Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (192)

Search Parameters:
Keywords = agroecosystemic biodiversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2984 KiB  
Article
Influence of Rice–Crayfish Co-Culture Systems on Soil Properties and Microbial Communities in Paddy Fields
by Dingyu Duan, Dingxuan He, Liangjie Zhao, Chenxi Tan, Donghui Yang, Wende Yan, Guangjun Wang and Xiaoyong Chen
Plants 2025, 14(15), 2320; https://doi.org/10.3390/plants14152320 - 27 Jul 2025
Viewed by 388
Abstract
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects [...] Read more.
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects of the RC systems on soil physicochemical characteristics and microbial dynamics in paddy fields of southern Henan Province, China, over the 2023 growing season and subsequent fallow period. Using a randomized complete design, rice monoculture (RM, as the control) and RC treatments were compared across replicated plots. Soil and water samples were collected post-harvest and pre-transplanting to assess soil properties, extracellular enzyme activity, and microbial community structure. Results showed that RC significantly enhanced soil moisture by up to 30.2%, increased soil porosity by 9.6%, and nearly tripled soil organic carbon compared to RM. The RC system consistently elevated nitrogen (N), phosphorus (P), and potassium (K) throughout both the rice growth and fallow stages, indicating improved nutrient availability and retention. Elevated extracellular enzyme activities linked to carbon, N, and P cycling were observed under RC, with enzymatic stoichiometry revealing increased microbial nutrient limitation intensity and a shift toward P limitation. Microbial community composition was significantly altered under RC, showing increased biomass, a higher fungi-to-bacteria ratio, and greater relative abundance of Gram-positive bacteria, reflecting enhanced soil biodiversity and ecosystem resilience. Further analyses using the Mantel test and Random Forest identified extracellular enzyme activities, PLFAs, soil moisture, and bulk density as major factors shaping microbial communities. Redundancy analysis (RDA) confirmed that total potassium (TK), vector length (VL), soil pH, and total nitrogen (TN) were the strongest environmental predictors of microbial variation, jointly explaining 74.57% of the total variation. Our findings indicated that RC improves soil physicochemical conditions and microbial function, thereby supporting sustainable nutrient cycling and offering a promising, environmentally sound strategy for enhancing productivity and soil health in rice-based agro-ecosystems. Full article
Show Figures

Figure 1

14 pages, 1388 KiB  
Article
The Impact of Different Agricultural Practices on Nematode Biodiversity on Tomato- and Lettuce-Growing Periods Across Two Consecutive Years
by Giada d’Errico and Silvia Landi
Diversity 2025, 17(8), 501; https://doi.org/10.3390/d17080501 - 22 Jul 2025
Viewed by 267
Abstract
Protecting the soil ecosystem’s functioning is one of the main goals of recent regulations of chemicals. It is important to take soil biodiversity into account when designing cropping systems and measuring their impacts. Our main objective was to evaluate the effects of an [...] Read more.
Protecting the soil ecosystem’s functioning is one of the main goals of recent regulations of chemicals. It is important to take soil biodiversity into account when designing cropping systems and measuring their impacts. Our main objective was to evaluate the effects of an organic amendment on soil nematode biodiversity compared to two years of fumigation. The plot-trial was conducted on tomato and lettuce plants under greenhouse, and free-living nematodes were used as bio-indicators of soil health. Treatments included a soil fumigant (applied once or twice over time), water control, and an organic substance. Soil samplings were carried out to determine the Meloidogyne incognita reproduction factor and the soil nematode community analysis using soil biological indicators. Data showed that soil fumigation clearly made the soil increasingly dependent on chemicals. Furthermore, fumigants suppressed pests and pathogens as well as their natural antagonists, causing a lack of biodiversity. While soils treated with organic matter respond slowly to stressors, they are progressively more suppressive thanks to biodiversity enrichment. Nematodes have proven to be useful indicators of the soil biota in response to biotic or abiotic disturbances. Their species richness and functional diversity make them valid bioindicators of soil management impact. Full article
(This article belongs to the Special Issue Distribution, Biodiversity, and Ecology of Nematodes)
Show Figures

