Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,326)

Search Parameters:
Keywords = agriculture wastewater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1861 KiB  
Article
Clay Nanomaterials Sorbents for Cleaner Water: A Sustainable Application for the Mining Industry
by María Molina-Fernández, Albert Santos Silva, Rodrigo Prado Feitosa, Edson C. Silva-Filho, Josy A. Osajima, Santiago Medina-Carrasco and María del Mar Orta Cuevas
Nanomaterials 2025, 15(15), 1211; https://doi.org/10.3390/nano15151211 (registering DOI) - 7 Aug 2025
Abstract
The increasing shortage of drinking water, driven by reduced rainfall and the intensification of industrial and agricultural activities, has raised justified concerns about the quantity and quality of available water resources. These sectors not only demand high water consumption but also discharge large [...] Read more.
The increasing shortage of drinking water, driven by reduced rainfall and the intensification of industrial and agricultural activities, has raised justified concerns about the quantity and quality of available water resources. These sectors not only demand high water consumption but also discharge large amounts of toxic substances such as organic matter, metal ions and inorganic anions, posing risks to both public health and the environment. This study evaluated the effectiveness of clay-based nanomaterials in the treatment of contaminated industrial wastewater from the mining sector. The materials tested included montmorillonite, high-loading expandable synthetic mica, and their organically functionalized forms (MMT, Mica-Na-4, C18-MMT, and C18-Mica-4). The experimental results show that these clays had minimal impact on the pH of the water, while a notable decrease in the chemical oxygen demand (COD) was observed. Ion chromatography indicated an increase in nitrogen and sulfur compounds with higher oxidation states. Inductively coupled plasma analysis revealed a significant reduction in the calcium concentration and an increase in the sodium concentration, likely due to cation exchange mechanisms. However, the removal of copper and iron was ineffective, possibly due to competitive interactions with other cations in the solution. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the structural modifications and interlayer spacing changes in the clay materials upon exposure to contaminated water. These findings demonstrate the potential of clay minerals as effective and low-cost materials for the remediation of industrial wastewater. Full article
(This article belongs to the Special Issue Eco-Friendly Nanomaterials: Innovations in Sustainable Applications)
Show Figures

Figure 1

23 pages, 7494 KiB  
Article
Temporal and Spatial Evolution of Grey Water Footprint in the Huai River Basin and Its Influencing Factors
by Xi Wang, Yushuo Zhang, Qi Wang, Jing Xu, Fuju Xie and Weiying Xu
Sustainability 2025, 17(15), 7157; https://doi.org/10.3390/su17157157 (registering DOI) - 7 Aug 2025
Abstract
To evaluate water pollution status and sustainable development potential in the Huai River Basin, this study focused on the spatiotemporal evolution and influencing factors of the grey water footprint (GWF) across 35 cities in the basin from 2005 to 2020. This study quantifies [...] Read more.
To evaluate water pollution status and sustainable development potential in the Huai River Basin, this study focused on the spatiotemporal evolution and influencing factors of the grey water footprint (GWF) across 35 cities in the basin from 2005 to 2020. This study quantifies the GWF from agricultural, industrial, and domestic perspectives and analyzes its spatial disparities by incorporating spatial autocorrelation analysis. The Tapio decoupling model was applied to explore the relationship between pollution and economic growth, and geographic detectors along with the STIRPAT model were utilized to identify driving factors. The results revealed no significant global spatial clustering of GWF in the basin, but a pattern of “high in the east and west, low in the north and south” emerged, with high-value areas concentrated in southern Henan and northern Jiangsu. By 2020, 85.7% of cities achieved strong decoupling, indicating improved coordination between the environment and economy. Key driving factors included primary industry output, crop sown area, and grey water footprint intensity, with a notable interaction between agricultural output and grey water footprint intensity. The quantitative analysis based on the STIRPAT model demonstrated that seven factors, including grey water footprint intensity and total crop sown area, exhibited significant contributions to influencing variations. Ranked by importance, these factors were grey water footprint intensity > total crop sown area > urbanization rate > population size > secondary industry output > primary industry output > industrial wastewater discharge, collectively explaining 90.2% of the variability in GWF. The study provides a robust scientific basis for water pollution control and differentiated management in the river basin and holds significant importance for promoting sustainable development of the basin. Full article
Show Figures

