Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = agroinfiltration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1322 KB  
Review
Virus-Induced Gene Silencing (VIGS) in Functional Genomics: Advances and Applications in Capsicum annuum L.
by Andrey Shingaliev, Alexandra Rekina, Mikhail Gorbachev, Ksenia Dudnikova and Maksim Dudnikov
Horticulturae 2025, 11(11), 1297; https://doi.org/10.3390/horticulturae11111297 - 29 Oct 2025
Viewed by 724
Abstract
This article provides a comprehensive analysis of Virus-Induced Gene Silencing (VIGS), which is an effective tool for studying the functional genomics of organisms that are poorly amenable to genomic editing. The VIGS method is grounded in the plant’s post-transcriptional gene silencing (PTGS) machinery [...] Read more.
This article provides a comprehensive analysis of Virus-Induced Gene Silencing (VIGS), which is an effective tool for studying the functional genomics of organisms that are poorly amenable to genomic editing. The VIGS method is grounded in the plant’s post-transcriptional gene silencing (PTGS) machinery and utilizes recombinant viral vectors to trigger systemic suppression of endogenous plant gene expression, leading to visible phenotypic changes that enable gene function characterization. This article details the application of VIGS in model organisms (Arabidopsis thaliana, Nicotiana benthamiana) and a wide range of crops, with a special focus on the Solanaceae family, particularly pepper (Capsicum annuum L.). This review analyzes the design and structural elements of viral vectors used for VIGS, such as Tobacco Rattle Virus (TRV), Broad Bean Wilt Virus 2 (BBWV2), Cucumber Mosaic Virus (CMV), geminiviruses (CLCrV, ACMV), and satellite virus-based systems. It also critically examines the key factors that determine silencing efficiency. These factors encompass insert design, agroinfiltration methodology, plant developmental stage, agroinoculum concentration, plant genotype, and environmental factors (temperature, humidity, photoperiod). Particular attention is given to optimization strategies, such as the use of viral suppressors of RNA silencing (VSRs). This article concludes with the achievements in using VIGS to identify pepper genes governing fruit quality (color, biochemical composition, pungency), resistance to biotic (bacteria, oomycetes, insects) and abiotic (temperature, salt, osmotic stress) factors, as well as genes regulating plant architecture and development. The results obtained demonstrate the advantages and limitations of VIGS, alongside future perspectives for its integration with multi-omics technologies to accelerate breeding and advance functional genomics studies in pepper. Full article
(This article belongs to the Special Issue Genetics, Genomics and Breeding of Vegetable Crops)
Show Figures

Figure 1

15 pages, 6204 KB  
Article
Transient Overexpression of VvMYBPA1 in Grape Berries Enhances Susceptibility to Botrytis cinerea Through ROS Homeostasis Modulation
by Lihong Hao, Yuxin Zhang, Zeying Ge, Xinru Meng, Yu Sun and Huilan Yi
Plants 2025, 14(16), 2469; https://doi.org/10.3390/plants14162469 - 9 Aug 2025
Viewed by 587
Abstract
Gray mold disease, caused by Botrytis cinerea, severely impacts grape production worldwide. Although proanthocyanidins (PAs) contribute to fungal pathogen resistance, their role in grape defense against B. cinerea remains unclear. Here, we demonstrate that VvMYBPA1, a key transcriptional regulator of PA biosynthesis, [...] Read more.
Gray mold disease, caused by Botrytis cinerea, severely impacts grape production worldwide. Although proanthocyanidins (PAs) contribute to fungal pathogen resistance, their role in grape defense against B. cinerea remains unclear. Here, we demonstrate that VvMYBPA1, a key transcriptional regulator of PA biosynthesis, negatively modulates B. cinerea resistance in grape berries. While infection suppressed endogenous VvMYBPA1, its agroinfiltration-mediated transient overexpression in berries elevated susceptibility, paralleling reduced β-1,3-glucanase (BGL) and polyphenol oxidase (PPO) activities. Additionally, VvMYBPA1 overexpression elevated VvRBOHs’ expression and reduced peroxidase (POD) activity, resulting in excessive hydrogen peroxide (H2O2) accumulation and more cell death. Our results reveal that VvMYBPA1 negatively regulates B. cinerea resistance by disrupting antioxidant enzyme activity and ROS homeostasis, providing new insights into the interplay between PA biosynthesis and fungal defense mechanisms. Full article
Show Figures