Graphical abstract

17 pages, 3641 KiB  
Article
Enhancing Biological Control of Drosophila suzukii: Efficacy of Trichopria drosophilae Releases and Interactions with a Native Parasitoid, Pachycrepoideus vindemiae
by Nuray Baser, Charbel Matar, Luca Rossini, Abir Ibn Amor, Dragana Šunjka, Dragana Bošković, Stefania Gualano and Franco Santoro
Insects 2025, 16(7), 715; https://doi.org/10.3390/insects16070715 - 11 Jul 2025
Viewed by 526
Abstract
The spotted wing drosophila, Drosophila suzukii is an injurious polyphagous pest threatening worldwide soft fruit production. Its high adaptability to new colonized environments, short life cycle, and wide host range are supporting its rapid spread. The most common techniques to reduce its significant [...] Read more.
The spotted wing drosophila, Drosophila suzukii is an injurious polyphagous pest threatening worldwide soft fruit production. Its high adaptability to new colonized environments, short life cycle, and wide host range are supporting its rapid spread. The most common techniques to reduce its significant economic damage are based on multiple insecticides applications per season, even prior to the harvest, which reduces agroecosystem biodiversity and affects human and animal health. Environmental concerns and regulatory restrictions on insecticide use are driving the need for studies on alternative biological control strategies. This study aimed to assess the effect of T. drosphilae in controlling D. suzukii infestations and its interaction with P. vindemiae, a secondary parasitoid naturally present in Apulia (South Italy). Field experiments were carried out in organic cherry orchards in Gioia del Colle (Bari, Italy) to test the efficacy and adaptability of T. drosphilae following weekly releases of artificially reared individuals. Additionally, the interaction between P. vindemiae and T. drosphilae was studied under laboratory conditions. Results from field experiments showed that D. suzukii populations were significantly lower when both parasitoids were present. However, T. drosophilae was less prone to adaptation, so its presence and parasitism were limited to the post-release period. Laboratory experiments, instead, confirmed the high reduction of D. suzukii populations when both parasitoids are present. However, the co-existence of the two parasitoids resulted in a reduced parasitism rate and offspring production, notably for T. drosophilae. This competitive disadvantage may explain its poor establishment in field conditions. These findings suggest that the field release of the two natural enemies should be carried out with reference to their natural population abundance to not generate competition effects. Full article
Show Figures

Figure 1

21 pages, 8197 KiB  
Article
Organic Farming to Improve Soil Quality and the Functional Structure of Soil Microbial Communities
by Ruilong Huang, Wei Li, Mengting Niu and Bo Hu
Agriculture 2025, 15(13), 1381; https://doi.org/10.3390/agriculture15131381 - 27 Jun 2025
Cited by 1 | Viewed by 513
Abstract
Organic agriculture is widely regarded as an important approach to reducing biodiversity loss and promoting sustainable agricultural development compared to conventional agriculture. Notably, organic farming practices have substantially boosted the diversity of soil microbial communities. However, empirical studies on the functional structure of [...] Read more.
Organic agriculture is widely regarded as an important approach to reducing biodiversity loss and promoting sustainable agricultural development compared to conventional agriculture. Notably, organic farming practices have substantially boosted the diversity of soil microbial communities. However, empirical studies on the functional structure of soil microbial communities in organic agroecosystems and the mechanisms influencing them remain relatively scarce. Using high-throughput sequencing technology, we analyzed soil microbial communities associated with organic (orange lands) and conventional (coffee and maize lands) farming practices in the Gaoligong Mountains (GLGM) region, with the aim of revealing differences in soil properties, microbial community structure, and functional composition across different agricultural management practices. The results revealed that organic farming boosted soil organic carbon and fertility, driving changes in the microbial community composition. Organic farming notably increased the abundance of bacterial functional groups involved in the carbon and nitrogen cycles but decreased the abundance of symbiotic fungi. Furthermore, no significant differences were observed in the abundance of saprotrophic and pathogenic fungi between the organic and conventional farming systems. The present study demonstrates that organic farming enhances the functional roles of oil microorganisms in nutrient cycling and overall ecosystem processes by enhancing soil’s organic carbon content and soil fertility, thereby modifying the soil’s microbial community structure and functions. Overall, organic farming contributes to improvements in soil health and supports the sustainable development of agriculture in the GLGM region. Full article
Show Figures

