Organic Farming to Improve Soil Quality and the Functional Structure of Soil Microbial Communities
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Determination of Soil Properties
2.3. DNA Extraction and High-Throughput Sequencing
2.4. Statistical Analysis
3. Results
3.1. Effects of Organic Farming on Soil Properties
3.2. Effects of Organic Farming on the Structure of Soil Microbial Communities
3.2.1. Effects of Organic Farming on Soil Microbial Abundance and Diversity
3.2.2. Effects of Organic Farming on the Composition of Soil Microbial Communities
3.2.3. Factors Regulating Changes in the Structure of Soil Microbial Communities Under Organic Farming
3.3. Effects of Organic Farming on Soil Microbial Functional Groups
4. Discussion
4.1. Organic Farming Leads to Improvements in Soil Properties
4.2. Organic Farming Alters Soil Microbial Communities Structure
4.3. Organic Farming Enhances the Abundance of Soil Microbial Groups Related to C- and N-Cycling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdo, A.I.; Sun, D.; Shi, Z.; Abdel-Fattah, M.K.; Zhang, J.; Kuzyakov, Y. Conventional Agriculture Increases Global Warming While Decreasing System Sustainability. Nat. Clim. Change 2025, 15, 110–117. [Google Scholar] [CrossRef]
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural Intensification and Ecosystem Properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient Imbalances in Agricultural Development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef] [PubMed]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological Intensification: Harnessing Ecosystem Services for Food Security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; De Ruiter, P.C.; Van Der Putten, W.H.; Birkhofer, K.; Hemerik, L.; De Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive Agriculture Reduces Soil Biodiversity across Europe. Glob. Change Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef]
- Boselli, R.; Fiorini, A.; Santelli, S.; Ardenti, F.; Capra, F.; Maris, S.C.; Tabaglio, V. Cover Crops during Transition to No-till Maintain Yield and Enhance Soil Fertility in Intensive Agro-Ecosystems. Field Crops Res. 2020, 255, 107871. [Google Scholar] [CrossRef]
- Özbolat, O.; Sánchez-Navarro, V.; Zornoza, R.; Egea-Cortines, M.; Cuartero, J.; Ros, M.; Pascual, J.A.; Boix-Fayos, C.; Almagro, M.; De Vente, J.; et al. Long-Term Adoption of Reduced Tillage and Green Manure Improves Soil Physicochemical Properties and Increases the Abundance of Beneficial Bacteria in a Mediterranean Rainfed Almond Orchard. Geoderma 2023, 429, 116218. [Google Scholar] [CrossRef]
- Lammerts Van Bueren, E.T.; Struik, P.C.; Jacobsen, E. Ecological Concepts in Organic Farming and Their Consequences for an Organic Crop Ideotype. NJAS Wagening. J. Life Sci. 2002, 50, 1–26. [Google Scholar] [CrossRef]
- Gonthier, D.J.; Ennis, K.K.; Farinas, S.; Hsieh, H.-Y.; Iverson, A.L.; Batáry, P.; Rudolphi, J.; Tscharntke, T.; Cardinale, B.J.; Perfecto, I. Biodiversity Conservation in Agriculture Requires a Multi-Scale Approach. Proc. R. Soc. B 2014, 281, 20141358. [Google Scholar] [CrossRef]
- Luján Soto, R.; Martínez-Mena, M.; Cuéllar Padilla, M.; De Vente, J. Restoring Soil Quality of Woody Agroecosystems in Mediterranean Drylands through Regenerative Agriculture. Agric. Ecosyst. Environ. 2021, 306, 107191. [Google Scholar] [CrossRef]
