation performance. The membranes incorporate single-layer and double-layer structures featuring parallel foil square wedge-shaped coffers and a flat bottom panel, separated by air cavities. [...] Read more.
This study presents an acoustic membrane design utilizing a thin foil sound resonance mechanism to enhance sound absorption and insulation performance. The membranes incorporate single-layer and double-layer structures featuring parallel foil square wedge-shaped coffers and a flat bottom panel, separated by air cavities. The enclosed air cavity significantly improves the sound insulation capability of the acoustic membrane. Parametric studies were conducted to investigate key factors affecting the sound transmission loss (STL) of the proposed acoustic membrane. The analysis examined the influence of foil thickness, substrate thickness, and back cavity depth on acoustic performance. Results demonstrate that the membrane structure enriches vibration modes in the 500–6000 Hz frequency range, exhibiting multiple acoustic attenuation peaks and broader noise reduction bandwidth (average STL of 40–55 dB across the researched frequency range) compared to conventional resonant cavities and membrane-type acoustic metamaterials. The STL characteristics can be tuned across different frequency bands by adjusting the back cavity depth, foil thickness, and substrate thickness. Experimental validation was performed through noise reduction tests on an air compressor pump. Comparative acoustic measurements confirmed the superior noise attenuation performance and practical applicability of the proposed membrane over conventional acoustic treatments. Compared to uniform foil resonators, the combination of plastic and steel materials with single-layer and double-layer membranes reduced the overall sound level (OA) by an additional 2–3 dB, thereby offering exceptional STL performance in the low- to medium-frequency range. These lightweight, easy-to-manufacture membranes exhibit considerable potential for noise control applications in household appliances and industrial settings. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

18 pages, 5325 KB  
Article
Design of High-Speed, High-Efficiency Electrically Excited Synchronous Motor
by Shumei Cui, Yuqi Zhang, Beibei Song, Shuo Zhang and Hongwen Zhu
Energies 2025, 18(14), 3673; https://doi.org/10.3390/en18143673 - 11 Jul 2025
Viewed by 455
Abstract
In air-conditioning compressors operating under ultra-low temperature conditions, both the rotational speed and load torque are at high levels, demanding pump motors that offer high efficiency and high power at high speeds. Electrically excited synchronous motors (EESMs) satisfy these operational requirements by leveraging [...] Read more.
In air-conditioning compressors operating under ultra-low temperature conditions, both the rotational speed and load torque are at high levels, demanding pump motors that offer high efficiency and high power at high speeds. Electrically excited synchronous motors (EESMs) satisfy these operational requirements by leveraging their inherent wide-speed field-weakening capability and superior high-speed performance characteristics. Current research on EESM primarily targets electric vehicle applications, with a high-efficiency design focused on medium and low speeds. Excitation design under constant-power–speed extension remains insufficiently explored. To address it, this paper proposes an EESM design methodology optimized for high-speed efficiency and constant-power excitation control. Key EESM parameters are determined through a dynamic phasor diagram, and design methods for turn number, split ratio, and other parameters are proposed to extend the high-efficiency region into the high-speed range. Additionally, a power output modulation strategy in the field-weakening region is introduced, enabling dynamic high-power regulation at high speed through excitation adjustment. Compared to similarly sized PMSMs, the proposed EESM exhibits consistently superior efficiency beyond 10,000 rpm, delivering 19% and 49% higher power output at 12,000 rpm and 14,000 rpm, respectively, relative to conventional pump-drive PMSMs. Experimental validation via a prototype confirms excellent high-speed efficiency and sustained constant-power performance, in alignment with the design targets. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