Figure 1

18 pages, 4677 KB  
Article
CsCBDAS2-Driven Enhancement of Cannabinoid Biosynthetic Genes Using a High-Efficiency Transient Transformation System in Cannabis sativa ‘Cheungsam’
by Sang-Cheol Baek, Sang-Yoon Jeon, Bo-Hyun Byun, Da-Hoon Kim, Ga-Ram Yu, Hyuck Kim and Dong-Woo Lim
Plants 2025, 14(10), 1460; https://doi.org/10.3390/plants14101460 - 14 May 2025
Viewed by 1143
Abstract
Cannabis sativa produces pharmacologically valuable cannabinoids. In this study, we developed and optimized a transient transformation system using Cannabis sativa ‘Cheungsam’ to facilitate gene functional analysis. Various experimental conditions, including plant developmental stages, light conditions, Agrobacterium strains, tissue types, and physical treatments such [...] Read more.
Cannabis sativa produces pharmacologically valuable cannabinoids. In this study, we developed and optimized a transient transformation system using Cannabis sativa ‘Cheungsam’ to facilitate gene functional analysis. Various experimental conditions, including plant developmental stages, light conditions, Agrobacterium strains, tissue types, and physical treatments such as sonication and vacuum infiltration, were systematically evaluated using GUS histochemical staining and qPCR analysis. Among these, 7-day-old seedlings cultured under dark conditions and transformed with the GV3101 strain exhibited high transformation efficiency. Leaf tissue showed a higher GUS staining proportion and GUS staining area compared to hypocotyl and cotyledon tissues. The application of a combination of sonication and vacuum infiltration techniques resulted in the most intense GUS expression. Using the optimized protocol, we introduced a recombinant vector carrying CsCBDAS2, a key gene in cannabidiol (CBD) biosynthesis. qPCR analysis revealed that CsCBDAS2 overexpression led to significant upregulation of multiple upstream CBD biosynthetic genes (CsOAC, CsGOT, CsPT1, CsPT4, CsCBDAS1, and CsCBDAS2) and the transcription factor (TF) CsWRKY20, suggesting coordinated co-expression and potential involvement of a transcriptional feedback loop. These results demonstrate the effectiveness of our transient transformation system and provide insights into the regulatory mechanisms of cannabinoid biosynthesis in cannabis. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

14 pages, 1411 KB  
Article
Transient Overexpression of the Pepper WRKY2 Gene in Nicotiana benthamiana Markedly Delays the Systemic Necrosis Caused by Tobacco Mosaic Virus
by Csilla Juhász, Ágnes Szatmári, Zoltán Bozsó, Balazs Barna and Gábor Gullner
Life 2025, 15(4), 669; https://doi.org/10.3390/life15040669 - 17 Apr 2025
Viewed by 666
Abstract
The role of WRKY transcription factor proteins in plant defense reactions against fungal and bacterial pathogens is well studied, but less information is available about plant–virus interactions. We observed the rapid and strong activation of the transcription factor gene, CaWRKY2, in pepper [...] Read more.
The role of WRKY transcription factor proteins in plant defense reactions against fungal and bacterial pathogens is well studied, but less information is available about plant–virus interactions. We observed the rapid and strong activation of the transcription factor gene, CaWRKY2, in pepper leaves following inoculation with Obuda pepper virus (ObPV). In contrast, CaWRKY2 was only weakly induced by pepper mild mottle virus (PMMoV) inoculation. To carry out a functional analysis of CaWRKY2, the gene was transiently overexpressed in Nicotiana benthamiana leaves by agroinfiltration. Four days later, CaWRKY2-overexpressing and empty vector control leaves were inoculated with tobacco mosaic virus (TMV). Transiently overexpressing CaWRKY2 did not affect the replication rate of TMV in the inoculated leaves. However, TMV inoculation up-regulated the expression of a pathogenesis-related gene (NbPR-1b) and a lipoxygenase (NbLOX1) gene significantly more strongly in N. benthamiana leaves overexpressing CaWRKY2 than in empty vector control leaves. Intriguingly, CaWRKY2 overexpression delayed (by 3 days) the development of systemic necrosis and plant death caused by TMV in N. benthamiana. These results suggest that CaWRKY2 is able to hinder the spread of TMV from inoculated leaves towards vascular tissues and systemic leaves in N. benthamiana. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