Figure 1

28 pages, 3748 KiB  
Article
Carob–Thyme Intercropping Systems Can Improve Yield Efficiency and Environmental Footprint Compared to Conservation Tillage
by Sofia Matsi, Dimitrios Sarris and Vassilis Litskas
Agronomy 2025, 15(7), 1560; https://doi.org/10.3390/agronomy15071560 - 26 Jun 2025
Viewed by 319
Abstract
Living mulch intercropping systems are considered as nature-based solutions with a low environmental footprint for managing weeds, improving biodiversity and agroecosystem sustainability. In drylands, however, they may increase intra/inter-specific competition for water, reducing crop productivity. We tested conservation tillage (TLG) carob plots with [...] Read more.
Living mulch intercropping systems are considered as nature-based solutions with a low environmental footprint for managing weeds, improving biodiversity and agroecosystem sustainability. In drylands, however, they may increase intra/inter-specific competition for water, reducing crop productivity. We tested conservation tillage (TLG) carob plots with and without irrigation (TLGirr; TLGdry) vs. rainfed intercropping systems of carob and (i) thyme (Thymbra capitata; T-System) or (ii) clover (Trifolium squarrosum; C-System), strategically planted on the south (sun)-exposed soil side (SES) of carobs, to reduce soil temperature/evaporation. Carob water relations, productivity and environmental footprints were examined for three years under semi-arid, low weed-competition (Skarinou-SKR) and arid high weed-competition (Vrysoules-VRY) conditions in Cyprus. Carob yield efficiency (kg/m3) in SKR, was >27% higher for the T-System (p < 0.05; SES cover ca. 85%; year-3), matching a higher leaf water content (p < 0.001) compared to TLGdry. The T-System reached 28% and 56% of TLGirr yields during very dry and normal rainfall years; TLGdry yields approached zero. For VRY, no negative impacts on carob leaf water, at 25% SES cover, were found. SKR’s C-System improved leaf water content (p < 0.05) for only one year. The T-System also outperformed TLGirr and TLGdry in terms of reducing irrigation needs and energy consumption, breaking new grounds for dryland agroforestry. Full article
Show Figures

Figure 1

17 pages, 1165 KiB  
Article
Availability, Accessibility, and Suitability of Native Flowers from Central Chile to Mastrus ridens, a Parasitoid of Codling Moth
by Tania Zaviezo, Alejandra E. Muñoz and Erick Bueno
Insects 2025, 16(7), 665; https://doi.org/10.3390/insects16070665 - 26 Jun 2025
Viewed by 517
Abstract
Habitat manipulation through non-crop vegetation management is a strategy in conservation biological control, and using native plants is attractive because they can also help in biodiversity conservation. The potential for nectar provision of 13 flowering species native to Chile, and two introduced, was [...] Read more.
Habitat manipulation through non-crop vegetation management is a strategy in conservation biological control, and using native plants is attractive because they can also help in biodiversity conservation. The potential for nectar provision of 13 flowering species native to Chile, and two introduced, was evaluated considering Mastrus ridens (Hymenoptera: Braconidae). Nectar availability was studied through flower phenology, accessibility through flower and parasitoid morphology, and suitability through longevity when exposed to nectar solutions or cut flowers. Most species had long flowering periods, potentially making nectar available when adults are active, but they differed in nectar accessibility and profitability. Of the 13 native species, nectar was easily accessible for M. ridens in Cistanthe grandiflora, Sphaeralcea obtusiloba, Andeimalva chilensis, and Lycium chilense. None of the nine native species tested with nectar solutions increased longevity, but with cut flowers, parasitoids lived longer with the natives Teucrium bicolor and S. obtusiloba, and the introduced Fagopyrum esculentum, making them candidates for M. ridens conservation. Females lived longer with cut flowers of T. bicolor and S. obtusiloba than with their nectar solutions. In conclusion, using the native flowering species Teucrium bicolor and Sphaeralcea obtusiloba in agroecosystems can serve biological control and biodiversity conservation. Full article
Show Figures