15 pages, 2537 KB  
Article
A Comparative Experimental Analysis of a Cold Latent Thermal Storage System Coupled with a Heat Pump/Air Conditioning Unit
by Claudio Zilio, Giulia Righetti, Dario Guarda, Francesca Martelletto and Simone Mancin
Energies 2025, 18(13), 3485; https://doi.org/10.3390/en18133485 - 2 Jul 2025
Viewed by 398
Abstract
The decarbonization of residential cooling systems requires innovative solutions to overcome the mismatch between the renewable energy availability and demand. Integrating latent thermal energy storage (LTES) with heat pump/air conditioning (HP/AC) units can help balance energy use and enhance efficiency. However, the dynamic [...] Read more.
The decarbonization of residential cooling systems requires innovative solutions to overcome the mismatch between the renewable energy availability and demand. Integrating latent thermal energy storage (LTES) with heat pump/air conditioning (HP/AC) units can help balance energy use and enhance efficiency. However, the dynamic behavior of such integrated systems, particularly under low-load conditions, remains underexplored. This study investigates a 5 kW HP/AC unit coupled with an 18 kWh LTES system using a bio-based Phase Change Material (PCM) with a melting temperature of 9 °C. Two configurations were tested: charging the LTES using either a thermostatic bath or the HP/AC unit. Key parameters such as the stored energy, temperature distribution, and cooling capacity were analyzed. The results show that, under identical conditions (2 °C inlet temperature, 16 L/min flow rate), the energy stored using the HP/AC unit was only 6.3% lower than with the thermostatic bath. Nevertheless, significant cooling capacity fluctuations occurred with the HP/AC unit due to compressor modulation and anti-frost cycles. The compressor frequency varied from 75 Hz to 25 Hz, and inefficient on-off cycling appeared in the final phase, when the power demand dropped below 1 kW. These findings highlight the importance of integrated system design and control strategies. A co-optimized HP/AC–LTES setup is essential to avoid performance degradation and to fully exploit the benefits of thermal storage in residential cooling. Full article
Show Figures

Figure 1

20 pages, 3672 KB  
Article
Comparative Analysis of Transcritical CO2 Heat Pump Systems With and Without Ejector: Performance, Exergy, and Economic Perspective
by Xiang Qin, Shihao Lei, Heyu Liu, Yinghao Zeng, Yajun Liu, Caiyan Pang and Jiaheng Chen
Energies 2025, 18(12), 3223; https://doi.org/10.3390/en18123223 - 19 Jun 2025
Viewed by 765
Abstract
To promote renewable energy utilization and enhance the environmental friendliness of refrigerants, this study presents a novel experimental investigation on a transcritical CO2 double-evaporator heat pump water heater integrating both air and water sources, designed for high-temperature hot water production. A key [...] Read more.
To promote renewable energy utilization and enhance the environmental friendliness of refrigerants, this study presents a novel experimental investigation on a transcritical CO2 double-evaporator heat pump water heater integrating both air and water sources, designed for high-temperature hot water production. A key innovation of this work lies in the integration of an ejector into the dual-source system, aiming to improve system performance and energy efficiency. This study systematically compares the conventional circulation mode and the proposed ejector-assisted circulation mode in terms of system performance, exergy efficiency, and the economic payback period. Experimental results reveal that the ejector-assisted mode not only achieves a higher water outlet temperature and reduces compressor power consumption but also improves the system’s exergy efficiency by 6.6% under the condition of the maximum outlet water temperature. Although the addition of the ejector increases initial manufacturing and maintenance costs, the payback periods of the two modes remain nearly the same. These findings confirm the feasibility and advantage of incorporating an ejector into a transcritical CO2 compression/ejection heat pump system with integrated air and water sources, offering a promising solution for efficient and environmentally friendly high-temperature water heating applications. Full article
(This article belongs to the Special Issue Advances in Supercritical Carbon Dioxide Cycle)
Show Figures

