Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (400)

Search Parameters:
Keywords = agriculture tractor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1432 KiB  
Article
Optimizing Gear Selection and Engine Speed to Reduce CO2 Emissions in Agricultural Tractors
by Murilo Battistuzzi Martins, Jessé Santarém Conceição, Aldir Carpes Marques Filho, Bruno Lucas Alves, Diego Miguel Blanco Bertolo, Cássio de Castro Seron, João Flávio Floriano Borges Gomides and Eduardo Pradi Vendruscolo
AgriEngineering 2025, 7(8), 250; https://doi.org/10.3390/agriengineering7080250 - 6 Aug 2025
Abstract
In modern agriculture, tractors play a crucial role in powering tools and implements. Proper operation of agricultural tractors in mechanized field operations can support sustainable agriculture and reduce emissions of pollutants such as carbon dioxide (CO2). This has been a recurring [...] Read more.
In modern agriculture, tractors play a crucial role in powering tools and implements. Proper operation of agricultural tractors in mechanized field operations can support sustainable agriculture and reduce emissions of pollutants such as carbon dioxide (CO2). This has been a recurring concern associated with agricultural intensification for food production. This study aimed to evaluate the optimization of tractor gears and engine speed during crop operations to minimize CO2 emissions and promote sustainability. The experiment was conducted using a strip plot design with subdivided sections and six replications, following a double factorial structure. The first factor evaluated was the type of agricultural implement (disc harrow, subsoiler, or sprayer), while the second factor was the engine speed setting (nominal or reduced). Operational and energy performance metrics were analyzed, including fuel consumption and CO2 emissions, travel speed, effective working time, wheel slippage, and working depth. Optimized gear selection and engine speeds resulted in a 20 to 40% reduction in fuel consumption and CO2 emissions. However, other evaluated parameters remain unaffected by the reduced engine speed, regardless of the implement used, ensuring the operation’s quality. Thus, optimizing operator training or configuring machines allows for environmental impact reduction, making agricultural practices more sustainable. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