- Huang, J.; Liu, X.; Liu, J.; Zhang, Z.; Zhang, W.; Qi, Y.; Li, W.; Chen, Y. Changes of Soil Bacterial Community, Network Structure, and Carbon, Nitrogen and Sulfur Functional Genes under Different Land Use Types. Catena 2023, 231, 107385. [Google Scholar] [CrossRef]
- Medriano, C.A.; Chan, A.; De Sotto, R.; Bae, S. Different Types of Land Use Influence Soil Physiochemical Properties, the Abundance of Nitrifying Bacteria, and Microbial Interactions in Tropical Urban Soil. Sci. Total Environ. 2023, 869, 161722. [Google Scholar] [CrossRef] [PubMed]
- Miltner, A.; Bombach, P.; Schmidt-Brücken, B.; Kästner, M. SOM Genesis: Microbial Biomass as a Significant Source. Biogeochemistry 2012, 111, 41–55. [Google Scholar] [CrossRef]
- Xu, X.; Thornton, P.E.; Post, W.M. A Global Analysis of Soil Microbial Biomass Carbon, Nitrogen and Phosphorus in Terrestrial Ecosystems: Global Soil Microbial Biomass C, N and P. Glob. Ecol. Biogeogr. 2013, 22, 737–749. [Google Scholar] [CrossRef]
- Ma, B.; Wang, H.; Dsouza, M.; Lou, J.; He, Y.; Dai, Z.; Brookes, P.C.; Xu, J.; Gilbert, J.A. Geographic Patterns of Co-Occurrence Network Topological Features for Soil Microbiota at Continental Scale in Eastern China. ISME J. 2016, 10, 1891–1901. [Google Scholar] [CrossRef]
- Li, Z.; Tian, D.; Wang, B.; Wang, J.; Wang, S.; Chen, H.Y.H.; Xu, X.; Wang, C.; He, N.; Niu, S. Microbes Drive Global Soil Nitrogen Mineralization and Availability. Glob. Change Biol. 2019, 25, 1078–1088. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, Q.; Zhu, H.; Reich, P.B.; Banerjee, S.; Van Der Heijden, M.G.A.; Sadowsky, M.J.; Ishii, S.; Jia, X.; Shao, M.; et al. Erosion Reduces Soil Microbial Diversity, Network Complexity and Multifunctionality. ISME J. 2021, 15, 2474–2489. [Google Scholar] [CrossRef]
- Karimi, B.; Maron, P.A.; Chemidlin-Prevost Boure, N.; Bernard, N.; Gilbert, D.; Ranjard, L. Microbial Diversity and Ecological Networks as Indicators of Environmental Quality. Environ. Chem. Lett. 2017, 15, 265–281. [Google Scholar] [CrossRef]
- Li, Y.; Song, D.; Liang, S.; Dang, P.; Qin, X.; Liao, Y.; Siddique, K.H.M. Effect of No-Tillage on Soil Bacterial and Fungal Community Diversity: A Meta-Analysis. Soil Tillage Res. 2020, 204, 104721. [Google Scholar] [CrossRef]
- Suyal, D.C.; Soni, R.; Singh, D.K.; Goel, R. Microbiome Change of Agricultural Soil under Organic Farming Practices. Biologia 2021, 76, 1315–1325. [Google Scholar] [CrossRef]
- Krauss, M.; Wiesmeier, M.; Don, A.; Cuperus, F.; Gattinger, A.; Gruber, S.; Haagsma, W.K.; Peigné, J.; Palazzoli, M.C.; Schulz, F.; et al. Reduced Tillage in Organic Farming Affects Soil Organic Carbon Stocks in Temperate Europe. Soil Tillage Res. 2022, 216, 105262. [Google Scholar] [CrossRef]
- Lori, M.; Symnaczik, S.; Mäder, P.; De Deyn, G.; Gattinger, A. Organic Farming Enhances Soil Microbial Abundance and Activity—A Meta-Analysis and Meta-Regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef] [PubMed]
- Lupatini, M.; Korthals, G.W.; De Hollander, M.; Janssens, T.K.S.; Kuramae, E.E. Soil Microbiome Is More Heterogeneous in Organic Than in Conventional Farming System. Front. Microbiol. 2017, 7, 2064. [Google Scholar] [CrossRef] [PubMed]