Figure 1

25 pages, 4443 KB  
Article
Experimental Investigation of the Influence of Climatic Conditions and Vehicle Dynamics on the Thermal Management System of a Fuel Cell Electric Vehicle
by Yannick Heynen, Ralf Liedtke, Michael Schier and Florian Heckert
Energies 2025, 18(11), 2995; https://doi.org/10.3390/en18112995 - 5 Jun 2025
Viewed by 671
Abstract
In this study, the cooling performance of fuel cell electric vehicles (FCEVs) with regard to thermal derating is investigated. Particularly in hot climate conditions, low operating temperature of the fuel cell stack and hence low temperature difference to the environment can result in [...] Read more.
In this study, the cooling performance of fuel cell electric vehicles (FCEVs) with regard to thermal derating is investigated. Particularly in hot climate conditions, low operating temperature of the fuel cell stack and hence low temperature difference to the environment can result in thermal derating of the fuel cell stack. Experimental investigations on a production vehicle with a fuel cell drive (Hyundai Nexo) are conducted to analyze the influence of climatic boundary conditions and a dynamic driving scenario on the thermal management system of the vehicle. Therefore, a new method based on energy balances is introduced to indirectly measure the average cooling air velocity at the cooling module. The results indicate that the two high-power radiator fans effectively maintain a high cooling airflow between a vehicle speed of approximately 30 and 100 km/h, leading to efficient heat rejection at the cooling module largely independent of vehicle speed. Furthermore, this study reveals that the efficiency of the fuel cell system is notably affected by ambient air temperature, attributed to the load on the electric air compressor (EAC) as well as on cooling system components like cooling pump and radiator fans. However, at the stack level, balance of plant (BoP) components demonstrate the ability to ensure ambient temperature-independent performance, likely due to reliable humidification control up to 45 °C. Additionally, a new method for determining thermal derating of FCEVs on roller dynamometer tests is presented. A real-world uphill drive under ambient temperatures exceeding 40 °C demonstrates derating occurring in 6.3% of the time, although a worst case with an aged stack and high payload is not investigated in this study. Finally, a time constant of 50 s is found to be suitable to correlate the average fuel cell stack power with a coolant temperature at the stack inlet, which gives information on the thermal inertia of the system observed and can be used for future simulation studies. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

24 pages, 4239 KB  
Article
Thermodynamic and Exergetic Evaluation of a Newly Designed CSP Driven Cooling-Desalination Cogeneration System
by Hassan F. Elattar, Abdul Khaliq, Bassam S. Aljohani, Abdullah M. A. Alsharif and Hassanein A. Refaey
Processes 2025, 13(5), 1589; https://doi.org/10.3390/pr13051589 - 20 May 2025
Viewed by 578
Abstract
This investigation attempts to develop a tower solar collector-based system designed for the cogeneration of cooling and desalination. The traditional organic Rankine cycle (ORC) integrated with the ejector refrigeration cycle generates limited power and cooling at a single temperature. Acknowledging their [...] Read more.
This investigation attempts to develop a tower solar collector-based system designed for the cogeneration of cooling and desalination. The traditional organic Rankine cycle (ORC) integrated with the ejector refrigeration cycle generates limited power and cooling at a single temperature. Acknowledging their limitations, our present study uses an organic flash cycle (OFC) supported by solar heat combined with the two-phase ejector cycle and the reverse osmosis (RO) desalination unit. Since the OFC turbine is fed with two extra streams of fluid, therefore, it provides greater power to run the compressor of the ejector and pumps of the RO unit, resulting in the production of cooling at two different temperatures (refrigeration and air conditioning) and a higher mass flow rate of fresh water. A mathematical model is employed to assess the impact of coil curvature ratio, Rib height, and direct normal irradiation (DNI) on the temperature of the collector’s oil outlet. ANSYS-FLUENT conducts numerical simulations through computational fluid dynamics (CFD) analysis. The results indicate an ultimate increase in oil outlet temperature of 45% as the DNI increased from 450 to 1000 W/m2 at a curvature ratio of 0.095 when employing the 1st Rib. Further, a steady-state energy and exergy analysis is conducted to evaluate the performance of the proposed cogeneration, with different design parameters like DNI, coil curvature ratio, rib height, and OFC turbine inlet pressure. The energetic and exergetic efficiencies of the cogeneration system at DNI of 800 W/m2 are obtained as 16.67% and 6.08%, respectively. Exergetic assessment of the overall system shows that 29.57% is the exergy produced as cooling exergy, and the exergy accompanied by freshwater, 68.13%, is the exergy destroyed, and 2.3% is the exergy loss. The solar collector exhibits the maximum exergy destruction, followed by the ejector and RO pumps. Integrating multiple technologies into a system with solar input enhances efficiency, energy sustainability, and environmental benefits. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