28 pages, 2057 KiB  
Article
Design and Fabrication of a Cost-Effective, Remote-Controlled, Variable-Rate Sprayer Mounted on an Autonomous Tractor, Specifically Integrating Multiple Advanced Technologies for Application in Sugarcane Fields
by Pongpith Tuenpusa, Kiattisak Sangpradit, Mano Suwannakam, Jaturong Langkapin, Alongklod Tanomtong and Grianggai Samseemoung
AgriEngineering 2025, 7(8), 249; https://doi.org/10.3390/agriengineering7080249 - 5 Aug 2025
Abstract
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a [...] Read more.
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a low-cost, variable-rate, remote-controlled sprayer specifically for use in sugarcane fields. The primary method involves the modification of a 15-horsepower tractor, which will be equipped with a remote-control system to manage both the driving and steering functions. A foldable remote-controlled spraying arm is installed at the rear of the unmanned tractor. The system operates by using a webcam mounted on the spraying arm to capture high-angle images above the sugarcane canopy. These images are recorded and processed, and the data is relayed to the spraying control system. As a result, chemicals can be sprayed on the sugarcane accurately and efficiently based on the insights gained from image processing. Tests were conducted at various nozzle heights of 0.25 m, 0.5 m, and 0.75 m. The average system efficiency was found to be 85.30% at a pressure of 1 bar, with a chemical spraying rate of 36 L per hour and a working capacity of 0.975 hectares per hour. The energy consumption recorded was 0.161 kWh, while fuel consumption was measured at 6.807 L per hour. In conclusion, the development of the remote-controlled variable rate sprayer mounted on an unmanned tractor enables immediate and precise chemical application through remote control. This results in high-precision spraying and uniform distribution, ultimately leading to cost savings, particularly by allowing for adjustments in nozzle height from a minimum of 0.25 m to a maximum of 0.75 m from the target. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
16 pages, 3001 KiB  
Article
Tractor Path Tracking Control Method Based on Prescribed Performance and Sliding Mode Control
by Liwei Zhu, Weiming Sun, Qian Zhang, En Lu, Jialin Xue and Guohui Sha
Agriculture 2025, 15(15), 1663; https://doi.org/10.3390/agriculture15151663 - 1 Aug 2025
Viewed by 180
Abstract
In addressing the challenges of low path tracking accuracy and poor robustness during tractor autonomous operation, this paper proposes a path tracking control method for tractors that integrates prescribed performance with sliding mode control (SMC). A key feature of this control method is [...] Read more.
In addressing the challenges of low path tracking accuracy and poor robustness during tractor autonomous operation, this paper proposes a path tracking control method for tractors that integrates prescribed performance with sliding mode control (SMC). A key feature of this control method is its inherent immunity to system parameter perturbations and external disturbances, while ensuring path tracking errors are constrained within a predefined range. First, the tractor is simplified into a two-wheeled vehicle model, and a path tracking error model is established based on the reference operation trajectory. By defining a prescribed performance function, the constrained tracking control problem is transformed into an unconstrained stability control problem, guaranteeing the boundedness of tracking errors. Then, by incorporating SMC theory, a prescribed performance sliding mode path tracking controller is designed to achieve robust path tracking and error constraint for the tractor. Finally, both simulation and field experiments are conducted to validate the method. The results demonstrate that compared with the traditional SMC method, the proposed method effectively mitigates the impact of complex farmland conditions, reducing path tracking errors while enforcing strict error constraints. Field experiment data shows the proposed method achieves an average absolute error of 0.02435 m and a standard deviation of 0.02795 m, confirming its effectiveness and superiority. This research lays a foundation for the intelligent development of agricultural machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 1451 KiB  
Article
Analyzing Tractor Productivity and Efficiency Evolution: A Methodological and Parametric Assessment of the Impact of Variations in Propulsion System Design
by Ivan Herranz-Matey
Agriculture 2025, 15(15), 1577; https://doi.org/10.3390/agriculture15151577 - 23 Jul 2025
Viewed by 237
Abstract
This research aims to analyze the evolution of productivity and efficiency in tractors featuring varying propulsion system designs through the development of a parametric modeling approach. Recognizing that large row-crop tractors represent a significant capital investment—ranging from USD 0.4 to over 0.8 million [...] Read more.
This research aims to analyze the evolution of productivity and efficiency in tractors featuring varying propulsion system designs through the development of a parametric modeling approach. Recognizing that large row-crop tractors represent a significant capital investment—ranging from USD 0.4 to over 0.8 million for current-generation models—and that machinery costs constitute a substantial share of farm production expenses, this study addresses the urgent need for data-driven decision-making in agricultural enterprises. Utilizing consolidated OECD Code 2 tractor test data for all large row-crop John Deere tractors from the MFWD era to the latest generation, the study evaluates tractor performance across multiple productivity and efficiency indicators. The analysis culminates in the creation of a robust, user-friendly parametric model (R2 = 0.9337, RMSE = 1.0265), designed to assist stakeholders in making informed decisions regarding tractor replacement or upgrading. By enabling the optimization of productivity and efficiency while accounting for agronomic and timeliness constraints, this model supports sustainable and profitable management practices in modern agriculture. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 1618 KiB  
Article
Can Biochar Alleviate Machinery-Induced Soil Compaction? A Field Study in a Tuscan Vineyard
by Fabio De Francesco, Giovanni Mastrolonardo, Gregorio Fantoni, Fabrizio Ungaro and Silvia Baronti
Soil Syst. 2025, 9(3), 81; https://doi.org/10.3390/soilsystems9030081 - 19 Jul 2025
Viewed by 262
Abstract
Soil compaction from mechanized agriculture is a major concern, as frequent machinery use degrades soil structure, reduces porosity, and ultimately impairs crop productivity. Among potential mitigation strategies to enhance soil resilience to machinery-induced compaction, biochar has shown promise in laboratory settings but remains [...] Read more.
Soil compaction from mechanized agriculture is a major concern, as frequent machinery use degrades soil structure, reduces porosity, and ultimately impairs crop productivity. Among potential mitigation strategies to enhance soil resilience to machinery-induced compaction, biochar has shown promise in laboratory settings but remains untested under real field conditions. To address this, we monitored soil in a Tuscan vineyard where biochar was applied at 16 and 32 Mg ha−1, compared to control, on both flat and sloped plots. Soil compaction was induced by 20 passes of a wheeled orchard tractor. Soil bulk density (BD) was measured before, immediately after, and one year following the initial passes, during which 19 additional machine passes occurred as part of the vineyard’s routine agronomic management. Initial results showed a significant BD increase (up to 12.8%) across all treatments, though biochar significantly limited soil compaction, regardless of the applied dose. After one year, in which the soil underwent further compaction, BD further increased across all treatments (up to 20.2%), with the steepest increase observed on the sloped terrain. At this stage, the mitigating effect of biochar on soil compaction was no longer evident. Our findings suggest that biochar may offer some short-term relief from compaction, but further investigations are needed to clarify its long-term effectiveness under field conditions. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