- Mihelič, R.; Pintarič, S.; Eler, K.; Suhadolc, M. Effects of Transitioning from Conventional to Organic Farming on Soil Organic Carbon and Microbial Community: A Comparison of Long-Term Non-Inversion Minimum Tillage and Conventional Tillage. Biol. Fertil. Soils 2024, 60, 341–355. [Google Scholar] [CrossRef]
- Janke, R.R.; Menezes-Blackburn, D.; Al Hamdi, A.; Rehman, A. Organic Management and Intercropping of Fruit Perennials Increase Soil Microbial Diversity and Activity in Arid Zone Orchard Cropping Systems. Sustainability 2024, 16, 9391. [Google Scholar] [CrossRef]
- Kundel, D.; Bodenhausen, N.; Jørgensen, H.B.; Truu, J.; Birkhofer, K.; Hedlund, K.; Mäder, P.; Fliessbach, A. Effects of Simulated Drought on Biological Soil Quality, Microbial Diversity and Yields under Long-Term Conventional and Organic Agriculture. FEMS Microbiol. Ecol. 2020, 96, fiaa205. [Google Scholar] [CrossRef]
- Karanja, E.N.; Fliessbach, A.; Adamtey, N.; Kambura, A.K.; Musyoka, M.; Fiaboe, K.; Mwirichia, R. Diversity and Structure of Prokaryotic Communities within Organic and Conventional Farming Systems in Central Highlands of Kenya. PLoS ONE 2020, 15, e0236574. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, Y.; Li, P.; Cui, J.; Sui, P.; Chen, Y.; Gao, W. Organic Management Increases Beneficial Microorganisms and Promotes the Stability of Microecological Networks in Tea Plantation Soil. Front. Microbiol. 2023, 14, 1237842. [Google Scholar] [CrossRef]
- Wright, S. The importance of soil microorganisms in aggregate stability. In Proceedings of the North Central Extension Industry Soil Fertility Conference Proceedings, Monticello, IL, USA, 19 November 2003. [Google Scholar]
- Ling, N.; Zhu, C.; Xue, C.; Chen, H.; Duan, Y.; Peng, C.; Guo, S.; Shen, Q. Insight into How Organic Amendments Can Shape the Soil Microbiome in Long-Term Field Experiments as Revealed by Network Analysis. Soil Biol. Biochem. 2016, 99, 137–149. [Google Scholar] [CrossRef]
- Kurzemann, F.R.; Plieger, U.; Probst, M.; Spiegel, H.; Sandén, T.; Ros, M.; Insam, H. Long-Term Fertilization Affects Soil Microbiota, Improves Yield and Benefits Soil. Agronomy 2020, 10, 1664. [Google Scholar] [CrossRef]
- Wang, Q.; Peng, X.; Yuan, Y.; Zhou, X.; Huang, J.; Wang, H. The Effect of Torreya Grandis Inter-Cropping with Polygonatum Sibiricum on Soil Microbial Community. Front. Microbiol. 2024, 15, 1487619. [Google Scholar] [CrossRef] [PubMed]
- Cuartero, J.; Özbolat, O.; Sánchez-Navarro, V.; Weiss, J.; Zornoza, R.; Pascual, J.A.; Vivo, J.-M.; Ros, M. Long-Term Compost Amendment Changes Interactions and Specialization in the Soil Bacterial Community, Increasing the Presence of Beneficial N-Cycling Genes in the Soil. Agronomy 2022, 12, 316. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An Open Annotation Tool for Parsing Fungal Community Datasets by Ecological Guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Wu, L.; Ren, C.; Jiang, H.; Zhang, W.; Chen, N.; Zhao, X.; Wei, G.; Shu, D. Land Abandonment Transforms Soil Microbiome Stability and Functional Profiles in Apple Orchards of the Chinese Losses Plateau. Sci. Total Environ. 2024, 906, 167556. [Google Scholar] [CrossRef]
