Accumulation of Soil Metal(loids) in Fast-Growing Woody Plants of the Post-Mining Area of Freiberg, Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Selection of Sampling Sites
2.2. Collection of Soil and Plant Samples
2.3. Analysis of Soil and Plant Sampling
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Total and Potentially Plant Available Concentrations in Soil
3.2. Tree Element Concentration
4. Discussion
4.1. Soil Element Concentration
4.2. Plant Element Concentration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. State of Knowledge of Soil Biodiversity: Status, Challenges and Potentialities; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; p. 585. [Google Scholar]
- Garbuio, F.J.; Howard, J.L.; dos Santos, L.M. Impact of human activities on soil contamination. Appl. Environ. Soil Sci. 2012, 2012, 619548. [Google Scholar] [CrossRef]
- Wiche, O.; Zertani, V.; Hentschel, W.; Achtziger, R.; Midula, P. Germanium and rare earth elements in topsoil and soil-grown plants in different land use types in the mining area of Freiberg (Saxony). J. Geochem. Explor. 2017, 175, 120–129. [Google Scholar] [CrossRef]
- Wiche, O.; Dreier, F.; Ehrhardt, A.; Gerisch, M.K.; Jodoin, R.; Kessler, S.; Missfeldt, T.; Röder, M.; Rumberg, C.; Schulte, M.G.; et al. Mobilität von Potentiell Toxischen Spurenelementen in Oberflächennahen Spülsanden Der Spülhalde Davidschacht, Freiberg Und Deren Verlagerung in Umliegende Flächen. Freib. Ecol. Online 2018, 4, 1–19. [Google Scholar]
- Midula, P.; Wiche, O.; Andráš, P.; Wiese, P. Concentration and bioavailability of toxic trace elements, germanium, and rare earth elements in contaminated areas of the Davidschacht dump-field in Freiberg (Saxony). Freiberg Ecol. 2017, 2, 101–112. [Google Scholar]
- Schreiber, J.-C.; Richert, E. Biotoptypenausstattung von Altbergbauhalden in der Freiberger Bergbaufolgelandschaft. Freib. Ecol. Online 2021, 9, 1–41. [Google Scholar]
- Duffus, J.H. “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- Barrios, E. Soil biota, ecosystem services and land productivity. Ecol. Econ. 2007, 64, 269–285. [Google Scholar] [CrossRef]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef]
- Passatore, L.; Rossetti, S.; Juwarkar, A.A.; Massacci, A. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives. J. Hazard. Mater. 2014, 278, 189–202. [Google Scholar] [CrossRef]
- Brooks, R.R. Plants that Hyperaccumulate Trace Metals; CAB International: Wallingford, UK, 1998; p. 380. [Google Scholar]
- Dixit, R.; Wasiullah; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; et al. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability 2015, 7, 2189–2212. [Google Scholar] [CrossRef]
- Paz-Alberto, A.M.; Sigua, G.C. Phytoremediation: A green technology to remove environmental pollutants. Am. J. Clim. Change 2013, 2, 71–86. [Google Scholar] [CrossRef]
- Hauptvogl, M.; Kotrla, M.; Prčík, M.; Pauková, Ž.; Kováčik, M.; Lošák, T. Phytoremediation potential of fast-growing energy plants: Challenges and perspectives—A review. Pol. J. Environ. Stud. 2020, 29, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Fritz, E.; Jahns, C. Die Spülhalde Davidschacht in Freiberg—Geschichte, Umweltproblematik und geplante Sanierung. Freib. Ecol. Online 2017, 2, 4–17. [Google Scholar]
- Richert, E.; Aufsfeld, P.; Olias, M. Biotoptypenausstattung der Spülhalde Davidschacht in Freiberg. Freib. Ecol. Online 2017, 2, 18–36. [Google Scholar]
- Bazihizina, N.; Taiti, C.; Marti, L.; Rodrigo-Moreno, A.; Spinelli, F.; Giordano, C.; Caparrotta, S.; Gori, M.; Azzarello, E.; Mancuso, S. Zn2+-induced changes at the root level account for the increased tolerance of acclimated tobacco plants. J. Exp. Bot. 2014, 65, 4931–4942. [Google Scholar] [CrossRef]
- Kharytonov, M. Geochemical assessment of reclaimed lands in the mining regions of Ukraine. In NATO ARW Soil Chemical Pollution, Risk Assessment, Remediation and Security; Springer: Dordrecht, The Netherlands, 2007; pp. 57–60. [Google Scholar]