22 pages, 3432 KiB  
Article
Tracking Accuracy Evaluation of Autonomous Agricultural Tractors via Rear Three-Point Hitch Estimation Using a Hybrid Model of EKF Transformer
by Eun-Kuk Kim, Tae-Ho Han, Jun-Ho Lee, Cheol-Woo Han and Ryu-Gap Lim
Agriculture 2025, 15(14), 1475; https://doi.org/10.3390/agriculture15141475 - 9 Jul 2025
Viewed by 343
Abstract
The objective of this study was to improve measurement accuracy in the evaluation of autonomous agricultural tractor performance by addressing external disturbances, such as sensor installation errors, vibrations, and heading-induced bias that occur during the measurement of the conventional rear three-point hitch (Rear [...] Read more.
The objective of this study was to improve measurement accuracy in the evaluation of autonomous agricultural tractor performance by addressing external disturbances, such as sensor installation errors, vibrations, and heading-induced bias that occur during the measurement of the conventional rear three-point hitch (Rear 3-Point) system. To mitigate these disturbances, the measurement point was relocated to the cab, where external interference is comparatively minimal. However, in compliance with the ISO 12188 standard, the Rear 3-Point system must be used as the reference measurement point. Therefore, its coordinates were indirectly estimated using an extended Kalman filter (EKF) and artificial intelligence (AI)-based techniques. A hybrid model was developed in which a transformer-based AI model was trained using the Rear 3-Point coordinates predicted by EKF as the ground truth. While traditional time-series models, such as LSTM and GRU, show limitations in predicting nonlinear data, the application of an attention mechanism was found to enhance prediction performance by effectively learning temporal dependencies and vibration patterns. The experimental results show that the EKF-based estimation achieved a precision of RMSE 1.6 mm, a maximum error of 12.6 mm, and a maximum standard deviation of 3.9 mm compared to actual measurements. From the perspective of experimental design, the proposed hybrid model was able to predict the trajectory of the autonomous agricultural tractor with significantly reduced external disturbances when compared to the actual measured Rear 3-Point coordinates, while also complying with the ISO 12188 standard. These findings suggest that the proposed approach provides an effective and integrated solution for developing high-precision autonomous agricultural systems. Full article
(This article belongs to the Special Issue Soil-Machine Systems and Its Related Digital Technologies Application)
Show Figures