Figure 1

19 pages, 2927 KiB  
Article
Restoration, Indicators, and Participatory Solutions: Addressing Water Scarcity in Mediterranean Agriculture
by Enrico Vito Perrino, Pandi Zdruli, Lea Piscitelli and Daniela D’Agostino
Agronomy 2025, 15(7), 1517; https://doi.org/10.3390/agronomy15071517 - 22 Jun 2025
Viewed by 516
Abstract
Agricultural water resource management is increasingly challenged by climate variability, land degradation, and socio-economic pressures, particularly in the Mediterranean region. This study, conducted in 2023–2024 within the REACT4MED project (PRIMA initiative), addresses sustainable water use through a comparative analysis of organic and conventional [...] Read more.
Agricultural water resource management is increasingly challenged by climate variability, land degradation, and socio-economic pressures, particularly in the Mediterranean region. This study, conducted in 2023–2024 within the REACT4MED project (PRIMA initiative), addresses sustainable water use through a comparative analysis of organic and conventional farms in the Stornara and Tara area (Puglia, Italy). The research aimed to identify critical indicators for sustainable water management and develop ecosystem restoration strategies that can be replicated across similar Mediterranean agro-ecosystems. An interdisciplinary, participatory approach was adopted, combining technical analyses and stakeholder engagement through three workshops involving 30 participants from diverse sectors. Fieldwork and laboratory assessments included soil sampling and analysis of parameters such as pH, electrical conductivity, soil organic carbon, nutrients, and salinity. Cartographic studies of vegetation, land use, and pedological characterization supplemented the dataset. The key challenges identified were water loss in distribution systems, seawater intrusion, water pumping from unauthorized wells, and inadequate public policies. Soil quality was significantly influenced by salt stress, hence affecting crop productivity, while socio-economic factors affected farm income. Restoration strategies emphasized the need for water-efficient irrigation, less water-intensive crops, and green vegetation in infrastructure channels while incorporating also the native flora. Enhancing plant biodiversity through weed management in drainage channels proved beneficial for pathogen control. Proposed socio-economic measures include increased inclusion of women and youth in agricultural management activities. Integrated technical and participatory approaches are essential for effective water resource governance in Mediterranean agriculture. This study offers scalable, context-specific indicators and solutions for sustainable land and water management in the face of ongoing desertification and climate stress. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