16 pages, 3521 KB  
Article
Expression and Characterization of Alkaline Phosphatase from Cobetia amphilecti KMM 296 in Transiently Transformed Tobacco Leaves and Transgenic Calli
by Peter Adeolu Adedibu, Yulia Aleksandrovna Noskova, Yulia Anatolievna Yugay, Daria Mikhailovna Ovsiannikova, Elena Anatolievna Vasyutkina, Olesya Dmitrievna Kudinova, Valeria Petrovna Grigorchuk, Yury Nikolaevich Shkryl, Liudmila Aleksandrovna Tekutyeva and Larissa Anatolievna Balabanova
Plants 2024, 13(24), 3570; https://doi.org/10.3390/plants13243570 - 21 Dec 2024
Cited by 1 | Viewed by 1955
Abstract
Alkaline phosphatase (ALP) of the PhoA family is an important enzyme in mammals, microalgae, and certain marine bacteria. It plays a crucial role in the dephosphorylation of lipopolysaccharides (LPS) and nucleotides, which overstimulate cell signaling pathways and cause tissue inflammation in animals and [...] Read more.
Alkaline phosphatase (ALP) of the PhoA family is an important enzyme in mammals, microalgae, and certain marine bacteria. It plays a crucial role in the dephosphorylation of lipopolysaccharides (LPS) and nucleotides, which overstimulate cell signaling pathways and cause tissue inflammation in animals and humans. Insufficient ALP activity and expression levels have been linked to various disorders. This study aims to produce recombinant ALP from the marine bacterium Cobetia amphilecti KMM 296 (CmAP) in transformed leaves and calli of Nicotiana tabacum and to elucidate the influence of the plant host on its physical and chemical properties. N. tabacum has proven to be versatile and is extensively used as a heterologous host in molecular farming. The alp gene encoding for CmAP was cloned into the binary vectors pEff and pHREAC and transformed into N. tabacum leaves through agroinfiltration and the leaf disc method for callus induction using Agrobacterium tumefaciens strain EHA105. Transformed plants were screened for recombinant CmAP (rCmAP) production by its enzymatic activity and protein electrophoresis, corresponding to 55 kDa of mature CmAP. A higher rCmAP activity (14.6 U/mg) was detected in a homogenate of leaves bearing the pEFF-CmAP construct, which was further purified 150-fold using metal affinity, followed by anion exchange chromatography. Enzymatic activity and stability were assessed at different temperatures (15–75 °C) and exposure times (≤1 h), with different buffers, pHs, divalent metal ions, and salt concentrations. The results show that rCmAP is relatively thermostable, retaining its activity at 15–45 °C for up to 1 h. Its activity is highest in Tris HCl (pH 9.0–11.0) at 35 °C for 40 min. rCmAP shows higher salt-tolerance and divalent metal-dependence than obtained in Escherichia coli. This can be further explored for cost-effective and massively scalable production of LPS-free CmAP for possible biomedical and agricultural applications. Full article
(This article belongs to the Special Issue Plant Transformation and Genome Editing)
Show Figures

