Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (799)

Search Parameters:
Keywords = agricultural supply chains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3259 KiB  
Article
Examining the Impact of National Planning on Rural Residents’ Disposable Income in China—The Case of Functional Zoning
by Junrong Ma, Chen Liu and Li Tian
Land 2025, 14(8), 1587; https://doi.org/10.3390/land14081587 - 3 Aug 2025
Viewed by 277
Abstract
The growth of rural residents’ disposable income is essential for narrowing the income gap between urban and rural areas and promoting integrated development. This study explores how China’s National Main Functional Zoning Plan influences rural household income through its regulatory impact on construction [...] Read more.
The growth of rural residents’ disposable income is essential for narrowing the income gap between urban and rural areas and promoting integrated development. This study explores how China’s National Main Functional Zoning Plan influences rural household income through its regulatory impact on construction land expansion. Using data from county−level administrative units across China, the research identified the construction land regulation index as a key mediating variable linking zoning policy to changes in household income. By shifting the analytical perspective from a traditional urban–rural classification to a framework aligned with the National Main Functional Zoning Plan, the study reveals how spatial planning tools, particularly differentiated land quota allocations, influence household income. The empirical results confirm a structured causal chain in which zoning policy affects land development intensity, which in turn drives rural income growth. This relationship varies across different functional zones. In key development zones, strict land control limits income potential by constraining land supply. In main agricultural production zones, moderate regulatory control enhances land use efficiency and contributes to higher income levels. In key ecological function zones, ecological constraints require diverse approaches to value realization. The investigation contributes both theoretical and practical insights by elucidating the microeconomic effects of national spatial planning policies and offering actionable guidance for optimizing land use regulation to support income growth tailored to regional functions. Full article
Show Figures

Figure 1

28 pages, 3364 KiB  
Review
Principles, Applications, and Future Evolution of Agricultural Nondestructive Testing Based on Microwaves
by Ran Tao, Leijun Xu, Xue Bai and Jianfeng Chen
Sensors 2025, 25(15), 4783; https://doi.org/10.3390/s25154783 - 3 Aug 2025
Viewed by 170
Abstract
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness [...] Read more.
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness in dynamic agricultural inspections. This review highlights the transformative potential of microwave technologies, systematically examining their operational principles, current implementations, and developmental trajectories for agricultural quality control. Microwave technology leverages dielectric response mechanisms to overcome traditional limitations, such as low-frequency penetration for grain silo moisture testing and high-frequency multi-parameter analysis, enabling simultaneous detection of moisture gradients, density variations, and foreign contaminants. Established applications span moisture quantification in cereal grains, oilseed crops, and plant tissues, while emerging implementations address storage condition monitoring, mycotoxin detection, and adulteration screening. The high-frequency branch of the microwave–millimeter wave systems enhances analytical precision through molecular resonance effects and sub-millimeter spatial resolution, achieving trace-level contaminant identification. Current challenges focus on three areas: excessive absorption of low-frequency microwaves by high-moisture agricultural products, significant path loss of microwave high-frequency signals in complex environments, and the lack of a standardized dielectric database. In the future, it is essential to develop low-cost, highly sensitive, and portable systems based on solid-state microelectronics and metamaterials, and to utilize IoT and 6G communications to enable dynamic monitoring. This review not only consolidates the state-of-the-art but also identifies future innovation pathways, providing a roadmap for scalable deployment of next-generation agricultural NDT systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

17 pages, 587 KiB  
Review
Exploring the Potential of Biochar in Enhancing U.S. Agriculture
by Saman Janaranjana Herath Bandara
Reg. Sci. Environ. Econ. 2025, 2(3), 23; https://doi.org/10.3390/rsee2030023 - 1 Aug 2025
Viewed by 202
Abstract
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and [...] Read more.
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and sector-specific applications. This narrative review synthesizes two decades of literature to examine biochar’s applications, production methods, and market dynamics, with a focus on its economic and environmental role within the United States. The review identifies biochar’s multifunctional benefits: enhancing soil fertility and crop productivity, sequestering carbon, reducing greenhouse gas emissions, and improving water quality. Recent empirical studies also highlight biochar’s economic feasibility across global contexts, with yield increases of up to 294% and net returns exceeding USD 5000 per hectare in optimized systems. Economically, the global biochar market grew from USD 156.4 million in 2021 to USD 610.3 million in 2023, with U.S. production reaching ~50,000 metric tons annually and a market value of USD 203.4 million in 2022. Forecasts project U.S. market growth at a CAGR of 11.3%, reaching USD 478.5 million by 2030. California leads domestic adoption due to favorable policy and biomass availability. However, barriers such as inconsistent quality standards, limited awareness, high costs, and policy gaps constrain growth. This study goes beyond the existing literature by integrating market analysis, SWOT assessment, cost–benefit findings, and production technologies to highlight strategies for scaling biochar adoption. It concludes that with supportive legislation, investment in research, and enhanced supply chain transparency, biochar could become a pivotal tool for sustainable development in the U.S. agricultural and environmental sectors. Full article
Show Figures