12 pages, 1708 KiB  
Article
Preliminary Report of Three Entomopathogenic Fungi as Potential Biocontrol Agents Against the Oak Wilt Vector, Platypus koryoensis
by Jin Heung Lee, Nam Kyu Kim, Keumchul Shin, Jong Kyu Lee and Dong-Hyeon Lee
Forests 2025, 16(6), 1009; https://doi.org/10.3390/f16061009 - 16 Jun 2025
Viewed by 696
Abstract
Entomopathogenic fungi are a group of fungi that infect and kill insects to obtain nutrients, thereby contributing to the natural regulation of insect populations. In recent years, they have been increasingly utilized as biological control agents, particularly in response to the rising prevalence [...] Read more.
Entomopathogenic fungi are a group of fungi that infect and kill insects to obtain nutrients, thereby contributing to the natural regulation of insect populations. In recent years, they have been increasingly utilized as biological control agents, particularly in response to the rising prevalence of pesticide-resistant pests in agricultural systems. Representative examples include Beauveria bassiana and Metarhizium anisopliae, which are regarded as natural enemies of pests in agroecosystems. Since the first report of Korean oak wilt disease in 2004, the disease has continuously spread across the country and causes severe damage to deciduous oak species, especially Quercus mongolica. Although many efforts have been made to effectively control the disease, including chemical treatments, the control efficacy was shown to be low, and given the environmental side effects arising from the use of insecticides, there has been a demand for alternative control strategies. Integrated Pest Management in forests promotes ecological sustainability by reducing chemical pesticide use, conserving biodiversity, and enhancing long-term forest health. In this study, to mitigate issues with disease management strategies, assessments were made on three entomopathogenic fungi, B. bassiana, M. anisopliae, and Purpureocillium lilacinum, as potential biological control agents against oak wilt disease and its insect vector, Platypus koryoensis. In this regard, we investigated the insecticidal efficacy and LT50 of each entomopathogenic fungus, and the results showed that all three entomopathogenic fungal strains exhibited fast insecticidal effects against the insect vector, P. koryoensis, with M. anisopliae showing the fastest action, recording a lethal time to 50% mortality (LT50) of 58.7 h. The spores of M. anisopliae were found to be sensitive to high temperatures, while demonstrating a relatively high germination rate under UV exposure and strong initial germination ability at low temperatures. Full article
(This article belongs to the Special Issue Pathogenic Fungi in Forest)
Show Figures

Figure 1

15 pages, 901 KiB  
Article
Short-Term Effects of Minimum Tillage and Wood Distillate Addition on Plants and Springtails in an Olive Grove
by Emanuele Fanfarillo, Claudia Angiolini, Claudio Capitani, Margherita De Pasquale Picciarelli, Riccardo Fedeli, Tiberio Fiaschi, Prudence Jepkogei, Emilia Pafumi, Barbara Valle and Simona Maccherini
Environments 2025, 12(6), 204; https://doi.org/10.3390/environments12060204 - 15 Jun 2025
Viewed by 1147
Abstract
Agricultural practices significantly influence agroecosystem biodiversity, driving a growing focus on the development of environmentally sustainable management strategies. Olive (Olea europaea L.) is one of the most widely cultivated tree crops in the Mediterranean basin and other regions with a Mediterranean climate. [...] Read more.
Agricultural practices significantly influence agroecosystem biodiversity, driving a growing focus on the development of environmentally sustainable management strategies. Olive (Olea europaea L.) is one of the most widely cultivated tree crops in the Mediterranean basin and other regions with a Mediterranean climate. In this study, we employed a split-plot design with whole plots arranged as a randomized complete block design (RCBD) to evaluate the effects of minimum tillage and the application of wood distillate to olive canopies on wild vascular plant and soil-dwelling springtail communities in a conventionally managed olive grove in central Italy. Biotic communities were sampled twice, in November and April. Tillage caused a marginally significant decrease in springtail species richness in April and significantly influenced the composition of both plant and springtail communities in April. All the plant species showed a decrease in abundance under tillage, whereas the abundance of springtail species responded to tillage in a species-specific way. Wood distillate had no effect on any community attribute in either season. Springtail total abundance was not affected by any treatment in either season. Our findings confirm that tillage practices affect the diversity of plant and springtail communities. Moreover, we had evidence that spring tillage may have more negative impacts on the studied communities with respect to autumn tillage. Moreover, we suggest that the application of low-concentration wood distillate to olive canopies can be considered, in the short-term, a sustainable agricultural practice that does not negatively affect agroecosystem biodiversity. Full article
Show Figures