Figure 1

18 pages, 2835 KiB  
Article
Numerical Modeling of Gentamicin Transport in Agricultural Soils: Implications for Environmental Pollution
by Nami Morales-Durán, Sebastián Fuentes, Jesús García-Gallego, José Treviño-Reséndez, Josué D. García-Espinoza, Rubén Morones-Ramírez and Carlos Chávez
Antibiotics 2025, 14(8), 786; https://doi.org/10.3390/antibiotics14080786 - 2 Aug 2025
Viewed by 394
Abstract
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of [...] Read more.
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of two types of gentamicin (pure gentamicin and gentamicin sulfate) was modeled at concentrations of 150 and 300 μL/L, respectively, in a soil with more than 60 years of agricultural use. Infiltration tests under constant head conditions and gentamicin transport experiments were conducted in acrylic columns measuring 14 cm in length and 12.7 cm in diameter. The scaling parameters for the Richards equation were obtained from experimental data, while those for the advection–dispersion equation were estimated using inverse methods through a nonlinear optimization algorithm. In addition, a fractal-based model for saturated hydraulic conductivity was employed. Results: It was found that the dispersivity of gentamicin sulfate is 3.1 times higher than that of pure gentamicin. Based on the estimated parameters, two simulation scenarios were conducted: continuous application of gentamicin and soil flushing after antibiotic discharge. The results show that the transport velocity of gentamicin sulfate in the soil may have short-term consequences for the emergence of resistant microorganisms due to the destination of wastewater containing antibiotic residues. Conclusions: Finally, further research is needed to evaluate the impact of antibiotics on soil physical properties, as well as their effects on irrigated crops, animals that consume such water, and the soil microbiota. Full article
(This article belongs to the Special Issue Impact of Antibiotic Residues in Wastewater)
Show Figures

Figure 1

14 pages, 3804 KiB  
Article
Geospatial Analysis of Heavy Metal Concentrations in the Coastal Marine Environment of Beihai, Guangxi During April 2021
by Chaolu, Bo Miao and Na Qian
Coasts 2025, 5(3), 27; https://doi.org/10.3390/coasts5030027 - 1 Aug 2025
Viewed by 138
Abstract
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, [...] Read more.
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, phosphate, and salinity. Our results reveal higher heavy metal concentrations in the northern nearshore waters and lower levels in southern offshore areas, with surface waters generally exhibiting greater enrichment than bottom waters. Surface concentrations show a decreasing trend from the northeast to the southwest, likely influenced by prevailing northeast monsoon winds. While bottom water concentrations decline from the northwest to the southeast, which indicates the influence of riverine runoff, particularly from the Qinzhou Bay estuary. Heavy metal levels in southern Beihai waters are comparable to those in the Beibu Gulf, except for Hg and Zn, which are significantly higher in the water of the Beibu Gulf. Notably, heavy metal concentrations in both Beihai and Beibu Gulf remain considerably lower than those observed in the coastal waters of Guangdong. Overall, Beihai’s coastal seawater meets China’s Class I quality standards. Nonetheless, continued monitoring is essential, especially of the potential ecological impacts of Hg and Zn on marine life. Full article
Show Figures

Figure 1

34 pages, 2470 KiB  
Review
Biotechnology in Agro-Industry: Valorization of Agricultural Wastes, By-Products and Sustainable Practices
by Sandra de Oliveira Silva, Amanda Kelly Cristiano Mafra, Franciele Maria Pelissari, Leandro Rodrigues de Lemos and Gustavo Molina
Microorganisms 2025, 13(8), 1789; https://doi.org/10.3390/microorganisms13081789 - 31 Jul 2025
Viewed by 340
Abstract
Agricultural and industrial residues are increasingly recognized as valuable resources for sustainable innovation, offering significant potential for biotechnological applications. By integrating waste valorization into production systems, this approach aims to mitigate environmental impacts and enhance economic value across various sectors. The findings underline [...] Read more.
Agricultural and industrial residues are increasingly recognized as valuable resources for sustainable innovation, offering significant potential for biotechnological applications. By integrating waste valorization into production systems, this approach aims to mitigate environmental impacts and enhance economic value across various sectors. The findings underline the critical need for further research and policy support to scale these solutions, advancing global sustainability goals through innovative resource management. In this perspective, this article reviews the utilization of key by-products, including coffee residues, sugarcane bagasse, whey, cassava wastewater (manipueira), and brewery waste, highlighting their transformation into high-value products such as biofuels, bioplastics, enzymes, bioactive compounds, and organic fertilizers. The discussion presented encompasses the challenges and opportunities in leveraging these residues, emphasizing the role of advanced technologies, intellectual property, and circular economy principles. Full article
Show Figures