27 pages, 4827 KB  
Technical Note
Design and Operation of a Multifunctional Pilot-Scale Bioreactor for Enhanced Aerobic Fermentation
by Mauro Moresi
Fermentation 2025, 11(2), 101; https://doi.org/10.3390/fermentation11020101 - 17 Feb 2025
Cited by 2 | Viewed by 3208
Abstract
The primary aim of this work was to share the results from a Research Project supported by the Italian National Research Council, which led to the development of a versatile jacketed tower bioreactor. Designed to optimize oxygen transfer efficiency and process control, the [...] Read more.
The primary aim of this work was to share the results from a Research Project supported by the Italian National Research Council, which led to the development of a versatile jacketed tower bioreactor. Designed to optimize oxygen transfer efficiency and process control, the reactor incorporated a reciprocating air compressor, centrifugal pumps, a draft tube with or without perforated plates, and a series of gas–liquid ejectors. Its flexible design enabled operation in both airlift and ejector-loop modes, making it suitable for a wide range of aerobic fermentation processes. By sharing the detailed engineering design, operational procedures of this pilot-scale bioreactor, as well as its performance data when cultivating yeasts on whey and potato wastewater, a detailed blueprint was given to researchers seeking to advance bioreactor technology, particularly in the context of emerging fields like cultured meat production, pharmaceutical manufacturing, and environmental bioremediation. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

21 pages, 9402 KB  
Article
Experimental Study on R290 Performance of an Integrated Thermal Management System for Electric Vehicle
by Zihao Luo, Shusheng Xiong, Min Wen, Jiahao Zhao and Yifei Zhang
Energies 2025, 18(4), 802; https://doi.org/10.3390/en18040802 - 9 Feb 2025
Viewed by 1708
Abstract
Integrated thermal management system (ITMS) technology for electric vehicles (EV) has become a major industry research direction. However, R290 refrigerants are still not applied on a large scale in EVs. Therefore, we developed a suitable thermal management system for R290 in this study. [...] Read more.
Integrated thermal management system (ITMS) technology for electric vehicles (EV) has become a major industry research direction. However, R290 refrigerants are still not applied on a large scale in EVs. Therefore, we developed a suitable thermal management system for R290 in this study. This architecture adapts an unusual indirect design, which can coordinate the heat between the air conditioner, battery pack, and electric motor. We focused on heat pump air conditioning systems for EV thermal management; thus, we carried out the performance analysis of R290 under the cooling and heating conditions of our ITMS through an experimental approach. The current study explores various aspects affecting the performance of heat-pump air conditioners: refrigerant charge, electronic expansion valve (EXV) opening, compressor speed, and performance between R290 and R134a under different external temperatures. We aim to improve cooling and heating efficiencies. Among these parameters, the EXV opening and compressor speed have the greatest impact on the performance of the ITMS, as evidenced by the optimal EXV opening and lower compressor speed to maximize the coefficient of performance (COP) and increase the heat transfer rate. In addition, this study has shown that, compared to an ITMS equipped with R134a, R290 has a smaller refrigerant charge, better heat transfer rate and COP under heating conditions, and similar performance under cooling conditions. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