Graphical abstract

19 pages, 1842 KiB  
Article
A.A.A. Good Wines WANTED: Blockchain, Non-Destructive Ultrasonic Techniques and Soil Health Assessment for Wine Traceability
by Diego Romano Perinelli, Martina Coletta, Beatrice Sabbatini, Aldo D’Alessandro, Fabio Fabiani, Andrea Passacantando, Giulia Bonacucina and Antonietta La Terza
Sensors 2025, 25(11), 3567; https://doi.org/10.3390/s25113567 - 5 Jun 2025
Viewed by 509
Abstract
The wine industry faces increasing challenges related to authenticity, safety, and sustainability due to recurrent fraud, shifting consumer preferences, and environmental concerns. In this study, as part of the B.I.O.C.E.R.T.O project, we integrated blockchain technology with ultrasonic spectroscopy and soil quality data by [...] Read more.
The wine industry faces increasing challenges related to authenticity, safety, and sustainability due to recurrent fraud, shifting consumer preferences, and environmental concerns. In this study, as part of the B.I.O.C.E.R.T.O project, we integrated blockchain technology with ultrasonic spectroscopy and soil quality data by using the arthropod-based Soil Biological Quality Index (QBS-ar) to enhance traceability, ensure wine quality, and certify sustainable vineyard practices. Four representative wines from the Marche region (Sangiovese, Maceratino, and two Verdicchio PDO varieties) were analyzed across two vintages (2021 and 2022). Ultrasound spectroscopy demonstrated high sensitivity in distinguishing wines based on ethanol and sugar content, comparably to conventional viscosity-based methods. The QBS-ar index was applied to investigate the soil biodiversity status according to the agricultural management practices applied in each vineyard, reinforcing consumer confidence in environmentally responsible viticulture. By recording these data on a public blockchain, we developed a secure, transparent, and immutable certification system to verify the geographical origin of wines along with their unique characteristics. This is the first study to integrate advanced analytical techniques with blockchain technology for wine traceability, simultaneously addressing counterfeiting, consumer demand for transparency, and biodiversity preservation. Our findings support the applicability of this model to other agri-food sectors, with potential for expansion through additional analytical techniques, such as isotopic analysis and further agroecosystem sustainability indicators. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Graphical abstract

21 pages, 1755 KiB  
Article
Understanding Farmers’ Attitudes Toward Agricultural Landscape Practices to Achieve More Sustainable Rural Planning
by Jelena Despotović, Mirjana Ljubojević, Tijana Narandžić and Vesna Rodić
Sustainability 2025, 17(11), 5037; https://doi.org/10.3390/su17115037 - 30 May 2025
Viewed by 516
Abstract
The Autonomous Province of Vojvodina, Serbia’s most agriculturally developed region, lies within the fertile Pannonian plain. Decades of agricultural intensification have transformed its landscape into a near continuous expanse of arable land, largely devoid of natural elements such as trees, shrubs, or non-crop [...] Read more.
The Autonomous Province of Vojvodina, Serbia’s most agriculturally developed region, lies within the fertile Pannonian plain. Decades of agricultural intensification have transformed its landscape into a near continuous expanse of arable land, largely devoid of natural elements such as trees, shrubs, or non-crop vegetation. These simplified agroecosystems support very low biodiversity, contradicting the key principles of sustainable agricultural development. To assess farmers’ willingness to support more ecologically sound landscape practices, a survey was conducted of 400 farmers across Vojvodina. The results revealed limited openness to change; i.e., most respondents expressed a low interest in all three offered interventions: (a) introducing landscape elements, (b) fallowing, (c) converting arable land to grassland. This resistance reflects a prevailing productivist mindset in which farmers perceive themselves as producers of food, raw materials, and energy. Within this view, a neat, highly cultivated landscape is perceived as a hallmark of professionalism and success. These findings underscore the importance of developing context-sensitive policies and educational efforts that align sustainability goals with farmers’ values and economic realities. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