Figure 1

11 pages, 741 KiB  
Article
Wastewater Reuse to Address Climate Change: Insight from Legionella Contamination During Wastewater Treatment
by Manuela Macrì, Marta Catozzo, Silvia Bonetta and Sara Bonetta
Water 2025, 17(15), 2275; https://doi.org/10.3390/w17152275 - 31 Jul 2025
Viewed by 236
Abstract
Climate change is significantly affecting water availability, emphasising the need for sustainable strategies such as wastewater reuse. While this represents a promising alternative resource, insufficiently treated wastewater may pose health risks, particularly through aerosol formation during irrigation, which can facilitate Legionella transmission. This [...] Read more.
Climate change is significantly affecting water availability, emphasising the need for sustainable strategies such as wastewater reuse. While this represents a promising alternative resource, insufficiently treated wastewater may pose health risks, particularly through aerosol formation during irrigation, which can facilitate Legionella transmission. This study aimed to evaluate the presence of Legionella across various stages in a wastewater treatment plant (WWTP) that reuses effluent for agricultural purposes. Samples from the influent, four treatment phases, and the final effluent were analysed using both culture-based methods and quantitative PCR (qPCR) for Legionella spp. and L. pneumophila. qPCR detected Legionella spp. in all samples and L. pneumophila in 66% of them. In contrast, the culture-based analysis showed much lower detection levels, with only one positive sample at the influent stage—likely due to microbial interference or growth inhibition. Although contamination decreased in the final effluent, Legionella was still detected in water designated for reuse (Legionella spp. in 100% and L. pneumophila in 17% of samples). No treatment stage appeared to promote Legionella proliferation, likely due to WWTP characteristics, in addition to wastewater temperature and COD. These findings underscore the importance of monitoring Legionella in reclaimed water and developing effective control strategies to ensure the safe reuse of treated wastewater in agriculture. Full article
(This article belongs to the Special Issue Legionella: A Key Organism in Water Management)
Show Figures

Figure 1

23 pages, 1627 KiB  
Article
A Comprehensive Ecotoxicological Evaluation of a Treated Olive Mill Wastewater and Obtained Sludge
by José N. Pinto, Andreia Pereira, Ana Rita R. Silva, Diogo N. Cardoso, Amid Mostafaie, Fábio Campos, Iryna Rehan, Olga Moreira, Ivã Guidini Lopes, Daniel Murta, Alexandra Afonso, Margarida Oliveira, Karina S. Silvério, Maria Teresa Santos, Fátima Carvalho, Adelaide Almeida and Susana Loureiro
Toxics 2025, 13(8), 648; https://doi.org/10.3390/toxics13080648 - 30 Jul 2025
Viewed by 253
Abstract
Olive mill wastewaters (OMWWs) are an environmental problem in the Mediterranean region, and it is crucial to explore strategies for their treatment and repurposing. The chemical precipitation technique (CPT) has been presented as a cost-effective wastewater treatment solution that might be applied to [...] Read more.
Olive mill wastewaters (OMWWs) are an environmental problem in the Mediterranean region, and it is crucial to explore strategies for their treatment and repurposing. The chemical precipitation technique (CPT) has been presented as a cost-effective wastewater treatment solution that might be applied to OMWW. The CPT-resulting precipitant subproducts (sludge) may be reprocessed (e.g., agricultural fertilizer and/or soil amendment), while the treated wastewater may be repurposed or reused (e.g., irrigation, aquaponic, or industrial processes). This study aimed to evaluate the efficacy of CPT in treating wastewater from the olive oil industry from an ecotoxicological perspective. Additionally, to assess the safe use of the obtained sludge in CPT treatment, its effects on soil biota were assessed. For this, a set of ecotoxicological assays using freshwater (Raphidocelis subcapitata, Daphnia magna and Danio rerio), terrestrial invertebrates (Folsomia candida and Enchytraeus crypticus), and plants (Brassica oleracea and Lolium perenne) were used as model organisms. Results demonstrated that CPT reduced OMWW toxicity to freshwater organisms, offering a favorable outlook on CPT’s potential as a wastewater treatment method. Increasing application rates of sludge in soil reduced the shoot biomass and the hydric content of both plants compared to the control. Survival of F. candida and E. crypticus was not affected by sludge in soil at any tested application rate, yet sludge application negatively affected the reproduction of both species, even at relevant sludge application rates (2%) of sludge in soils. Overall, the applicability of this sludge obtained by the CPT treatment in soils should be carefully evaluated due to the observed adverse effects on soil biota. Although the results of CPT were promising in reducing the toxicity of OMWW for these aquatic species, some adjustments/improvements should be performed to improve this technique and use all the obtained resources (treated water and sludge) in a fully circular perspective. Full article
(This article belongs to the Special Issue Biomass Conversion and Organic Waste Utilization in Wastewater)
Show Figures