22 pages, 8930 KB  
Article
Design, Control, and Testing of a Multifunctional Soft Robotic Gripper
by Ana Correia, Tiago Charters, Afonso Leite, Francisco Campos, Nuno Monge, André Rocha and Mário J. G. C. Mendes
Actuators 2024, 13(12), 476; https://doi.org/10.3390/act13120476 - 25 Nov 2024
Cited by 1 | Viewed by 2249
Abstract
This paper proposes a multifunctional soft robotic gripper for a Dobot robot to handle sensitive products. The gripper is based on pneumatic network (PneuNet) bending actuators. In this study, two different models of PneuNet actuators have been studied, designed, simulated, experimentally tested, and [...] Read more.
This paper proposes a multifunctional soft robotic gripper for a Dobot robot to handle sensitive products. The gripper is based on pneumatic network (PneuNet) bending actuators. In this study, two different models of PneuNet actuators have been studied, designed, simulated, experimentally tested, and validated using two different techniques (3D printing and molding) and three different materials: FilaFlex 60A (3D-printed), Elastosil M4601, and Dragonskin Fast 10 silicones (with molds). A new soft gripper design for the Dobot robot is presented, and a new design/production approach with molds is proposed to obtain the gripper’s PneuNet multifunctional actuators. It also describes a new control approach that is used to control the PneuNet actuators and gripper function, using compressed air generated by a small compressor/air pump, a pressure sensor, a mini valve, etc., and executing on a low-cost controller board—Arduino UNO. This paper presents the main simulation and experimental results of this research study. Full article
(This article belongs to the Special Issue Soft Actuators and Robotics—2nd Edition)
Show Figures

Figure 1

15 pages, 3610 KB  
Article
Fuel Cell System Modeling Dedicated to Performance Estimation in the Automotive Context
by Antony Plait, Pierre Saenger and David Bouquain
Energies 2024, 17(15), 3850; https://doi.org/10.3390/en17153850 - 5 Aug 2024
Cited by 1 | Viewed by 1756
Abstract
In this paper, a meticulous modeling approach is proposed not only for a fuel cell stack itself but also for all auxiliary components that collectively form the fuel cell system. This comprehensive modeling approach encompasses a wide range of components, including, but not [...] Read more.
In this paper, a meticulous modeling approach is proposed not only for a fuel cell stack itself but also for all auxiliary components that collectively form the fuel cell system. This comprehensive modeling approach encompasses a wide range of components, including, but not limited to, the hydrogen recirculation pump and the air compressor. Each component is thoroughly analyzed and modeled based on the detailed specifications provided by suppliers. This involves considering factors such as efficiency, operating parameters, response times, and interactions with other system elements. By integrating these detailed models, a holistic understanding of the entire fuel cell system’s performance can be attained. Such an approach enables engineers and designers to simulate various operating scenarios, predict system behavior under different conditions, and optimize the system design for maximum efficiency and reliability. Moreover, it allows for informed decision-making throughout the system’s development, deployment, and operational phases, ultimately leading to more robust and effective energy systems. The model validation is performed by comparing experimental data to theoretical results, and the observed difference does not exceed 3%. Full article
Show Figures

Figure 1

24 pages, 14880 KB  
Article
A New Cross-Domain Motor Fault Diagnosis Method Based on Bimodal Inputs
by Qianming Shang, Tianyao Jin and Mingsheng Chen
J. Mar. Sci. Eng. 2024, 12(8), 1304; https://doi.org/10.3390/jmse12081304 - 1 Aug 2024
Cited by 3 | Viewed by 1566
Abstract
Electric motors are indispensable electrical equipment in ships, with a wide range of applications. They can serve as auxiliary devices for propulsion, such as air compressors, anchor winches, and pumps, and are also used in propulsion systems; ensuring the safe and reliable operation [...] Read more.
Electric motors are indispensable electrical equipment in ships, with a wide range of applications. They can serve as auxiliary devices for propulsion, such as air compressors, anchor winches, and pumps, and are also used in propulsion systems; ensuring the safe and reliable operation of motors is crucial for ships. Existing deep learning methods typically target motors under a specific operating state and are susceptible to noise during feature extraction. To address these issues, this paper proposes a Resformer model based on bimodal input. First, vibration signals are transformed into time–frequency diagrams using continuous wavelet transform (CWT), and three-phase current signals are converted into Park vector modulus (PVM) signals through Park transformation. The time–frequency diagrams and PVM signals are then aligned in the time sequence to be used as bimodal input samples. The analysis of time–frequency images and PVM signals indicates that the same fault condition under different loads but at the same speed exhibits certain similarities. Therefore, data from the same fault condition under different loads but at the same speed are combined for cross-domain motor fault diagnosis. The proposed Resformer model combines the powerful spatial feature extraction capabilities of the Swin-t model with the excellent fine feature extraction and efficient training performance of the ResNet model. Experimental results show that the Resformer model can effectively diagnose cross-domain motor faults and maintains performance even under different noise conditions. Compared with single-modal models (VGG-11, ResNet, ResNeXt, and Swin-t), dual-modal models (MLP-Transformer and LSTM-Transformer), and other large models (Swin-s, Swin-b, and VGG-19), the Resformer model exhibits superior overall performance. This validates the method’s effectiveness and accuracy in the intelligent recognition of common cross-domain motor faults. Full article
Show Figures