Figure 1

21 pages, 6259 KB  
Article
Rapid and Visual Screening of Virus Infection in Sugar Beets Through Polerovirus-Induced Gene Silencing
by Heemee Devi Bunwaree, Elodie Klein, Guillaume Saubeau, Bruno Desprez, Véronique Ziegler-Graff and David Gilmer
Viruses 2024, 16(12), 1823; https://doi.org/10.3390/v16121823 - 23 Nov 2024
Viewed by 1948
Abstract
Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on [...] Read more.
Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on multiple infections and other stresses, there is an urgent need for fast screening tests to evaluate resistance/tolerance traits in sugar beet accessions. To address this issue, we exploited the virus-induced gene silencing (VIGS) system, by introducing a fragment of a Beta vulgaris gene involved in chlorophyll synthesis in the BMYV genome. This recombinant virus was able to generate early clear vein chlorosis symptoms in infected sugar beets, allowing easy and rapid visual discernment of infected plants across five sugar beet lines. The recombinant virus displayed similar infectivity as the wild-type, and the insert remained stable within the viral progeny. We demonstrated that the percentage of VIGS-symptomatic plants was representative of the infection rate of each evaluated line, and depending on the susceptibility of the line to BMYV infection, VIGS symptoms may last over months. Our work provides a polerovirus-based VIGS system adapted to sugar beet crop allowing visual and rapid large-scale screens for resistance or functional genomic studies. Full article
(This article belongs to the Special Issue Application of Genetically Engineered Plant Viruses)
Show Figures

Graphical abstract

13 pages, 1941 KB  
Protocol
Agrobacterium-Mediated Transient Expression Methods to Validate Gene Functions in Strawberry (F. × ananassa)
by Yoon Jeong Jang, Hyeondae Han and Seonghee Lee
Plants 2024, 13(23), 3290; https://doi.org/10.3390/plants13233290 - 22 Nov 2024
Viewed by 2593
Abstract
Understanding gene function is important for crop improvement and breeding efforts, especially in a genetically complex polyploid plant species such as the octoploid strawberry. Agrobacterium-mediated transient assays are a widely used tool for investigating gene functions and offer a reliable alternative to [...] Read more.
Understanding gene function is important for crop improvement and breeding efforts, especially in a genetically complex polyploid plant species such as the octoploid strawberry. Agrobacterium-mediated transient assays are a widely used tool for investigating gene functions and offer a reliable alternative to stable transformation. However, variability in tissue-specific responses and inconsistent applicability of Agrobacterium-mediated transient assay across diverse plant species can be challenging. In this study, we provide a method utilizing Agrobacterium-mediated transient expression to examine the function of genes in octoploid strawberry. Our approach encompasses leaf, root, and fruit tissues, providing a comprehensive strategy for validating gene functions in strawberries. Through meticulous optimization and validation in planta, this method offers valuable insights into gene function in strawberry functional genomics and genetics research. By addressing tissue-specific variability, our methodology serves as a valuable technical resource that could facilitate advancements in identifying gene functions in octoploid strawberry. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 3210 KB  
Article
High-Level Production of a Recombinant Protein in Nicotiana benthamiana Leaves Through Transient Expression Using a Double Terminator
by Jihyea Lee, Kyeong-Ryeol Lee, Nan-Sun Kim, Juho Lee, Seon-Kyeong Lee and Sichul Lee
Int. J. Mol. Sci. 2024, 25(21), 11573; https://doi.org/10.3390/ijms252111573 - 28 Oct 2024
Cited by 1 | Viewed by 3518
Abstract
Various bio-based recombinant proteins have been produced for industrial, medical, and research purposes. Plants are potential platforms for recombinant protein production because of several advantages. Therefore, establishing a system with high target gene expression to compensate for the low protein yield of plant [...] Read more.
Various bio-based recombinant proteins have been produced for industrial, medical, and research purposes. Plants are potential platforms for recombinant protein production because of several advantages. Therefore, establishing a system with high target gene expression to compensate for the low protein yield of plant systems is crucial. In particular, selecting and combining strong terminators is essential because the expression of target genes can be substantially enhanced. Here, we aimed to quantify the enhancement in the fluorescence intensity of the turbo green fluorescence protein (tGFP) caused by the best double-terminator combinations compared to that of the control vector using agroinfiltration in Nicotiana benthamiana leaves. tGFP fluorescence increased by 4.1-fold in leaf samples infiltrated with a vector containing a double terminator and markedly increased by a maximum of 23.7-fold when co-infiltrated with the geminiviral vector and P19 compared to that in constructs containing an octopine synthase terminator. Polyadenylation site analysis in leaf tissues expressing single or dual terminators showed that the first terminator influenced the polyadenylation site determination of the second terminator, resulting in different polyadenylation sites compared with when the terminator is located first. The combination of the high-expression terminators and geminiviral vectors can increase the production of target proteins. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 3594 KB  
Article
Candidatus Phytoplasma solani’ Predicted Effector SAP11-like Alters Morphology of Transformed Arabidopsis Plants and Interacts with AtTCP2 and AtTCP4 Plant Transcription Factors
by Marina Drcelic, Andreja Skiljaica, Bruno Polak, Natasa Bauer and Martina Seruga Music
Pathogens 2024, 13(10), 893; https://doi.org/10.3390/pathogens13100893 - 11 Oct 2024
Cited by 3 | Viewed by 2205
Abstract
Phytoplasmas are obligate intracellular pathogens that profoundly modify the development, physiology and behavior of their hosts by secreting effector proteins that disturb signal pathways and interactions both in plant and insect hosts. The characterization of effectors and their host-cell targets was performed for [...] Read more.
Phytoplasmas are obligate intracellular pathogens that profoundly modify the development, physiology and behavior of their hosts by secreting effector proteins that disturb signal pathways and interactions both in plant and insect hosts. The characterization of effectors and their host-cell targets was performed for only a few phytoplasma species where it was shown that the SAP11 effector alters plant morphology by destabilizing plant transcription factors: TEOSINTE BRANCHED 1-CYCLOIDEA-PROLIFERATING CELL FACTOR (TCPs). To explore the possible role of the SAP11-like effector from ‘Ca. P. solani’, we used Arabidopsis thaliana as a model plant. The SAP11-like effector gene from ‘Ca. P. solani’ was introduced into arabidopsis by floral dip and transgenic lines were regenerated. In planta bimolecular fluorescence complementation (BIFC) assays in agroinfiltrated Nicotiana benthamiana leaf cells were conducted to detect interactions between SAP11-like and AtTCP2 and AtTCP4 using confocal microscopy. SAP11-like from ‘Ca. P. solani’ induced significant phenotypic changes in arabidopsis, including crinkled leaves with reduced size, lower biomass, more axillary branches, changes in root morphology, and crinkled and smaller siliques. The BIFC assays proved in planta interaction of SAP11-like effector with AtTCP2 and AtTCP4. To our knowledge, this is the first characterization of the interaction between the ‘Ca. P. solani’ effector and plant transcription factors, suggesting a potential mechanism of modulating plant development and induction of characteristic symptoms in ‘Ca. P. solani’-infected plants. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