Graphical abstract

22 pages, 780 KiB  
Review
Extraction Methods of Microplastics in Environmental Matrices: A Comparative Review
by Garbiñe Larrea, David Elustondo and Adrián Durán
Molecules 2025, 30(15), 3178; https://doi.org/10.3390/molecules30153178 - 29 Jul 2025
Viewed by 207
Abstract
Due to the growing issue of plastic pollution over recent decades, it is essential to establish well-defined and appropriate methodologies for their extraction from diverse environmental samples. These particles can be found in complex agricultural matrices such as compost, sediments, agricultural soils, sludge, [...] Read more.
Due to the growing issue of plastic pollution over recent decades, it is essential to establish well-defined and appropriate methodologies for their extraction from diverse environmental samples. These particles can be found in complex agricultural matrices such as compost, sediments, agricultural soils, sludge, and wastewater, as well as in less complex samples like tap and bottled water. The general steps of MPs extraction typically include drying the sample, sieving to remove larger particles, removal of organic matter, density separation to isolate polymers, filtration using meshes of various sizes, oven drying of the filters, and polymer identification. Complex matrices with high organic matter content require specific removal steps. Most studies employ an initial drying process with temperature control to prevent polymer damage. For removal of organic matter, 30% H2O2 is the most commonly used reagent, and for density separation, saturated NaCl and ZnCl2 solutions are typically applied for low- and high-density polymers, respectively. Finally, filtration is carried out using meshes selected according to the identification technique. This review analyzes the advantages and limitations of the different methodologies to extract microplastics from different sources, aiming to provide in-depth insight for researchers dedicated to the study of environmental samples. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Graphical abstract

18 pages, 2358 KiB  
Article
Characterizing the Temporally Dynamic Nature of Relative Growth Rates: A Kinetic Analysis on Nitrogen-, Phosphorus-, and Potassium-Limited Growth
by Andrew Sharkey, Asher Altman, Yuming Sun, Thomas K. S. Igou and Yongsheng Chen
Agriculture 2025, 15(15), 1641; https://doi.org/10.3390/agriculture15151641 - 29 Jul 2025
Viewed by 269
Abstract
Developing precision models to describe agricultural growth is a necessary step to promote sustainable agriculture and increase resource circulation. In this study, the researchers hydroponically cultivated Bibb lettuce (Lactuca sativa) across a variety of nitrogen, phosphorus, and potassium (NPK)-limited treatments and [...] Read more.
Developing precision models to describe agricultural growth is a necessary step to promote sustainable agriculture and increase resource circulation. In this study, the researchers hydroponically cultivated Bibb lettuce (Lactuca sativa) across a variety of nitrogen, phosphorus, and potassium (NPK)-limited treatments and developed robust data-driven kinetic models observing nutrient uptake, biomass growth, and tissue composition based on all three primary macronutrients. The resulting Dynamic μ model is the first to integrate plant maturity’s impact on growth rate, significantly improving model accuracy across limiting nutrients, treatments, and developmental stages. This reduced error supports this simple expansion as a practical and necessary inclusion for agricultural kinetic modeling. Furthermore, analysis of nutrient uptake refines the ideal hydroponic nutrient balance for Bibb lettuce to 132, 35, and 174 mg L−1 (N, P, and K, respectively), while qualitative cell yield analysis identifies minimum nutrient thresholds at approximately 26.2–41.7 mg-N L−1, 3.7–5.6 mg-P L−1, and 17.4–31.5 mg-K L−1 to produce compositionally healthy lettuce. These findings evaluate reclaimed wastewater’s ability to offset the fertilizer burden for lettuce by 23–45%, 14–57%, and 3–23% for N, P, and K and guide the required minimum amount of wastewater pre-processing or nutrient supplements needed to completely fulfill hydroponic nutrient demands. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

29 pages, 3259 KiB  
Review
The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective
by Asma Sassi, Nosiba S. Basher, Hassina Kirat, Sameh Meradji, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 764; https://doi.org/10.3390/antibiotics14080764 - 29 Jul 2025
Viewed by 439
Abstract
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes [...] Read more.
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures—including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions—amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