Figure 1

27 pages, 4534 KB  
Article
Optimal Design of a Renewable-Energy-Driven Integrated Cooling–Freshwater Cogeneration System
by Iman Janghorban Esfahani and Pouya Ifaei
Processes 2024, 12(6), 1164; https://doi.org/10.3390/pr12061164 - 5 Jun 2024
Cited by 3 | Viewed by 1863
Abstract
This study presents a novel approach that will address escalating demands for water and cooling in regions vulnerable to climate change through the proposal of an optimal integrated cooling–freshwater cogeneration system powered by renewable energy sources. Comprising three subsystems (integrated multi-effect evaporation distillation, [...] Read more.
This study presents a novel approach that will address escalating demands for water and cooling in regions vulnerable to climate change through the proposal of an optimal integrated cooling–freshwater cogeneration system powered by renewable energy sources. Comprising three subsystems (integrated multi-effect evaporation distillation, absorption heat pump, and vapor compression refrigeration (MAV); renewable energy unit incorporating solar panels, wind turbines, batteries, and hydrogen facilities (RHP/BH); and combined heat and power (CHP)), the system aims to produce both cooling and freshwater. By recovering cooling from combined desalination and refrigeration subsystems to chill the air taken into the gas turbine compressor, the system maximizes efficiency. Through the recovery of waste heat and employing an integrated thermo-environ-economic framework, a novel objective function, termed modified total annual cost (MTAC), is introduced for optimization. Using a genetic algorithm, parametric iterative optimization minimizes the MTAC. The results reveal that under optimum conditions, the MAV, RHP/BH, and CHP subsystems account for 67%, 58%, and 100% of total annual, exergy destruction, and environmental costs, respectively. Notably, the system exhibits lower sensitivity to fuel prices than renewable energy sources, suggesting a need for future research that will incorporate dynamic product prices and greater fuel consumption to produce enhanced operational robustness. Full article
(This article belongs to the Special Issue Optimal Design for Renewable Power Systems)
Show Figures

Figure 1

23 pages, 5523 KB  
Article
Experimental Studies and Performance Characteristics Analysis of a Variable-Volume Heat Pump in a Ventilation System
by Anton Frik, Juozas Bielskus, Rasa Džiugaitė-Tumėnienė and Violeta Motuzienė
Appl. Sci. 2024, 14(9), 3933; https://doi.org/10.3390/app14093933 - 5 May 2024
Cited by 1 | Viewed by 2925
Abstract
Air-to-air heat pumps are used in today’s ventilation systems increasingly often as they provide heating and cooling for buildings. The energy transformation modes of these units are subject to constant change due to the varying outdoor air state, including temperature and humidity. When [...] Read more.
Air-to-air heat pumps are used in today’s ventilation systems increasingly often as they provide heating and cooling for buildings. The energy transformation modes of these units are subject to constant change due to the varying outdoor air state, including temperature and humidity. When choosing how to operate and control energy transformers, it is important to be able to adapt effectively to the changing outside air conditions. Nowadays, modern commercial heat pumps offer two levels of control flexibility: a compressor with a variable speed and an electronic expansion valve. This combination of control elements has boosted the seasonal energy efficiency of heat pumps. For a long time, cycle control possibilities have been dominated by electronic controls. The authors of this paper aim to present an additional element to the traditional heat pump controls, which provides a third level of control over the cycle. To achieve the objective, experimental investigations of a heat pump integrated into a ventilation unit have been carried out under real-life conditions. The experiments involved varying the operating modes of the unit by adjusting the compressor speed, the position of the expansion valve, and the volume of the system loop. The study examined the performance characteristics of the heat pump and found that the performance of a variable-volume heat pump is comparable to that of a conventionally operated typical constant-volume heat pump system. In addition, the study found that by adding a third level of volume control to the active heating circuit, in combination with conventional controls, the heat pump’s heat output range could be extended by 69.62%. The study determined the variation of the heat pump cycle in the p-h diagram with the variation of the loop volume. The benefits and drawbacks of a heat pump with a variable-volume loop are discussed in this study. Full article
Show Figures