13 pages, 3986 KB  
Article
Refinement and Enhancement of Agrobacterium-Mediated Transient Transformation for Functional Gene Examination in Mulberry (Morus L.)
by Rongli Mo, Na Zhang, Changyu Qiu, Sheng Huang, Wei Wei, Chaohua Zhang, Dan Liu and Qiang Lin
Genes 2024, 15(10), 1277; https://doi.org/10.3390/genes15101277 - 28 Sep 2024
Cited by 2 | Viewed by 2149
Abstract
Background: Mulberry (Morus L.), a vital perennial woody plant with significant economic importance, is utilized for silkworm rearing, human consumption and medicinal use. The availability of mulberry’s whole-genome sequencing data has underscored the demand for an effective, user-friendly, and high-throughput protocol to [...] Read more.
Background: Mulberry (Morus L.), a vital perennial woody plant with significant economic importance, is utilized for silkworm rearing, human consumption and medicinal use. The availability of mulberry’s whole-genome sequencing data has underscored the demand for an effective, user-friendly, and high-throughput protocol to facilitate the elucidation of gene functions. Methods and Results: In this investigation, we established a transient transformation approach using Agrobacterium tumefaciens-mediated sonication followed by vacuum infiltration in mulberry tissue culture seedlings. Simultaneously, we optimized the transformation conditions, including mulberry genotypes, A. tumefaciens strain, acetosyringone concentration, bacterial density, sonication time, and days after agroinfiltration. These optimizations aimed to achieve heightened transformation efficiency, employing GFP as a reporter gene to monitor transformation events. The optimized method included the use of an infiltration medium (10 mM MgCl2, 10 mM MES (2-(N-morpholino)ethanesulfonic acid sodium salt), 150 μM acetosyringone, and OD600 0.5 of A. tumefaciens LBA4404) supplemented with the surfactant 0.02% Silwet L-77, with 20 s sonication followed by 20 min vacuum infiltration (0.07 MPa). Among the four mulberry genotypes, ‘Taiguo’ was the most responsive genotype and produced the highest levels of GFP expression at 7 d after infiltration. Furthermore, the optimized transient transformation approach has been proven to be successfully applicable for transiently overexpressing MaANS and MaDFR in mulberry fruits of ‘Taiguo’, in vitro, which distinctly enhanced fruit coloring and significantly increased anthocyanin accumulation, respectively. Conclusions: In summary, we devised a dependable, stable and highly efficient transient transformation approach suitable for rapid gene function examination in mulberry leaves and fruits, in vitro. Full article
(This article belongs to the Topic Genetic Engineering in Agriculture)
Show Figures