26 pages, 942 KiB  
Review
The Role of Water as a Reservoir for Antibiotic-Resistant Bacteria
by Sameh Meradji, Nosiba S. Basher, Asma Sassi, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 763; https://doi.org/10.3390/antibiotics14080763 - 29 Jul 2025
Viewed by 431
Abstract
Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, [...] Read more.
Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, hospital effluents, and urban stormwater. We highlight key mechanisms of biofilm formation, horizontal gene transfer, and co-selection by chemical stressors that facilitate persistence and spread. Case studies illustrate widespread detection of clinically meaningful ARB (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and mobile ARGs (e.g., sul1/2, tet, bla variants) in treated effluents, recycled water, and irrigation return flows. The interplay between treatment inefficiencies and environmental processes underscores the need for advanced treatment technologies, integrated monitoring, and policy interventions. Addressing these challenges is critical to curbing the environmental dissemination of resistance and protecting human and ecosystem health. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

33 pages, 1821 KiB  
Review
The “Colors” of Moringa: Biotechnological Approaches
by Edgar Yebran Villegas-Vazquez, Juan Ramón Padilla-Mendoza, Mayra Susana Carrillo-Pérez, Rocío Gómez-Cansino, Liliana Altamirano-Garcia, Rocío Cruz Muñoz, Alvaro Diaz-Badillo, Israel López-Reyes and Laura Itzel Quintas-Granados
Plants 2025, 14(15), 2338; https://doi.org/10.3390/plants14152338 - 29 Jul 2025
Viewed by 456
Abstract
Moringa oleifera (MO), a nutritionally and pharmacologically potent species, is emerging as a sustainable candidate for applications across bioenergy, agriculture, textiles, pharmaceuticals, and biomedicine. This review explores recent advances in MO-based biotechnologies, highlighting novel extraction methods, green nanotechnology, and clinical trial findings. Although [...] Read more.
Moringa oleifera (MO), a nutritionally and pharmacologically potent species, is emerging as a sustainable candidate for applications across bioenergy, agriculture, textiles, pharmaceuticals, and biomedicine. This review explores recent advances in MO-based biotechnologies, highlighting novel extraction methods, green nanotechnology, and clinical trial findings. Although MO’s resilience offers promise for climate-smart agriculture and public health, challenges remain in standardizing cultivation and verifying therapeutic claims. This work underscores MO’s translational potential and the need for integrative, interdisciplinary research. MO is used in advanced materials, like electrospun fibers and biopolymers, showing filtration, antibacterial, anti-inflammatory, and antioxidant properties—important for the biomedical industry and environmental remediation. In textiles, it serves as an eco-friendly alternative for wastewater treatment and yarn sizing. Biotechnological advancements, such as genome sequencing and in vitro culture, enhance traits and metabolite production. MO supports green biotechnology through sustainable agriculture, nanomaterials, and biocomposites. MO shows potential for disease management, immune support, metabolic health, and dental care, but requires further clinical trials for validation. Its resilience is suitable for land restoration and food security in arid areas. AI and deep learning enhance Moringa breeding, allowing for faster, cost-effective development of improved varieties. MO’s diverse applications establish it as a key element for sustainable development in arid regions. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