Figure 1

25 pages, 8005 KiB  
Article
Field Evaluation of a Transplanter and a Collector Under Development for Korean Spring Cabbage Production in Greenhouses
by Md Nasim Reza, Md Rejaul Karim, Md Razob Ali, Kyu-Ho Lee, Emmanuel Bicamumakuba, Ka Young Lee and Sun-Ok Chung
AgriEngineering 2025, 7(7), 226; https://doi.org/10.3390/agriengineering7070226 - 9 Jul 2025
Viewed by 381
Abstract
Cabbage (Brassica rapa L. ssp. Pekinensis) is an important vegetable crop in the Republic of Korea, due to its essential role in kimchi production. However, labor shortages and an aging population necessitate mechanization to sustain productivity. This study aimed to evaluate the [...] Read more.
Cabbage (Brassica rapa L. ssp. Pekinensis) is an important vegetable crop in the Republic of Korea, due to its essential role in kimchi production. However, labor shortages and an aging population necessitate mechanization to sustain productivity. This study aimed to evaluate the field performance of a cabbage transplanter under development with a commercial transplanter and a cabbage collector under greenhouse conditions. This study evaluated transplanting efficiency, planting performance, and yield of cabbage using seedlings at three distinct age groups (30, 35, and 43 days). A cabbage transplanter (Transplanter A) under development, a commercial model (Transplanter B), and manual transplanting were used for comparative analysis. At harvest, a tractor-mounted cabbage collector was used to collect and pack all the cabbages. Transplanter A demonstrated a forward speed of 1.27 km/h and an average planting rate of 2365 seedlings/h, significantly higher than manual transplanting (513 seedlings/h). The effective field capacity (EFC) ranged from 0.11 to 0.13 ha/h, compared to 0.019–0.028 ha/h for manual planting. While Transplanter A showed a higher missing transplant rate (18.17%) than Transplanter B (7.67%), it maintained consistently lower bad planting rates (2.5–4.5%) compared to Transplanter B (3.3–8.8%). In addition, it produced significantly higher cabbage weights (6070 g/plant) and better root metrics than manual transplanting. The cabbage collector achieved 100% efficiency with no crop damage or contamination. The transplanter under development proved effective for greenhouse use, offering faster operation, better planting accuracy, and higher yields, supporting broader mechanization in Korean agriculture. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

19 pages, 1034 KiB  
Article
Assessing Tractors’ Active Safety in Serbia: A Driving Simulator Study
by Sreten Simović, Aleksandar Trifunović, Tijana Ivanišević, Vaidas Lukoševičius and Larysa Neduzha
Sustainability 2025, 17(13), 6144; https://doi.org/10.3390/su17136144 - 4 Jul 2025
Viewed by 377
Abstract
The active safety of tractors remains a major concern in rural road environments, where tractor drivers face high crash risks due to limited vehicle visibility. In Serbia, 1.4% of crashes involve tractors, mainly due to poor visibility (64.3%), lack of beacon lights, unsafe [...] Read more.
The active safety of tractors remains a major concern in rural road environments, where tractor drivers face high crash risks due to limited vehicle visibility. In Serbia, 1.4% of crashes involve tractors, mainly due to poor visibility (64.3%), lack of beacon lights, unsafe overtaking, and unmarked stopped tractors (14.3% each). These issues reduce safety, increase fuel consumption and emissions, and cause economic losses. A driving simulator study with 117 drivers examined how visibility equipment affects speed perception. The results showed that 20 km/h was best estimated with all visibility aids, while 10 km/h was most accurately judged with only the slow-moving vehicle emblem. These findings emphasize the potential for simple, cost-effective visibility measures to enhance the active safety of tractors in mixed rural traffic conditions. By enhancing tractor visibility, these measures reduce crash risks, minimize unnecessary acceleration and deceleration, and lower fuel consumption and emissions associated with traffic disturbances. Furthermore, by preventing crashes, these solutions contribute to reducing resource consumption in crash-related medical care, vehicle repairs, and infrastructure damage. Integrating improved visibility equipment into rural traffic policy can significantly enhance tractors’ active safety and reduce the risk of crashes in agricultural regions. Full article
(This article belongs to the Special Issue Transportation and Infrastructure for Sustainability)
Show Figures