- Casas, G.R.; Rapprich, V.; Breitkreuz, C.; Svojtka, M.; Lapp, M.; Stanek, K.; Hofmann, M.; Linnemann, U. Lithofacies architecture, composition, and age of the Carboniferous Teplice Rhyolite (German–Czech border): Insights into the evolution of the Altenberg–Teplice Caldera. J. Volcanol. Geotherm. Res. 2019, 386, 1–10. [Google Scholar] [CrossRef]
- Okoroafor, P.U.; Ogunkunle, C.O.; Heilmeier, H.; Wiche, O. Phytoaccumulation potential of nine plant species for selected nutrients, rare earth elements (REEs), germanium (Ge), and potentially toxic elements (PTEs) in soil. Int. J. Phytoremediat. 2022, 24, 1310–1320. [Google Scholar] [CrossRef]
- Cheraghi, M.; Lorestani, B.; Merrikhpour, H. Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns. Biol. Trace Elem. Res. 2012, 145, 87–92. [Google Scholar] [CrossRef]
- Patra, M.; Bhowmik, N.; Bandopadhyay, B.; Sharma, A. Comparison of mercury, lead, and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Exp. Bot. 2004, 52, 199–223. [Google Scholar] [CrossRef]
- Frentiu, T.; Vlad, S.; Ponta, M.; Baciu, C.; Kasler, I.; Cordos, E. Profile distribution of As(III) and As(V) species in soil and groundwater in Bozanta area. Chem. Pap. 2007, 61, 186–193. [Google Scholar] [CrossRef]
- Migaszewski, Z.; Gałuszka, A. Geochemia Środowiska; WNT: Warsaw, Poland, 2007. [Google Scholar]
- ISO 17402:2022; Soil Quality—Requirements and Guidance for the Selection and Application of Methods for the Assessment of Bioavailability of Contaminants in Soil and Soil Materials. ISO: Geneva, Switzerland, 2022.
- Sana, A.; Qasim, A.; Zahir, A.Z.; Sobia, A.; Hafiz, N.A. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Santhosh, M.S.; Raju, N.S. Heavy metal phytoremediation by crop species at Hebbal Industrial area, Mysuru, India. Curr. World Environ. 2024, 19, 11. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, N.; Yu, Y.; Zheng, Z.; Yao, H. Soil carbon and nitrogen cycles driven by iron redox: A review. Sci. Total Environ. 2024, 918, 170660. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Q.; Yang, Y.; Wei, H.; Laipan, M.; Zhu, R.; He, H.; Hochella, M. Coupled redox cycling of Fe and Mn in the environment: The complex interplay of solution species with Fe- and Mn-(oxyhydr)oxide crystallization and transformation. Earth Sci. Rev. 2022, 232, 104105. [Google Scholar] [CrossRef]
- Kappler, A.; Bryce, C.; Mansor, M.; Lueder, U.; Byrne, J.M.; Swanner, E.D. An evolving view on biogeochemical cycling of iron. Nat. Rev. Microbiol. 2021, 19, 360–374. [Google Scholar] [CrossRef]
- Roberts, D.R.; Ford, R.G.; Sparks, D.L. Kinetics and mechanisms of Zn complexation on metal oxides using EXAFS spectroscopy. J. Colloid Interface Sci. 2003, 263, 364–376. [Google Scholar] [CrossRef]
- Rassaei, F.; Mehran, H.; Seyed, A.A. Cadmium speciation as influenced by soil water content and zinc and the studies of kinetic modeling in two soils textural classes. Int. Soil Water Conserv. Res. 2020, 8, 286–294. [Google Scholar] [CrossRef]
- Egendorf, S.P.; Groffman, P.; Moore, G.; Cheng, Z. The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: A critical review. Int. J. Phytoremediation 2020, 22, 916–930. [Google Scholar] [CrossRef]
- Khudhur, S.M.; Khudhur, N.S. Soil pollution assessment from the industrial area of Erbil City. J. Zankoy Sulaimani Part A 2015, 17, 227–240. [Google Scholar] [CrossRef]
- Aydinalpi, C.; Marinova, S. Distribution and forms of heavy metals in some agricultural soils. Pol. J. Environ. Stud. 2003, 12, 629–634. [Google Scholar]
- Hecht, C.; Messinger, F.; Assan, E.; Wiche, O. Einfluss der Vegetation auf die Konzentration von potentiell toxischen Spurenelementen, Germanium und Lanthan in Porenwässern von Spülsanden der Davidschachthalde Freiberg. Freib. Ecol. Online 2017, 2, 113–137. [Google Scholar]
- Moncur, M.C.; Jambor, J.L.; Ptacek, C.J.; Blowes, D.W. Mine drainage from the weathering of sulfide minerals and magnetite. Appl. Geochem. 2009, 24, 2362–2373. [Google Scholar] [CrossRef]