- Di Martino, C.; Torino, V.; Minotti, P.; Pietrantonio, L.; Del Grosso, C.; Palmieri, D.; Palumbo, G.; Crawford, T.W.; Carfagna, S. Mycorrhized Wheat Plants and Nitrogen Assimilation in Coexistence and Antagonism with Spontaneous Colonization of Pathogenic and Saprophytic Fungi in a Soil of Low Fertility. Plants 2022, 11, 924. [Google Scholar] [CrossRef]
- Ablimit, R.; Li, W.; Zhang, J.; Gao, H.; Zhao, Y.; Cheng, M.; Meng, X.; An, L.; Chen, Y. Altering Microbial Community for Improving Soil Properties and Agricultural Sustainability during a 10-Year Maize-Green Manure Intercropping in Northwest China. J. Environ. Manag. 2022, 321, 115859. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Z.; Liu, J.; Li, X.; Wang, X.; Dai, C.; Zhang, T.; Carrión, V.J.; Wei, Z.; Cao, F.; et al. Crop Rotation and Native Microbiome Inoculation Restore Soil Capacity to Suppress a Root Disease. Nat. Commun. 2023, 14, 8126. [Google Scholar] [CrossRef]
- Dumbacher, J.P.; Miller, J.; Flannery, M.E.; Xiaojun, Y. Avifauna of the Gaoligong Shan Mountains of Western China: A Hotspot of Avian Species Diversity. Ornithol. Monogr. 2011, 70, 30–63. [Google Scholar] [CrossRef]
- Liu, G.; Jin, M.; Cai, C.; Ma, C.; Chen, Z.; Gao, L. Soil Microbial Community Structure and Physicochemical Properties in Amomum Tsaoko-Based Agroforestry Systems in the Gaoligong Mountains, Southwest China. Sustainability 2019, 11, 546. [Google Scholar] [CrossRef]
- Cheng, Z.; Lin, S.; Wu, Z.; Lin, C.; Zhang, Q.; Xu, C.; Li, J.; Long, C. Study on Medicinal Food Plants in the Gaoligongshan Biosphere Reserve, the Richest Biocultural Diversity Center in China. J. Ethnobiol. Ethnomed. 2024, 20, 10. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Vetukuri, R.R.; Kelbessa, B.G.; Gepts, P.; Heslop-Harrison, P.; Araujo, A.S.F.; Sharma, S.; Ortiz, R. Exploitation of Rhizosphere Microbiome Biodiversity in Plant Breeding. Trends Plant Sci. 2025, 30, S1360138525001037. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Yang, Y.-J.; Wu, X.; Zhu, C.-L.; Lü, H.; Zhao, H.-M.; Xiang, L.; Li, H.; Mo, C.-H.; Li, Y.-W.; et al. Adaptation of Bacterial Community in Maize Rhizosphere for Enhancing Dissipation of Phthalic Acid Esters in Agricultural Soil. J. Hazard. Mater. 2023, 444, 130292. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Fan, Q.; Liu, K.; Wang, Z.; Liu, D.; Li, T.; Hou, H.; Zhang, Z.; Chen, D.; Zhang, S.; Yu, A.; et al. Soil Microbial Subcommunity Assembly Mechanisms Are Highly Variable and Intimately Linked to Their Ecological and Functional Traits. Mol. Ecol. 2024, 33, e17302. [Google Scholar] [CrossRef]
- Fließbach, A.; Oberholzer, H.-R.; Gunst, L.; Mäder, P. Soil Organic Matter and Biological Soil Quality Indicators after 21 Years of Organic and Conventional Farming. Agric. Ecosyst. Environ. 2007, 118, 273–284. [Google Scholar] [CrossRef]
- Van Rijssel, S.Q.; Veen, G.F.; Koorneef, G.J.; Bakx-Schotman, J.M.T.; Ten Hooven, F.C.; Geisen, S.; Van Der Putten, W.H. Soil Microbial Diversity and Community Composition during Conversion from Conventional to Organic Agriculture. Mol. Ecol. 2022, 31, 4017–4030. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Yang, Y.; Wang, Y.; Zhang, Y.; Wang, P. Effects of Conventional and Organic Agriculture on Soil Arbuscular Mycorrhizal Fungal Community in Low-Quality Farmland. Front. Microbiol. 2022, 13, 914627. [Google Scholar] [CrossRef]