Figure 1

10 pages, 2093 KB  
Communication
Construction of an Infectious DNA Clone of Grapevine Geminivirus A Isolate GN and Its Biological Activity in Plants Analyzed Using an Efficient and Simple Inoculation Method
by Can Liu, Shangzhen Yu, Jinying Wang, Yinshuai Xie, Hanwei Li, Xueqing Zhang, Chenlu Feng, Wenhao Zhang and Yuqin Cheng
Plants 2024, 13(12), 1601; https://doi.org/10.3390/plants13121601 - 8 Jun 2024
Cited by 2 | Viewed by 1603
Abstract
The pathogenicity of grapevine geminivirus A (GGVA), a recently identified DNA virus, to grapevine plants remains largely unclear. Here, we report a new GGVA isolate (named GGVAQN) obtained from grapevine ‘Queen Nina’ plants with severe disease symptoms. The infectious clone of [...] Read more.
The pathogenicity of grapevine geminivirus A (GGVA), a recently identified DNA virus, to grapevine plants remains largely unclear. Here, we report a new GGVA isolate (named GGVAQN) obtained from grapevine ‘Queen Nina’ plants with severe disease symptoms. The infectious clone of GGVAQN (pXT-GGVAQN) was constructed to investigate its pathogenicity. Nicotiana benthamiana plants inoculated with GGVAQN by agroinfiltration displayed upward leaf curling and chlorotic mottling symptoms. A simple, quick, and efficient method for delivering DNA clones of GGVAQN into grapevine plants was developed, by which Agrobacterium tumefaciens cells carrying pXT-GGVAQN were introduced into the roots of in vitro-grown ‘Red Globe’ grape plantlets with a syringe. By this method, all ‘Red Globe’ grape plants were systemically infected with GGVAQN, and the plants exhibited chlorotic mottling symptoms on their upper leaves and downward curling, interveinal yellowing, and leaf-margin necrosis symptoms on their lower leaves. Our results provide insights into the pathogenicity of GGVA and a simple and efficient inoculation method to deliver infectious viral clones to woody perennial plants. Full article
Show Figures

Figure 1

11 pages, 7084 KB  
Brief Report
Comparative Evaluation of Transient Protein Expression Efficiency in Tissues across Soybean Varieties Using the Tsukuba System
by Martina Bianca Fuhrmann-Aoyagi, Saki Igarashi and Kenji Miura
Plants 2024, 13(6), 858; https://doi.org/10.3390/plants13060858 - 16 Mar 2024
Viewed by 2749
Abstract
Transient protein expression is a versatile tool with diverse applications and can be used in soybeans to study gene function, obtain mutants, and produce proteins for commercial use. However, soybeans are considered recalcitrant for agroinfiltration. Subsequent studies on soybeans have demonstrated a green [...] Read more.
Transient protein expression is a versatile tool with diverse applications and can be used in soybeans to study gene function, obtain mutants, and produce proteins for commercial use. However, soybeans are considered recalcitrant for agroinfiltration. Subsequent studies on soybeans have demonstrated a green fluorescent protein (GFP) expression in seedpods, but not in leaves, using syringe agroinfiltration. To evaluate agroinfiltration-based transient protein expression levels in plant cells, we used the transient expression vector pTKB3 harboring the GFP gene. Using Agrobacterium tumefaciens, vacuum agroinfiltration of the leaves and needle agroinfiltration of the seedlings of different soybean varieties were performed. GFP was transiently expressed in all of the samples. However, the Enrei and Williams 82 varieties presented better results than the other varieties in the leaf tissue, with results confirmed by immunoblot analysis, demonstrating that both varieties are good candidates for molecular biological studies. GFP expression in the seedlings was less extensive than that in the leaves, which may be due to the tissue characteristics, with Enrei showing the best results. Based on this observation, we conclude that the Tsukuba system is an effective tool that can be used for different tissues and soybean varieties. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