- Andráš, P.; Matos, J.X.; Turisová, I.; Batista, M.J.; Kanianska, R.; Kharbish, S. The Interaction of Heavy Metals and Metalloids in the Soil-Plant System in the São Domingos Mining Area (Iberian Pyrite Belt, Portugal). Environ. Sci. Pollut. Res. 2018, 25, 20615–20630. [Google Scholar] [CrossRef] [PubMed]
- Niedzielski, P.; Krzesłowska, M.; Mleczek, M.; Budzyńska, S.; Goliński, P. Arsenite phytoextraction and its influence on selected nutritional elements in one-year-old tree species. Microchem. J. 2017, 133, 530–538. [Google Scholar] [CrossRef]
- Budzyńska, S.; Goliński, P.; Niedzielski, P.; Gąsecka, M.; Mleczek, M. Arsenic Content in Two-Year-Old Acer platanoides L. and Tilia cordata Miller Seedlings Growing under Dimethylarsinic Acid Exposure-Model Experiment. Environ. Sci. Pollut. Res. Int. 2019, 26, 6877–6889. [Google Scholar] [CrossRef]
- Zalesny, R.S.; Bauer, E.O. Evaluation of Populus and Salix continuously irrigated with landfill leachate II. Soils and early tree development. Int. J. Phytoremediat. 2007, 9, 307–323. [Google Scholar] [CrossRef]
- Nielsen, D.L.; Brock, M.A.; Rees, G.N.; Baldwin, D.S. Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot. 2003, 51, 655–665. [Google Scholar] [CrossRef]
- Čurlík, J.; Kolesár, M.; Ďurža, O.; Hiller, E. Dandelion (Taraxacum officinale) and agrimony (Agrimonia eupatoria) as indicators of geogenic contamination of flysch soils in eastern Slovakia. Arch. Environ. Contam. Toxicol. 2015, 70, 475–486. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, N.; Liu, C.; Yang, H.; Li, M.; Yu, G.; Wilcox, K.; Yu, Q.; He, N. C:N:P stoichiometry in China’s forests: From organs to ecosystems. Funct. Ecol. 2018, 32, 50–60. [Google Scholar] [CrossRef]
- McBride, M.B. Environmental Chemistry of Soils; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Azam, H.M.; Alam, S.T.; Hasan, M.; Yameogo, D.D.S.; Kannan, A.D.; Rahman, A.; Kwon, M.J. Phosphorous in the environment: Characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems. Environ. Sci. Pollut. Res. 2019, 26, 20183–20207. [Google Scholar] [CrossRef]
- He, J.; Ma, C.; Ma, Y.; Li, H.; Kang, J.; Liu, T.; Polle, A.; Peng, C.; Luo, Z.B. Cadmium tolerance in six poplar species. Environ. Sci. Pollut. Res. 2013, 20, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, A.A.; Aarabi, M.A.; DeLaune, R.D.; Gambrell, R.P.; Patrick, W.H., Jr. Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci. Total Environ. 1998, 217, 189–199. [Google Scholar] [CrossRef]
- Sudhir, K.U.; Priyanka, D.; Vinay, K.; Himanshu, K.P.; Prasann, K.; Vishnu, D.R.; Padmanabh, D. Efficient removal of total arsenic (As3+/5+) from contaminated water by novel strategies mediated iron and plant extract activated waste flowers of marigold. Chemosphere 2023, 313, 137551. [Google Scholar] [CrossRef]
- Chukwu, E.; Gulser, C. Morphological, physiological, and anatomical effects of heavy metals on soil and plant health and possible remediation technologies. Soil Secur. 2025, 18, 100178. [Google Scholar] [CrossRef]
- Huang, R.; Dong, M.L.; Mao, P.; Zhuang, P.; Paz-Ferreiro, J.; Li, Y.X.; Li, Y.W.; Hu, X.Y.; Netherway, P.; Li, Z.A. Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd-contaminated soils. Sci. Total Environ. 2020, 721, 137581. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2001; p. 293. ISBN 0-8493-6639-9. [Google Scholar]
- Rezapour, S.; Atashpaz, B.; Moghaddam, S.S.; Damalas, C.A. Heavy metal bioavailability and accumulation in winter wheat (Triticum aestivum L.) irrigated with treated wastewater in calcareous soils. Sci. Total Environ. 2019, 656, 261–269. [Google Scholar] [CrossRef]
- Raza, A.; Habib, M.; Kakavand, S.N.; Zahid, Z.; Zahra, N.; Sharif, R.; Hasanuzzaman, M. Phytoremediation of cadmium: Physiological, biochemical, and molecular mechanisms. Biology 2020, 9, 177. [Google Scholar] [CrossRef]
- Lu, H.; Qiao, D.; Han, Y.; Zhao, Y.; Bai, F.; Wang, Y. Low molecular weight organic acids increase Cd accumulation in sunflowers through increasing Cd bioavailability and reducing Cd toxicity to plants. Minerals 2021, 11, 243. [Google Scholar] [CrossRef]