Figure 1

25 pages, 4273 KiB  
Review
How Can Autonomous Truck Systems Transform North Dakota’s Agricultural Supply Chain Industry?
by Emmanuel Anu Thompson, Jeremy Mattson, Pan Lu, Evans Tetteh Akoto, Solomon Boadu, Herman Benjamin Atuobi, Kwabena Dadson and Denver Tolliver
Future Transp. 2025, 5(3), 100; https://doi.org/10.3390/futuretransp5030100 - 1 Aug 2025
Viewed by 165
Abstract
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop [...] Read more.
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop comprehensive technology readiness frameworks and strategic deployment approaches. The review integrates systematic literature review and event history analysis of 52 studies, categorized using Social–Ecological–Technological Systems framework across six dimensions: technological, economic, social change, legal, environmental, and implementation challenges. The Technology Readiness Level (TRL) analysis reveals 39.5% of technologies achieving commercial readiness (TRL 8–9), including GPS/RTK positioning and V2V communication demonstrated through Minn-Dak Farmers Cooperative deployments, while gaps exist in TRL 4–6 technologies, particularly cold-weather operations. Nonetheless, challenges remain, including legislative fragmentation, inadequate rural infrastructure, and barriers to public acceptance. The study provides evidence-based recommendations that support a strategic three-phase deployment approach for the adoption of autonomous trucks in agriculture. Full article
Show Figures

Figure 1

24 pages, 5968 KiB  
Article
Life Cycle Assessment of a Digital Tool for Reducing Environmental Burdens in the European Milk Supply Chain
by Yuan Zhang, Junzhang Wu, Haida Wasim, Doris Yicun Wu, Filippo Zuliani and Alessandro Manzardo
Appl. Sci. 2025, 15(15), 8506; https://doi.org/10.3390/app15158506 (registering DOI) - 31 Jul 2025
Viewed by 119
Abstract
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A [...] Read more.
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A cradle-to-grave life cycle assessment (LCA) was used to quantify both the additional environmental burdens from RFID (tag production, usage, and disposal) and the avoided burdens due to reduced milk losses in the farm, processing, and distribution stages. Within the EU’s fresh milk supply chain, the implementation of digital tools could result in annual net reductions of up to 80,000 tonnes of CO2-equivalent greenhouse gas emissions, 81,083 tonnes of PM2.5-equivalent particulate matter, 84,326 tonnes of land use–related carbon deficit, and 80,000 cubic meters of freshwater-equivalent consumption. Spatial analysis indicates that regions with historically high spoilage rates, particularly in Southern and Eastern Europe, see the greatest benefits from RFID enabled digital-decision support tools. These environmental savings are most pronounced during the peak months of milk production. Overall, the study demonstrates that despite the environmental footprint of RFID systems, their integration into the EU’S dairy supply chain enhances transparency, reduces waste, and improves resource efficiency—supporting their strategic value. Full article
(This article belongs to the Special Issue Artificial Intelligence and Numerical Simulation in Food Engineering)
Show Figures

Figure 1

31 pages, 4963 KiB  
Article
Individual Action or Collaborative Scientific Research Institutions? Agricultural Support from Enterprises from the Perspective of Subsidies
by Ziyi Zhang, Yantong Zhong, Guitao Zhang, Tianyu Zhai, Zongru Li and Shuaicheng Lin
Sustainability 2025, 17(15), 6873; https://doi.org/10.3390/su17156873 - 29 Jul 2025
Viewed by 206
Abstract
Under China’s “Rural Revitalisation” strategy, contract farming faces challenges including farmers’ limited access to advanced technologies and high operational risks for agricultural support enterprises. The collaborative involvement of scientific research institutions offers potential solutions but remains underexplored. This study employs Stackelberg game theory [...] Read more.
Under China’s “Rural Revitalisation” strategy, contract farming faces challenges including farmers’ limited access to advanced technologies and high operational risks for agricultural support enterprises. The collaborative involvement of scientific research institutions offers potential solutions but remains underexplored. This study employs Stackelberg game theory to model a contract farming supply chain under two agricultural assistance modes: enterprise-led (EL) and collaborative assistance with scientific research institutions (CI). We further propose two government subsidy mechanisms: subsidies to enterprises and subsidies to scientific research institutions. The models analyze optimal decisions, supply chain performance, and subsidy efficiency, validated through numerical experiments. Key findings reveal the following: (1) The CI mode enhances agricultural output and farmer revenue but may reduce enterprise profits, deterring collaboration. (2) Government subsidies incentivize enterprise–institution collaboration. Subsidizing scientific research institutions typically improves agricultural productivity and economic benefits more effectively than subsidizing enterprises. (3) Synergistic effects exist among the government subsidy coefficient, cost coefficient of technical assistance, consumer preferences for agricultural quality, and profit-sharing ratio. The latter three parameters significantly influence subsidy model selection. This research provides policy insights for enhancing agricultural assistance efficiency and sustainable contract farming development. Full article
Show Figures