Figure 1

16 pages, 2648 KiB  
Article
Evaluation of a Pre-Cut Sugarcane Planter for Seeding Performance
by Zhikang Peng, Fengying Xu, Pan Xie, Jinpeng Chen, Tao Wu and Zhen Chen
Agriculture 2025, 15(13), 1429; https://doi.org/10.3390/agriculture15131429 - 2 Jul 2025
Viewed by 266
Abstract
To investigate the relationship between the seeding performance of a novel pre-cut sugarcane planter designed by South China Agricultural University and operational settings, field seeding tests was conducted with the following protocol: First, the John Deere M1654 tractor’s forward velocity was calibrated, and [...] Read more.
To investigate the relationship between the seeding performance of a novel pre-cut sugarcane planter designed by South China Agricultural University and operational settings, field seeding tests was conducted with the following protocol: First, the John Deere M1654 tractor’s forward velocity was calibrated, and the planter’s safe loading capacity was determined. Subsequently, eight experimental treatments (A–H) were designed to quantify the relationships between the three performance indicators: seeding density N, the seeding efficiency E and seeding uniformity (coefficient of variation, CV), and three key operational parameters: forward speed of planter v, the discharging sprocket rotational speed n, and the hopper outlet size w. Mathematical models (R20.979) between three key operational parameters with two performance indicators (N, E) was developed through analysis of variance (ANOVA) and regression analysis. The seeding rate per meter was confirmed to follow a Poisson distribution based on Kolmogorov–Smirnov (K–S) tests. When the CV was below 40%, the mean relative error remained within 3%. These findings provide a theoretical foundation for seeding performance prediction under field conditions. Full article
Show Figures

Figure 1

15 pages, 1865 KiB  
Article
FEA for Optimizing Design and Fabrication of Frame Structure of Elevating Work Platforms
by Antonio Berardi, Cosimo Damiano Dellisanti, Domenico Tarantino, Karine Sophie Leheche Ouette, Alessandro Leone and Antonia Tamborrino
Appl. Sci. 2025, 15(13), 7356; https://doi.org/10.3390/app15137356 - 30 Jun 2025
Viewed by 284
Abstract
This study investigated the application of Finite Element Analysis (FEA) to optimize the design and material selection for the construction of the telescopic arm of an elevating work platform (EWP) used in agricultural environments. By comparing the structural performance of four materials—Aluminum Alloy [...] Read more.
This study investigated the application of Finite Element Analysis (FEA) to optimize the design and material selection for the construction of the telescopic arm of an elevating work platform (EWP) used in agricultural environments. By comparing the structural performance of four materials—Aluminum Alloy (EN-AW 1200), Aluminum Alloy (EN-AW 2014), High-Strength Low-Alloy (HSLA) Steel Fe275JR, and HSLA Steel S700—under simulated operational conditions, this research identified the most suitable material for robust yet lightweight platforms. The results revealed that HSLA Steel S700 provides superior performance in terms of strength, low deformation, and high safety factors, making it ideal for scenarios requiring maximum durability and load-bearing capacity. Conversely, Aluminum Alloy (EN-AW 2014), while exhibiting lower strength compared with HSLA Steel S700, significantly reduces platform weight by approximately 60% and lowers the center of gravity, enhancing maneuverability and compatibility with smaller, less powerful tractors. These findings highlight the potential of FEA in optimizing EWP design by enabling precise adjustments to material selection and structural geometry. The outcomes of this research contribute to the development of safer, more efficient, and cost-effective EWPs, with a specific focus on improving productivity and safety in agricultural operations such as pruning and harvesting. Future work will explore advanced geometries and hybrid materials to further enhance the performance and versatility of these platforms. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