17 pages, 6360 KiB  
Article
Integrating Lanthanide-Reclaimed Wastewater and Lanthanide Phosphate in Corn Cultivation: A Novel Approach for Sustainable Agriculture
by George William Kajjumba, Savanna Vacek and Erica J. Marti
Sustainability 2025, 17(15), 6734; https://doi.org/10.3390/su17156734 - 24 Jul 2025
Viewed by 343
Abstract
With increasing global challenges related to water scarcity and phosphorus depletion, the recovery and reuse of wastewater-derived nutrients offer a sustainable path forward. This study evaluates the dual role of lanthanides (Ce3+ and La3+) in recovering phosphorus from municipal wastewater [...] Read more.
With increasing global challenges related to water scarcity and phosphorus depletion, the recovery and reuse of wastewater-derived nutrients offer a sustainable path forward. This study evaluates the dual role of lanthanides (Ce3+ and La3+) in recovering phosphorus from municipal wastewater and supporting corn (Zea mays) cultivation through lanthanide phosphate (Ln-P) and lanthanide-reclaimed wastewater (LRWW, wastewater spiked with lanthanide). High-purity precipitates of CePO4 (98%) and LaPO4 (92%) were successfully obtained without pH adjustment, as confirmed by X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectroscopy (EDS). Germination assays revealed that lanthanides, even at concentrations up to 2000 mg/L, did not significantly alter germination rates compared to traditional coagulants, though root and shoot development declined above this threshold—likely due to reduced hydrogen peroxide (H2O2) production and elevated total dissolved solids (TDSs), which induced physiological drought. Greenhouse experiments using desert-like soil amended with Ln-P and irrigated with LRWW showed no statistically significant differences in corn growth parameters—including plant height, stem diameter, leaf number, leaf area, and biomass—when compared to control treatments. Photosynthetic performance, including stomatal conductance, quantum efficiency, and chlorophyll content, remained unaffected by lanthanide application. Metal uptake analysis indicated that lanthanides did not inhibit phosphorus absorption and even enhanced the uptake of calcium and magnesium. Minimal lanthanide accumulation was detected in plant tissues, with most retained in the root zone, highlighting their limited mobility. These findings suggest that lanthanides can be safely and effectively used for phosphorus recovery and agricultural reuse, contributing to sustainable nutrient cycling and aligning with the United Nations’ Sustainable Development Goals of zero hunger and sustainable cities. Full article
Show Figures

Graphical abstract

17 pages, 18876 KiB  
Article
Deciphering Soil Keystone Microbial Taxa: Structural Diversity and Co-Occurrence Patterns from Peri-Urban to Urban Landscapes
by Naz Iram, Yulian Ren, Run Zhao, Shui Zhao, Chunbo Dong, Yanfeng Han and Yanwei Zhang
Microorganisms 2025, 13(8), 1726; https://doi.org/10.3390/microorganisms13081726 - 24 Jul 2025
Viewed by 309
Abstract
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using [...] Read more.
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using both the five-point method and the S-shape method and explored their microbiota through high-throughput sequencing techniques. The data was used to investigate changes in the structural diversity and co-occurrence patterns of keystone microbial communities from peri-urban (agricultural land) to urban environments (hospitals, wastewater treatment plants, and zoos) across different regions. Using network analysis, we examined the structure and symbiosis of soil keystone taxa and their association with environmental factors during urbanization. Results revealed that some urban soils exhibited higher microbial diversity, network complexity, and community stability compared to peri-urban soil. Significant differences were observed in the composition, structure, and potential function of keystone microbial taxa between these environments. Correlation analysis showed a significant negative relationship between keystone taxa and mean annual precipitation (p < 0.05), and a strong positive correlation with soil nutrients, microbial diversity, and community stability (p < 0.05). These findings suggest that diverse keystone taxa are vital for sustaining microbial community stability and that urbanization-induced environmental changes modulate their composition. Shifts in keystone taxa composition reflect alterations in soil health and ecosystem functioning, emphasizing their role as indicators of soil quality during urban development. This study highlights the ecological importance of keystone taxa in shaping microbial resilience under urbanization pressure. Full article
(This article belongs to the Special Issue The Urban Microbiome)
Show Figures

Figure 1

27 pages, 1706 KiB  
Review
Micro- and Nanoplastics as Emerging Threats to Both Terrestrial and Aquatic Animals: A Comprehensive Review
by Munwar Ali, Chang Xu and Kun Li
Vet. Sci. 2025, 12(8), 688; https://doi.org/10.3390/vetsci12080688 - 23 Jul 2025
Viewed by 525
Abstract
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs [...] Read more.
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs enter animals’ bodies primarily through ingestion of contaminated feed and water, inhalation, and dermal exposure, subsequently accumulating in various organs, disrupting physiological functions. Notably, MNPs facilitate the horizontal transfer of antimicrobial resistance genes (ARGs), exacerbating the global challenge of antimicrobial resistance (AMR). In agricultural environments, sources such as organic fertilizers, wastewater irrigation systems, surface runoff, and littering contribute to soil contamination, adversely affecting plant growth and soil health, which in turn compromises feed quality and ultimately animals’ productivity. This review synthesizes current evidence demonstrating how MNP exposure impairs animal production, reproduction, and survival, and highlights the interconnected risks to food safety and ecosystem health. The findings call for the urgent need for comprehensive research under controlled conditions to underscore the fine details regarding mechanisms of MNP toxicity and to inform effective mitigation strategies. Addressing MNP pollution is crucial for safeguarding animal health, ensuring sustainable livestock production, and promoting environmental sustainability and integrity. Full article
Show Figures

Graphical abstract

Back to TopTop