- Oliveira, E.M.; Wittwer, R.; Hartmann, M.; Keller, T.; Buchmann, N.; Van Der Heijden, M.G.A. Effects of Conventional, Organic and Conservation Agriculture on Soil Physical Properties, Root Growth and Microbial Habitats in a Long-Term Field Experiment. Geoderma 2024, 447, 116927. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G.; Anderson, D.W.; Doran, J.W.; Janzen, H.H.; Pierce, F.J. Concepts of soil quality and their significance. In Soil Quality for Crop Product; Gregorich, E.G., Carter, M.R., Eds.; Elsevier Science Publisher: Amsterdam, The Netherlands, 1997; pp. 1–19. [Google Scholar]
- Snyder, V.A.; Vazquez, M.A. Structure. In Encyclopedia of Soils in the Environment; Hillell, D., Hatfield, J.L., Powlson, D.S., Rozenweig, C., Scow, K.M., Singer, M.J., Sparks, D.L., Eds.; Elsevier: Oxford, UK, 2005; Volume 4, pp. 54–68. [Google Scholar]
- Abiven, S.; Menasseri, S.; Chenu, C. The Effects of Organic Inputs over Time on Soil Aggregate Stability—A Literature Analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Bhogal, A.; Nicholson, F.A.; Chambers, B.J. Organic Carbon Additions: Effects on Soil Bio-physical and Physico-chemical Properties. Eur. J. Soil Sci. 2009, 60, 276–286. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R.; Coleman, K. Chapter 1 Soil Organic Matter. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2009; Volume 101, pp. 1–57. ISBN 978-0-12-374817-1. [Google Scholar]
- Tang, S.; Ma, Q.; Marsden, K.A.; Chadwick, D.R.; Luo, Y.; Kuzyakov, Y.; Wu, L.; Jones, D.L. Microbial Community Succession in Soil Is Mainly Driven by Carbon and Nitrogen Contents Rather than Phosphorus and Sulphur Contents. Soil Biol. Biochem. 2023, 180, 109019. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How Does Tillage Intensity Affect Soil Organic Carbon? A Systematic Review. Environ. Evid. 2017, 6, 30. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; De Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of Agricultural Management Practices on Soil Quality: A Review of Long-Term Experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Torabian, S.; Farhangi-Abriz, S.; Denton, M.D. Do Tillage Systems Influence Nitrogen Fixation in Legumes? A Review. Soil Tillage Res. 2019, 185, 113–121. [Google Scholar] [CrossRef]
- Young, I.M.; Ritz, K. Tillage, Habitat Space and Function of Soil Microbes. Soil Tillage Res. 2000, 53, 201–213. [Google Scholar] [CrossRef]
- Kuntz, M.; Berner, A.; Gattinger, A.; Scholberg, J.M.; Mäder, P.; Pfiffner, L. Influence of Reduced Tillage on Earthworm and Microbial Communities under Organic Arable Farming. Pedobiologia 2013, 56, 251–260. [Google Scholar] [CrossRef]
- Chen, H.; Dai, Z.; Veach, A.M.; Zheng, J.; Xu, J.; Schadt, C.W. Global Meta-Analyses Show That Conservation Tillage Practices Promote Soil Fungal and Bacterial Biomass. Agric. Ecosyst. Environ. 2020, 293, 106841. [Google Scholar] [CrossRef]
- Liu, Z.-X.; Lyu, Y.-M.; Liu, Y.; Wang, Y.-Q.; Xiong, M.-M.; Tang, Y.; Li, X.-Y.; Sun, H.; Xu, J.-L. Differential Spatial Responses and Assembly Mechanisms of Soil Microbial Communities across Region-Scale Taiga Ecosystems. J. Environ. Manag. 2024, 370, 122653. [Google Scholar] [CrossRef]