22 pages, 8113 KB  
Article
Evaluation of Parameters Affecting Agrobacterium-Mediated Transient Gene Expression in Industrial Hemp (Cannabis sativa L.)
by Tasnim Mohammad, Rishikesh Ghogare, Lauren B. Morton, Amit Dhingra, Shobha Potlakayala, Sairam Rudrabhatla and Sarwan K. Dhir
Plants 2024, 13(5), 664; https://doi.org/10.3390/plants13050664 - 28 Feb 2024
Cited by 11 | Viewed by 4328
Abstract
Industrial hemp Cannabis sativa L. is an economically important crop mostly grown for its fiber, oil, and seeds. Due to its increasing applications in the pharmaceutical industry and a lack of knowledge of gene functions in cannabinoid biosynthesis pathways, developing an efficient transformation [...] Read more.
Industrial hemp Cannabis sativa L. is an economically important crop mostly grown for its fiber, oil, and seeds. Due to its increasing applications in the pharmaceutical industry and a lack of knowledge of gene functions in cannabinoid biosynthesis pathways, developing an efficient transformation platform for the genetic engineering of industrial hemp has become necessary to enable functional genomic and industrial application studies. A critical step in the development of Agrobacterium tumefaciens-mediated transformation in the hemp genus is the establishment of optimal conditions for T-DNA gene delivery into different explants from which whole plantlets can be regenerated. As a first step in the development of a successful Agrobacterium tumefaciens-mediated transformation method for hemp gene editing, the factors influencing the successful T-DNA integration and expression (as measured by transient β-glucuronidase (GUS) and Green Florescent Protein (GFP) expression) were investigated. In this study, the parameters for an agroinfiltration system in hemp, which applies to the stable transformation method, were optimized. In the present study, we tested different explants, such as 1- to 3-week-old leaves, cotyledons, hypocotyls, root segments, nodal parts, and 2- to 3-week-old leaf-derived calli. We observed that the 3-week-old leaves were the best explant for transient gene expression. Fully expanded 2- to 3-week-old leaf explants, in combination with 30 min of immersion time, 60 µM silver nitrate, 0.5 µM calcium chloride, 150 µM natural phenolic compound acetosyringone, and a bacterial density of OD600nm = 0.4 resulted in the highest GUS and GFP expression. The improved method of genetic transformation established in the present study will be useful for the introduction of foreign genes of interest, using the latest technologies such as genome editing, and studying gene functions that regulate secondary metabolites in hemp. Full article
Show Figures