Figure 1

12 pages, 1448 KB  
Article
ML- and LSTM-Based Radiator Predictive Maintenance for Energy Saving in Compressed Air Systems
by Seung Hyun Jeon, Sarang Yoo, Yoon-Sik Yoo and Il-Woo Lee
Energies 2024, 17(6), 1428; https://doi.org/10.3390/en17061428 - 15 Mar 2024
Cited by 7 | Viewed by 2323
Abstract
Air compressors are widely used in industrial fields. Compressed air systems aggregate air flows and then supply them to places of demand. These huge systems consume a significant amount of energy and generate heat internally. Machine components in compressed air systems are vulnerable [...] Read more.
Air compressors are widely used in industrial fields. Compressed air systems aggregate air flows and then supply them to places of demand. These huge systems consume a significant amount of energy and generate heat internally. Machine components in compressed air systems are vulnerable to heat, and, in particular, a radiator to cool the heat of the overall air compressor is the core component. Dirty radiators increase energy consumption due to anomalous cooling. To reduce the energy consumption of air compressors, this mechanism emphasizes a machine learning-based radiator fault detection, using features such as RPM, motor power, outlet pressure, air flow, water pump power, and outlet temperature with slight true fault labels. Moreover, the proposed system adds an LSTM-based motor power prediction model to point out the initial judgment of radiator fault possibility. Via the rigorous analysis and the comparison among machine learning models, this meticulous approach improves the performance of radiator fault prediction up to 93.0%, and decreases the mean power consumption of the air compressor around 2.24%. Full article
(This article belongs to the Special Issue Demand-Side Energy Management Optimization)
Show Figures

Figure 1

18 pages, 3542 KB  
Review
Technologies for Heat Hazard Governance and Thermal Energy Recovery in Deep Mines
by Yujin Ran, Jia Peng, Xiaolin Tian, Dengyun Luo, Jie Zhao and Peng Pei
Energies 2024, 17(6), 1369; https://doi.org/10.3390/en17061369 - 13 Mar 2024
Cited by 6 | Viewed by 1960
Abstract
As the depth of mines continues to increase, the problems of high temperature and potential heat damage become more prominent. In this study, the characteristics of natural and industrial heat sources in mines were reviewed, and then mainstream heat hazard governance technologies and [...] Read more.
As the depth of mines continues to increase, the problems of high temperature and potential heat damage become more prominent. In this study, the characteristics of natural and industrial heat sources in mines were reviewed, and then mainstream heat hazard governance technologies and corresponding utilization methods were discussed and compared. The first category of technologies comprises the optimization of ventilation systems, the insulation of roc heat, and artificial refrigeration. These cooling approaches are limited because the heat resources cannot be recovered. The second category is the utilization of waste industrial heat in mines, including the use of waste heat from the air compressors, drainage water, and foul airflow, but the current applications of these approaches have limited effectiveness in cooling the underground space. The third category is the application of geo-structures to recover natural heat in mines. Based on the principles of the chiller/heat pump cycle and the characteristics of heat sources and sinks in mines, the potential and constraints of each technology were discussed and summarized. This study provides a scientific reference for the selection of suitable heat governance and utilization technologies. Full article
(This article belongs to the Special Issue Energy Geotechnics and Geostructures—2nd Edition)
Show Figures

Figure 1

Back to TopTop