- Sugiyama, A.; Vivanco, J.M.; Jayanty, S.S.; Manter, D.K. Pyrosequencing Assessment of Soil Microbial Communities in Organic and Conventional Potato Farms. Plant Dis. 2010, 94, 1329–1335. [Google Scholar] [CrossRef]
- Bonanomi, G.; De Filippis, F.; Cesarano, G.; La Storia, A.; Ercolini, D.; Scala, F. Organic Farming Induces Changes in Soil Microbiota That Affect Agro-Ecosystem Functions. Soil Biol. Biochem. 2016, 103, 327–336. [Google Scholar] [CrossRef]
- Hartman, K.; Van Der Heijden, M.G.A.; Wittwer, R.A.; Banerjee, S.; Walser, J.-C.; Schlaeppi, K. Cropping Practices Manipulate Abundance Patterns of Root and Soil Microbiome Members Paving the Way to Smart Farming. Microbiome 2018, 6, 14. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an Ecological Classification of Soil Bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Guo, R.; Chen, Y.; Xiang, M.; Yang, S.; Wang, F.; Cao, W.; Yue, H.; Peng, S. Soil Nutrients Drive Changes in the Structure and Functions of Soil Bacterial Communities in a Restored Forest Soil Chronosequence. Appl. Soil Ecol. 2024, 195, 105247. [Google Scholar] [CrossRef]
- Gryta, A.; Piotrowska-Długosz, A.; Długosz, J.; Frąc, M. The Microbiome Structure and Shifts in Surface and Subsurface Soil Horizon of Haplic Luvisol under Different Crops Cultivation. Appl. Soil Ecol. 2024, 202, 105557. [Google Scholar] [CrossRef]
- Ranjani, A.; Dhanasekaran, D.; Gopinath, P.M. An Introduction to Actinobacteria. In Actinobacteria-Basics and Biotechnological Applications; Dhanasekaran, D., Jiang, Y., Eds.; InTech: London, UK, 2016; ISBN 978-953-51-2248-7. [Google Scholar]
- Govaerts, B.; Mezzalama, M.; Sayre, K.D.; Crossa, J.; Lichter, K.; Troch, V.; Vanherck, K.; De Corte, P.; Deckers, J. Long-Term Consequences of Tillage, Residue Management, and Crop Rotation on Selected Soil Micro-Flora Groups in the Subtropical Highlands. Appl. Soil Ecol. 2008, 38, 197–210. [Google Scholar] [CrossRef]
- Sagova-Mareckova, M.; Zadorova, T.; Penizek, V.; Omelka, M.; Tejnecky, V.; Pruchova, P.; Chuman, T.; Drabek, O.; Buresova, A.; Vanek, A.; et al. The Structure of Bacterial Communities along Two Vertical Profiles of a Deep Colluvial Soil. Soil Biol. Biochem. 2016, 101, 65–73. [Google Scholar] [CrossRef]
- Suominen, S.; Van Vliet, D.M.; Sánchez-Andrea, I.; Van Der Meer, M.T.J.; Sinninghe Damsté, J.S.; Villanueva, L. Organic Matter Type Defines the Composition of Active Microbial Communities Originating From Anoxic Baltic Sea Sediments. Front. Microbiol. 2021, 12, 628301. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, T.; Lei, X.; Cao, Y.; Liu, L.; Zou, Z.; Ma, Y.; Zhu, X.; Fang, W. Leguminous Green Manure Intercropping Changes the Soil Microbial Community and Increases Soil Nutrients and Key Quality Components of Tea Leaves. Hortic. Res. 2024, 11, uhae018. [Google Scholar] [CrossRef]
- Zhao, F.Z.; Ren, C.J.; Zhang, L.; Han, X.H.; Yang, G.H.; Wang, J. Changes in Soil Microbial Community Are Linked to Soil Carbon Fractions after Afforestation. Eur. J. Soil Sci. 2018, 69, 370–379. [Google Scholar] [CrossRef]
- Li, F.; Chen, L.; Redmile-Gordon, M.; Zhang, J.; Zhang, C.; Ning, Q.; Li, W. Mortierella Elongata ’s Roles in Organic Agriculture and Crop Growth Promotion in a Mineral Soil. Land Degrad. Dev. 2018, 29, 1642–1651. [Google Scholar] [CrossRef]
- Ozimek, E.; Hanaka, A. Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils. Agriculture 2020, 11, 7. [Google Scholar] [CrossRef]