Figure 1

9 pages, 1987 KB  
Communication
Somatic Embryogenesis and Agrobacterium-Mediated Gene Transfer Procedures in Chilean Temperate Japonica Rice Varieties for Precision Breeding
by Marion Barrera, Blanca Olmedo, Carolina Zúñiga, Mario Cepeda, Felipe Olivares, Ricardo Vergara, Karla Cordero-Lara and Humberto Prieto
Plants 2024, 13(3), 416; https://doi.org/10.3390/plants13030416 - 31 Jan 2024
Cited by 3 | Viewed by 2823
Abstract
Rice (Oryza sativa) varieties are generated through breeding programs focused on local requirements. In Chile, the southernmost rice producer, rice productivity relies on the use and generation of temperate japonica germplasms, which need to be adapted to the intensifying effects of [...] Read more.
Rice (Oryza sativa) varieties are generated through breeding programs focused on local requirements. In Chile, the southernmost rice producer, rice productivity relies on the use and generation of temperate japonica germplasms, which need to be adapted to the intensifying effects of climate change. Advanced biotechnological tools can contribute to these breeding programs; new technologies associated with precision breeding, including gene editing, rely on procedures such as regeneration and gene transfer. In this study, the local rice varieties Platino, Cuarzo, Esmeralda, and Zafiro were evaluated for somatic embryogenesis potential using a process that involved the combined use of auxins and cytokinins. An auxin-based (2,4-D) general medium (2N6) allowed for the induction of embryogenic masses in all the genotypes. After induction, masses required culturing either in N6R (kinetin; Platino) or N6RN (BAP, kinetin, IBA, and 2,4-D; Cuarzo, Esmeralda, and Zafiro) to yield whole plants using regeneration medium (N6F, no hormone). The sprouting rates indicated Platino as the most responsive genotype; for this reason, this variety was evaluated for gene transfer. Fifteen-day-old embryo masses were assayed for Agrobacterium-mediated transformation using the bacterial strain EHA105 harboring pFLC-Myb/HPT/GFP, a modified T-DNA vector harboring a geminivirus-derived replicon. The vector included the green fluorescent protein reporter gene, allowing for continuous traceability. Reporter mRNA was produced as early as 3 d after agroinfiltration, and stable expression of the protein was observed along the complete process. These achievements enable further biotechnological steps in these and other genotypes from our breeding program. Full article
(This article belongs to the Special Issue Application of Biotechnology in Crop Improvement)
Show Figures

Figure 1

11 pages, 3540 KB  
Article
Rapid Construction and Application of a Vector for Tobacco Ringspot Virus-Induced McPDS Silencing in Bitter Gourd
by Lingen Zeng, Hui Zhang, Jinju Guo, Zhijun Deng, Hongbiao Liu, Hu Du, Yujuan Zhong, Changyuan Zhang and Chunpeng Yao
Horticulturae 2024, 10(2), 110; https://doi.org/10.3390/horticulturae10020110 - 23 Jan 2024
Viewed by 2134
Abstract
The aim of this study is to facilitate the construction of virus-induced gene silencing vectors and to provide a reference or positive control for gene silencing in bitter gourd. A recombinant TRSV (tobacco ringspot virus) containing two components, pTRSV1 and pTRSV2, was used [...] Read more.
The aim of this study is to facilitate the construction of virus-induced gene silencing vectors and to provide a reference or positive control for gene silencing in bitter gourd. A recombinant TRSV (tobacco ringspot virus) containing two components, pTRSV1 and pTRSV2, was used in this study. The fragment of the McPDS target was cloned into pTRSV2 via combined enzymic ligation during digestion. The TRSV components were agro-infiltrated into tobacco leaves to grow virus particles, which were then extracted and mechanically inoculated into the bitter gourd plants. The effect of TRSV-McPDS-mediated McPDS gene silencing was evaluated by observing the photo-bleaching phenotype, detecting the TRSV virus, and quantifying the downregulation of MCPDS gene expression and chlorophyll contents. The results showed that all bitter gourd plants infected with the empty TRSV or TRSV-McPDS virus grew and developed normally, with no visible signs of viral disease. However, after seven days of inoculation, only the bitter gourd plants that were inoculated with TRSV-McPDS showed obvious photobleaching in the leaves, stems, and buds. The TRSV-specific fragments were tested out in the systemically infected leaves of bitter gourd. The transcription level of the McPDS gene in the leaves dropped by 84.7%. The chlorophyll content also dropped significantly. These data suggest that the rapidly constructed VIGS vector TRSV-McPDS successfully induced McPDS silencing in bitter gourd. Taken together, the results of this study provide a practical method for vector construction in various VIGS applications, as well as a reference and a positive control for TRSV-induced gene silencing in bitter gourd. Full article
(This article belongs to the Special Issue New Advances in Molecular Biology of Horticultural Plants)
Show Figures

Figure 1

Back to TopTop