- Lovynska, V.; Bayat, B.; Bol, R.; Moradi, S.; Rahmati, M.; Raj, R.; Sytnyk, S.; Wiche, O.; Wu, B.; Montzka, C. Monitoring Heavy Metals and Metalloids in Soils and Vegetation by Remote Sensing: A Review. Remote Sens. 2024, 16, 3221. [Google Scholar] [CrossRef]
- Guerinot, M.L. The ZIP family of metal transporters. Biochim. Biophys. Acta 2000, 1465, 190–198. [Google Scholar] [CrossRef]
- Fässler, E.; Robinson, B.H.; Gupta, S.K.; Schulin, R. Uptake and allocation of plant nutrients and Cd in maize, sunflower, and tobacco growing on contaminated soil and the effect of soil conditioners under field conditions. Nutr. Cycl. Agroecosyst. 2010, 87, 339–352. [Google Scholar] [CrossRef]
- Astolfi, S.; Zuchi, S.; Neumann, G.; Cesco, S.; di Toppi, L.S.; Pinton, R. Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation. J. Exp. Bot. 2012, 63, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Vervaeke, P.; Luyssaert, S.; Mertens, J.; Meers, E.; Tack, F.M.; Lust, N. Phytoremediation prospects of willow stands on contaminated sediment: A field trial. Environ. Pollut. 2003, 126, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Chen, L.H.; Zhu, P.; Zhang, J.; Zhang, D.J.; Xiao, J.J.; Xu, Z.F.; Zhang, L.; Liu, Y.; Li, H.; et al. Sex-specific responses of Populus deltoides to interaction of cadmium and salinity in root systems. Ecotoxicol. Environ. Saf. 2020, 195, 110437. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.O. Soil pH and nutrient availability. Fact Sheet FS-1054 2016, 1054, 1–5. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Arya, G.; Kumar, R.; Hamed, L.; Pirasteh-Anosheh, H.; Jasrotia, P.; Kashyap, P.L.; Singh, G.P. Switching to nanonutrients for sustaining agroecosystems and environment: The challenges and benefits in moving up from ionic to particle feeding. J. Nanobiotechnol. 2022, 20, 1–28. [Google Scholar] [CrossRef]
- Marschner, P.; Rengel, Z. Nutrient Availability in Soils; Elsevier: London, UK, 2012; pp. 315–330. [Google Scholar] [CrossRef]
- Cheng, Y.; Yin, L.; Lin, S.; Wiesner, M.; Bernhardt, E.; Liu, J. Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J. Phys. Chem. C 2011, 115, 4425–4432. [Google Scholar] [CrossRef]
- Khageshwar, S.P.; Piyush, K.P.; Pablo, M.; Warren, T.C.; Simge, V.; Prosun, B.; Yanbei, Z. A review on arsenic in the environment: Contamination, mobility, sources, and exposure. RSC Adv. 2023, 13, 8803–8821. [Google Scholar] [CrossRef]
- Rajendran, S.; Rathinam, V.; Sharma, A.; Vallinayagam, S.; Muthusamy, M. Arsenic and environment: A systematic review on arsenic sources, uptake mechanism in plants, health hazards, and remediation strategies. Top. Catal. 2024, 67, 325–341. [Google Scholar] [CrossRef]
- Priya, A.K.; Muruganandam, M.; Ali, S.S.; Kornaros, M. Clean-up of heavy metals from contaminated soil by phytoremediation: A multidisciplinary and eco-friendly approach. Toxics 2023, 11, 422. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lovynska, V.; Wiche, O.; Heilmeier, H.; Samarska, A.; Bol, R. Accumulation of Soil Metal(loids) in Fast-Growing Woody Plants of the Post-Mining Area of Freiberg, Germany. Soil Syst. 2025, 9, 56. https://doi.org/10.3390/soilsystems9020056
Lovynska V, Wiche O, Heilmeier H, Samarska A, Bol R. Accumulation of Soil Metal(loids) in Fast-Growing Woody Plants of the Post-Mining Area of Freiberg, Germany. Soil Systems. 2025; 9(2):56. https://doi.org/10.3390/soilsystems9020056
Chicago/Turabian StyleLovynska, Viktoriia, Oliver Wiche, Hermann Heilmeier, Alla Samarska, and Roland Bol. 2025. "Accumulation of Soil Metal(loids) in Fast-Growing Woody Plants of the Post-Mining Area of Freiberg, Germany" Soil Systems 9, no. 2: 56. https://doi.org/10.3390/soilsystems9020056
APA StyleLovynska, V., Wiche, O., Heilmeier, H., Samarska, A., & Bol, R. (2025). Accumulation of Soil Metal(loids) in Fast-Growing Woody Plants of the Post-Mining Area of Freiberg, Germany. Soil Systems, 9(2), 56. https://doi.org/10.3390/soilsystems9020056