- Büttner, H.; Niehs, S.P.; Vandelannoote, K.; Cseresnyés, Z.; Dose, B.; Richter, I.; Gerst, R.; Figge, M.T.; Stinear, T.P.; Pidot, S.J.; et al. Bacterial Endosymbionts Protect Beneficial Soil Fungus from Nematode Attack. Proc. Natl. Acad. Sci. USA 2021, 118, e2110669118. [Google Scholar] [CrossRef]
- Bandara, A.Y.; Kang, S. Trichoderma Application Methods Differentially Affect the Tomato Growth, Rhizomicrobiome, and Rhizosphere Soil Suppressiveness against Fusarium Oxysporum. Front. Microbiol. 2024, 15, 1366690. [Google Scholar] [CrossRef]
- Perincherry, L.; Lalak-Kańczugowska, J.; Stępień, Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins 2019, 11, 664. [Google Scholar] [CrossRef]
- Chang, X.; Dai, H.; Wang, D.; Zhou, H.; He, W.; Fu, Y.; Ibrahim, F.; Zhou, Y.; Gong, G.; Shang, J.; et al. Identification of Fusarium Species Associated with Soybean Root Rot in Sichuan Province, China. Eur. J. Plant Pathol. 2018, 151, 563–577. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef]
- Fang, W.; Tian, W.; Yan, D.; Li, Y.; Cao, A.; Wang, Q. Linkages between Soil Nutrient Turnover and Above-ground Crop Nutrient Metabolism: The Role of Soil Microbes. iMetaOmics 2025, 2, e55. [Google Scholar] [CrossRef]
- Rubin, J.A.; Görres, J.H. Potential for Mycorrhizae-Assisted Phytoremediation of Phosphorus for Improved Water Quality. Int. J. Environ. Res. Public Health 2020, 18, 7. [Google Scholar] [CrossRef]
- Liu-Xu, L.; González-Hernández, A.I.; Camañes, G.; Vicedo, B.; Scalschi, L.; Llorens, E. Harnessing Green Helpers: Nitrogen-Fixing Bacteria and Other Beneficial Microorganisms in Plant–Microbe Interactions for Sustainable Agriculture. Horticulturae 2024, 10, 621. [Google Scholar] [CrossRef]
- Ji, L.; Shen, F.; Liu, Y.; Yang, Y.; Wang, J.; Purahong, W.; Yang, L. Contrasting Altitudinal Patterns and Co-Occurrence Networks of Soil Bacterial and Fungal Communities along Soil Depths in the Cold-Temperate Montane Forests of China. Catena 2022, 209, 105844. [Google Scholar] [CrossRef]
- Xiao, D.; He, X.; Zhang, W.; Hu, P.; Sun, M.; Wang, K. Comparison of Bacterial and Fungal Diversity and Network Connectivity in Karst and Non-Karst Forests in Southwest China. Sci. Total Environ. 2022, 822, 153179. [Google Scholar] [CrossRef]
- Li, X.; Huang, J.; Qu, C.; Chen, W.; Chen, C.; Cai, P.; Huang, Q. Diverse Regulations on the Accumulation of Fungal and Bacterial Necromass in Cropland Soils. Geoderma 2022, 410, 115675. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Bååth, E. Growth Response of the Bacterial Community to pH in Soils Differing in pH: Growth Response of the Bacterial Community to pH. FEMS Microbiol. Ecol. 2010, 73, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil Bacterial and Fungal Communities across a pH Gradient in an Arable Soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Jenkins, J.R.; Viger, M.; Arnold, E.C.; Harris, Z.M.; Ventura, M.; Miglietta, F.; Girardin, C.; Edwards, R.J.; Rumpel, C.; Fornasier, F.; et al. Biochar Alters the Soil Microbiome and Soil Function: Results of Next-generation Amplicon Sequencing across Europe. GCB Bioenergy 2017, 9, 591–612. [Google Scholar] [CrossRef]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling Function and Taxonomy in the Global Ocean Microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef]