24 pages, 4516 KiB  
Article
Real-Time Energy-Efficient Control Strategy for Distributed Drive Electric Tractor Based on Operational Speed Prediction
by Xiaoting Deng, Zheng Wang, Zhixiong Lu, Kai Zhang, Xiaoxu Sun and Xuekai Huang
Agriculture 2025, 15(13), 1398; https://doi.org/10.3390/agriculture15131398 - 29 Jun 2025
Viewed by 260
Abstract
This study develops a real-time energy-efficient control strategy for distributed-drive electric tractors (DDETs) to minimize electrical energy consumption during traction operations. Taking a four-wheel independently driven DDET as the research object, we conduct dynamic analysis of draft operations and establish dynamic models of [...] Read more.
This study develops a real-time energy-efficient control strategy for distributed-drive electric tractors (DDETs) to minimize electrical energy consumption during traction operations. Taking a four-wheel independently driven DDET as the research object, we conduct dynamic analysis of draft operations and establish dynamic models of individual components in the tractor’s drive and transmission system. A backpropagation (BP) neural network-based operational speed prediction model is constructed to forecast operational speed within a finite prediction horizon. Within the model predictive control (MPC) framework, a real-time energy-efficient control strategy is formulated, employing a dynamic programming algorithm for receding horizon optimization of energy consumption minimization. Through plowing operation simulation with comparative analysis against a conventional equal torque distribution strategy, the results indicate that the proposed real-time energy-efficient control strategy exhibits superior performance across all evaluation metrics, providing valuable technical guidance for future research on energy-efficient control strategies in agricultural electric vehicles. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

26 pages, 2694 KiB  
Article
Informational Support for Agricultural Machinery Management in Field Crop Cultivation
by Chavdar Z. Vezirov, Atanas Z. Atanasov, Plamena D. Nikolova and Kalin H. Hristov
Agriculture 2025, 15(13), 1356; https://doi.org/10.3390/agriculture15131356 - 25 Jun 2025
Viewed by 295
Abstract
This study explores the potential of freely available tools for collecting, processing, and applying information in the management of mechanized fieldwork. A hierarchical approach was developed, integrating operational, logistical, and strategic levels of decision-making based on crop type, land conditions, machinery, labor, and [...] Read more.
This study explores the potential of freely available tools for collecting, processing, and applying information in the management of mechanized fieldwork. A hierarchical approach was developed, integrating operational, logistical, and strategic levels of decision-making based on crop type, land conditions, machinery, labor, and time constraints. Various technological and technical solutions were evaluated through simulations and manual data processing. The proposed methodology was applied to a real-world case in Kalipetrovo, Bulgaria. The results include a 3.5-fold reduction in required tractors and a 50% decrease in tractor driver needs, achieved through extended working hours and shift scheduling. Additional benefits were identified from replacing conventional tillage with deep tillage, resulting in higher fuel consumption but improved soil preparation. Detailed resource schedules were created for machinery, labor, and fuel, highlighting seasonal peaks and optimization opportunities. The approach relies on spreadsheets and free AI-assisted platforms, proving to be a low-cost, accessible solution for mid-sized farms lacking advanced digital infrastructure. The findings demonstrate that structured information integration can support the effective renewal and utilization of tractor and machinery fleets while offering a scalable basis for decision support systems in agricultural engineering. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

23 pages, 1188 KiB  
Review
A Review of Green Agriculture and Energy Management Strategies for Hybrid Tractors
by Yifei Yang, Yifang Wen, Xiaodong Sun, Renzhong Wang and Ziyin Dong
Energies 2025, 18(13), 3224; https://doi.org/10.3390/en18133224 - 20 Jun 2025
Viewed by 511
Abstract
Hybrid tractors, as an efficient and environmentally friendly power system, are gradually becoming an important technical choice in the agricultural field. Compared to conventional powertrain systems, hybrid electric powertrains can achieve a 15–40% reduction in fuel consumption. By optimizing the engine operating range [...] Read more.
Hybrid tractors, as an efficient and environmentally friendly power system, are gradually becoming an important technical choice in the agricultural field. Compared to conventional powertrain systems, hybrid electric powertrains can achieve a 15–40% reduction in fuel consumption. By optimizing the engine operating range and incorporating electric-only driving modes, these systems further contribute to a 20–35% decline in CO2 emissions, along with a significant mitigation of nitrogen oxides (NOx) and particulate matter (PM) emissions. In this paper, the energy management technology of hybrid tractors is reviewed, with emphasis on the energy scheduling between the internal combustion engine and electric motor, the optimization control algorithm, and its practical performance in agricultural applications. Firstly, the basic configuration and working principle of hybrid tractors are introduced, and the cooperative working mode of the internal combustion engine and electric motor is expounded. Secondly, the research progress of energy management strategies is discussed. Then, the application status and challenges of hybrid power systems in agricultural machinery are discussed, and the development trend of hybrid tractors in the fields of intelligence, low carbonization, and high efficiency in the future is prospected. This paper extracts many experiences and methods from the references over the years and provides a comprehensive evaluation. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