23 pages, 4420 KiB  
Article
Plant-Driven Effects of Wildflower Strips on Natural Enemy Biodiversity and Pest Suppression in an Agricultural Landscape in Hangzhou, China
by Wenhao Hu, Kang Ni, Yu Zhu, Shuyi Liu, Xuhua Shao, Zhenrong Yu, Luyu Wang, Rui Zhang, Meichun Duan and Wenhui Xu
Agronomy 2025, 15(6), 1286; https://doi.org/10.3390/agronomy15061286 - 23 May 2025
Viewed by 551
Abstract
Agricultural intensification has led to biodiversity loss and compromised ecosystem services, necessitating sustainable pest management strategies. This study evaluates the efficacy of wildflower strips (WFS) in enhancing natural enemy communities and suppressing pest activity in rice-wheat rotation landscapes of eastern China. An experiment [...] Read more.
Agricultural intensification has led to biodiversity loss and compromised ecosystem services, necessitating sustainable pest management strategies. This study evaluates the efficacy of wildflower strips (WFS) in enhancing natural enemy communities and suppressing pest activity in rice-wheat rotation landscapes of eastern China. An experiment compared WFS (10-species mixtures) with natural grass strips (CK) across biodiversity, functional traits, and pest dynamics. WFS significantly increased parasitic wasp α-diversity (species richness: +195.5%, activity density: +362.0%) and suppressed pest (Armadillidium vulgare) populations by 68%, primarily through female-biased sex ratios and functional trait shifts. Key species like Lindenius mesopleuralis and Ectemnius continuus emerged as indicators of WFS habitats. Spider communities showed no β-diversity differentiation but exhibited functional guild shifts (e.g., web-building specialists). Plant community composition, particularly floral resource availability and phenological continuity, drove natural enemy assembly and pest regulation, outperforming the CK group in rare species conservation. Our findings highlight WFS as a precision tool for enhancing pest control through targeted plant selection and trait-mediated interactions. This study advances the understanding of habitat-driven pest regulation, providing a framework for optimizing ecological intensification in agroecosystems. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

19 pages, 2957 KiB  
Article
Carbon, Water, and Light Use Efficiency Under Conservation Practice on Sloped Arable Land
by Gergana Kuncheva, Atanas Z. Atanasov, Milena Kercheva, Margaritka Filipova, Plamena D. Nikolova, Petar Nikolov, Valentin Vlăduț and Veselin Dochev
Resources 2025, 14(6), 87; https://doi.org/10.3390/resources14060087 - 23 May 2025
Viewed by 680
Abstract
Agroecosystems play a key role in the global carbon cycle, with CO2 exchange driven by photosynthesis and respiration. Indicators such as gross primary productivity (GPP), net primary productivity (NPP), and carbon, water, and light use efficiency (CUE, WUE, LUE) are essential for [...] Read more.
Agroecosystems play a key role in the global carbon cycle, with CO2 exchange driven by photosynthesis and respiration. Indicators such as gross primary productivity (GPP), net primary productivity (NPP), and carbon, water, and light use efficiency (CUE, WUE, LUE) are essential for assessing resource use in agricultural systems. Conventional tillage depletes carbon, water, and nutrients, negatively impacting the environment, while conservation practices aim to improve soil health and biodiversity. This study evaluated the effects of a cover crop in a wheat–maize rotation on sloped arable land prone to water erosion. The experiment involved minimum contour tillage combined with cover cropping, and its impact on carbon balance components and resource use efficiency was assessed. The results demonstrated that the inclusion of a cover crop significantly improved GPP and NPP. Water and light use efficiency also increased, particularly in 2022 and 2023, which were characterized by summer drought. However, carbon use efficiency remained unchanged over the study period. These findings highlight the potential of conservation practices, such as cover cropping and reduced tillage, to enhance productivity and resource efficiency in sloped agricultural landscapes under water stress conditions. Full article
Show Figures