- Sansupa, C.; Wahdan, S.F.M.; Hossen, S.; Disayathanoowat, T.; Wubet, T.; Purahong, W. Can We Use Functional Annotation of Prokaryotic Taxa (FAPROTAX) to Assign the Ecological Functions of Soil Bacteria? Appl. Sci. 2021, 11, 688. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.; An, S.; Zeng, Q.; Wang, B.; Bai, X.; Huang, Q. Decay Stages and Meteorological Factors Affect Microbial Community during Leaf Litter in Situ Decomposition. Soil Ecol. Lett. 2023, 5, 220160. [Google Scholar] [CrossRef]
- Peay, K.G.; Kennedy, P.G.; Talbot, J.M. Dimensions of Biodiversity in the Earth Mycobiome. Nat. Rev. Microbiol. 2016, 14, 434–447. [Google Scholar] [CrossRef]
- Semchenko, M.; Leff, J.W.; Lozano, Y.M.; Saar, S.; Davison, J.; Wilkinson, A.; Jackson, B.G.; Pritchard, W.J.; De Long, J.R.; Oakley, S.; et al. Fungal Diversity Regulates Plant-Soil Feedbacks in Temperate Grassland. Sci. Adv. 2018, 4, eaau4578. [Google Scholar] [CrossRef] [PubMed]
- Lekberg, Y.; Arnillas, C.A.; Borer, E.T.; Bullington, L.S.; Fierer, N.; Kennedy, P.G.; Leff, J.W.; Luis, A.D.; Seabloom, E.W.; Henning, J.A. Nitrogen and Phosphorus Fertilization Consistently Favor Pathogenic over Mutualistic Fungi in Grassland Soils. Nat. Commun. 2021, 12, 3484. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Rhodes, G.; Huang, Q.; Shen, Q. Plant Growth Stages and Fertilization Regimes Drive Soil Fungal Community Compositions in a Wheat-Rice Rotation System. Biol. Fertil. Soils 2018, 54, 731–742. [Google Scholar] [CrossRef]
- Whitaker, B.K.; Rúa, M.A.; Mitchell, C.E. Viral Pathogen Production in a Wild Grass Host Driven by Host Growth and Soil Nitrogen. New Phytol. 2015, 207, 760–768. [Google Scholar] [CrossRef]
- Du, J.; Yu, Y.; Tang, C.; Zong, K.; Zhang, S.; Zhang, Q.; Fang, L.; Li, Y. Organic Fertilizers Increase the Proportion of Saprotrophs Favoring Soil Nitrification under Medicinal Plants Fritillaria Thunbergii. Ind. Crops Prod. 2024, 219, 119129. [Google Scholar] [CrossRef]
Functional Groups | pH | SOC | DOC | TC | TN | TP | NO3−-N | NO4+-N |
---|---|---|---|---|---|---|---|---|
C-cycling | 0.142 | 0.866 ** | 0.897 ** | 0.889 ** | 0.805 ** | 0.886 ** | 0.092 | −0.604 |
N-cycling | 0.148 | 0.573 | 0.594 | 0.592 | 0.516 | 0.611 | 0.005 | −0.429 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Li, W.; Niu, M.; Hu, B. Organic Farming to Improve Soil Quality and the Functional Structure of Soil Microbial Communities. Agriculture 2025, 15, 1381. https://doi.org/10.3390/agriculture15131381
Huang R, Li W, Niu M, Hu B. Organic Farming to Improve Soil Quality and the Functional Structure of Soil Microbial Communities. Agriculture. 2025; 15(13):1381. https://doi.org/10.3390/agriculture15131381
Chicago/Turabian StyleHuang, Ruilong, Wei Li, Mengting Niu, and Bo Hu. 2025. "Organic Farming to Improve Soil Quality and the Functional Structure of Soil Microbial Communities" Agriculture 15, no. 13: 1381. https://doi.org/10.3390/agriculture15131381
APA StyleHuang, R., Li, W., Niu, M., & Hu, B. (2025). Organic Farming to Improve Soil Quality and the Functional Structure of Soil Microbial Communities. Agriculture, 15(13), 1381. https://doi.org/10.3390/agriculture15131381