14 pages, 1274 KiB  
Article
State Observer-Based Sampled-Data Control for Path Tracking of Autonomous Agricultural Tractor
by Haozhe Li, Keqi Mei, Li Ma, Shihong Ding and Chen Ding
Actuators 2025, 14(6), 300; https://doi.org/10.3390/act14060300 - 19 Jun 2025
Viewed by 329
Abstract
This study develops a sampled-data controller for the path tracking system of an autonomous agricultural tractor (AAT) on the basis of a state observer. First of all, to solve the cost of the whole system, the state observer is constructed for estimating the [...] Read more.
This study develops a sampled-data controller for the path tracking system of an autonomous agricultural tractor (AAT) on the basis of a state observer. First of all, to solve the cost of the whole system, the state observer is constructed for estimating the heading offset and for accelerating the convergence process. Built on the observer, an advanced output feedback sampled-data controller is formulated, which tackles the problem of slow data freshness caused by the low signal frequency of the GPS-RTK system. Subsequently, a Lyapunov stability analysis is conducted to guarantee that the AAT system can be stabilized under the proposed control strategy. Finally, comparative simulation results are provided to illustrate the efficacy of the control strategy. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

36 pages, 4774 KiB  
Review
Exploring the Role of Advanced Composites and Biocomposites in Agricultural Machinery and Equipment: Insights into Design, Performance, and Sustainability
by Ehsan Fartash Naeimi, Kemal Çağatay Selvi and Nicoleta Ungureanu
Polymers 2025, 17(12), 1691; https://doi.org/10.3390/polym17121691 - 18 Jun 2025
Viewed by 745
Abstract
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers [...] Read more.
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers (FRPs)—offer appealing alternatives due to their high specific strength and stiffness, corrosion resistance, and design flexibility. Meanwhile, increasing environmental awareness has triggered interest in biocomposites, which contain natural fibers (e.g., flax, hemp, straw) and/or bio-based resins (e.g., PLA, biopolyesters), aligned with circular economy principles. This review offers a comprehensive overview of synthetic composites and biocomposites for agricultural machinery and equipment (AME). It briefly presents their fundamental constituents—fibers, matrices, and fillers—and recapitulates relevant mechanical and environmental properties. Key manufacturing processes such as hand lay-up, compression molding, resin transfer molding (RTM), pultrusion, and injection molding are discussed in terms of their applicability, benefits, and limits for the manufacture of AME. Current applications in tractors, sprayers, harvesters, and planters are covered in the article, with advantages such as lightweighting, corrosion resistance, flexibility and sustainability. Challenges are also reviewed, including the cost, repairability of damage, and end-of-life (EoL) issues for composites and the moisture sensitivity, performance variation, and standardization for biocomposites. Finally, principal research needs are outlined, including material development, long-term performance testing, sustainable and scalable production, recycling, and the development of industry-specific standards. This synthesis is a practical guide for researchers, engineers, and manufacturers who want to introduce innovative material solutions for more efficient, longer lasting, and more sustainable agricultural machinery. Full article
(This article belongs to the Special Issue Biopolymers for Food Packaging and Agricultural Applications)
Show Figures

Figure 1

Back to TopTop