Figure 1

15 pages, 1773 KiB  
Article
Accumulation of Soil Metal(loids) in Fast-Growing Woody Plants of the Post-Mining Area of Freiberg, Germany
by Viktoriia Lovynska, Oliver Wiche, Hermann Heilmeier, Alla Samarska and Roland Bol
Soil Syst. 2025, 9(2), 56; https://doi.org/10.3390/soilsystems9020056 - 23 May 2025
Viewed by 530
Abstract
Soil pollution is a global threat that seriously affects biodiversity in (agro)ecosystems and may compromise water and food quality. Therefore, the ability of tree species (Populus tremula, Salix caprea, and Betula pendula) to accumulate and phytoextract specific toxic heavy metals from [...] Read more.
Soil pollution is a global threat that seriously affects biodiversity in (agro)ecosystems and may compromise water and food quality. Therefore, the ability of tree species (Populus tremula, Salix caprea, and Betula pendula) to accumulate and phytoextract specific toxic heavy metals from soil was investigated. The study was conducted in and near relict mining areas of Freiberg (Germany) and sampling sites selected according to their spatial location relative to potential sources of metal(loid)s. The concentrations of geogenic (P, Fe, Mn, Ca) and pollutant (Pb, Cd, Zn, As) elements in soil and the present trees were measured using ICP-MS. The highest total soil concentrations of As (8978 µg g−1) were found within the Davidschaft mining area, and for soil Pb, both in the Davidschaft vicinity (328 µg g−1) and mining area (302 µg g−1). Unexpectedly, the highest soil Zn (0.64 mg g−1) and Cd (3.5 mg g−1) concentrations were found in Freiberg city Forest. The lowest soil concentrations of pollutants (As, Cd, Pb, and Zn) were recorded for Seifersdorf. Total soil P was highest in Colmnitz, but Ca, Mn, and Fe concentrations were very similar across all sites. The available concentration of all measured toxic elements in the soil generally decreased in the order Davidschaft > Davidschaft vicinity, Colmnitz > Seifersdorf = Freiberg city forest. All studied tree species had higher concentrations of the essential elements in leaves than in branches. Generally, higher values of bioaccumulation coefficients (especially for Cd) were found for Salix caprea compared with Populus tremula and Betula pendula. Full article
Show Figures

Figure 1

17 pages, 4559 KiB  
Article
Multivariate Analyses of Soil Properties and CO2 Emissions Under Long-Term Fertilization and Crop Rotation in Luvic Chernozem
by Gergana Kuncheva, Galin Gynchev, Jonita Perfanova, Milena Kercheva, Lev Tribis and Hristo Valchovski
Nitrogen 2025, 6(2), 39; https://doi.org/10.3390/nitrogen6020039 - 22 May 2025
Viewed by 453
Abstract
The key objectives of contemporary agriculture are restoring biodiversity, preserving ecosystem health, reducing the effects of climate change, and producing safe and healthy foods. Maintaining high soil fertility while reducing greenhouse gas emissions requires a precise assessment of how fertilization and crop rotation [...] Read more.
The key objectives of contemporary agriculture are restoring biodiversity, preserving ecosystem health, reducing the effects of climate change, and producing safe and healthy foods. Maintaining high soil fertility while reducing greenhouse gas emissions requires a precise assessment of how fertilization and crop rotation affect carbon and nutrient cycles in agroecosystems. Fertilization affects soil conditions, which alters the environment for soil microbial development and influences the number and composition of soil microbial communities, leading to changes in nutrient and carbon cycling. There is a lack of long-term experimental data on the impact of fertilizer treatments on soil CO2 emissions, soil microbial communities, and their interactions. The novelty of this study is that it identified the fertilization effects on soil carbon sequestration, soil properties, and microbial communities in the context of a long-term fertilizer experiment in Luvic Chernozem. The fertilization treatments that were continuously pplied for 64 years under a four-crop (wheat, barley, corn, and bean) rotation were nitrogen (N), phosphorus (P), potassium (K), NP, NK, PK, NPK, and control. The chemical and microbiological soil properties and soil CO2 emissions were monitored. The highest organic carbon content was observed under the NPK (1.42%) and NP (1.43%) treatments. N fertilizer application most significantly affected soil properties, including pH, electrical conductivity, and soil organic carbon content, altering the environment for soil microbial development and influencing the number and composition of soil microbial communities. On average, the field-measured soil C-CO2 emissions were the most intensive under NP (2.76 kg ha−1 h−1), NPK (2.83 kg ha−1 h−1), and PK (2.51 kg ha−1 day−1) treatments. Full article
Show Figures

Figure 1

Back to TopTop