Figure 1

21 pages, 1758 KiB  
Article
The Effect of Different Tillage Methods on Spring Barley Productivity and Grain Quality Indicators
by Aušra Sinkevičienė, Kęstutis Romaneckas, Edita Meškinytė and Rasa Kimbirauskienė
Agronomy 2025, 15(8), 1823; https://doi.org/10.3390/agronomy15081823 - 28 Jul 2025
Viewed by 221
Abstract
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required [...] Read more.
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required to maintain a stable food supply chain. For many years, intensive farming systems have been used to meet this need. Today, intensive climate change events and other global environmental challenges are driving a shift towards sustainable use of natural resources and simplified cultivation methods that produce high-quality and productive food. It is important to study different tillage systems in order to understand how these methods can affect the chemical composition and nutritional value of the grain. Both agronomic and economic aspects contribute to the complexity of this field and their analysis will undoubtedly contribute to the development of more efficient agricultural practice models and the promotion of more conscious consumption. An appropriate tillage system should be oriented towards local climatic characteristics and people’s needs. The impact of reduced tillage on these indicators in spring barley production is still insufficiently investigated and requires further analysis at a global level. This study was carried out at Vytautas Magnus University Agriculture Academy (Lithuania) in 2022–2024. Treatments were arranged using a split-plot design. Based on a long-term tillage experiment, five tillage systems were tested: deep and shallow plowing, deep cultivation–chiseling, shallow cultivation–disking, and no-tillage. The results show that in 2022–2024, the hectoliter weight and moisture content of spring barley grains increased, but protein content and germination decreased in shallowly plowed fields. In deep cultivation–chiseling fields, the protein content (0.1–1.1%) of spring barley grains decreased, and in shallow cultivation–disking fields, the moisture content (0.2–0.3%) decreased. In all fields, the simplified tillage systems applied reduced spring barley germination (0.4–16.7%). Tillage systems and meteorological conditions are the two main forces shaping the quality indicators of spring barley grains. Properly selected tillage systems and favorable climatic conditions undoubtedly contribute to better grain properties and higher yields, while reducing the risk of disease spread. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

26 pages, 16740 KiB  
Article
An Integrated Framework for Zero-Waste Processing and Carbon Footprint Estimation in ‘Phulae’ Pineapple Systems
by Phunsiri Suthiluk, Anak Khantachawana, Songkeart Phattarapattamawong, Varit Srilaong, Sutthiwal Setha, Nutthachai Pongprasert, Nattaya Konsue and Sornkitja Boonprong
Agriculture 2025, 15(15), 1623; https://doi.org/10.3390/agriculture15151623 - 26 Jul 2025
Viewed by 375
Abstract
This study proposes an integrated framework for sustainable tropical agriculture by combining biochemical waste valorization with spatial carbon footprint estimation in ‘Phulae’ pineapple production. Peel and eye residues from fresh-cut processing were enzymatically converted into rare sugar, achieving average conversion efficiencies of 35.28% [...] Read more.
This study proposes an integrated framework for sustainable tropical agriculture by combining biochemical waste valorization with spatial carbon footprint estimation in ‘Phulae’ pineapple production. Peel and eye residues from fresh-cut processing were enzymatically converted into rare sugar, achieving average conversion efficiencies of 35.28% for peel and 37.51% for eyes, with a benefit–cost ratio of 1.56 and an estimated unit cost of USD 0.17 per gram. A complementary zero-waste pathway produced functional gummy products using vinegar fermented from pineapple eye waste, with the preferred formulation scoring a mean of 4.32 out of 5 on a sensory scale with 158 untrained panelists. For spatial carbon modeling, the Bare Land Referenced Algorithm (BRAH) and Otsu thresholding were applied to multi-temporal Sentinel-2 and THEOS imagery to estimate plantation age, which strongly correlated with field-measured emissions (r = 0.996). This enabled scalable mapping of plot-level greenhouse gas emissions, yielding an average footprint of 0.2304 kg CO2 eq. per kilogram of fresh pineapple at the plantation gate. Together, these innovations form a replicable model that aligns tropical fruit supply chains with circular economy goals and carbon-related trade standards. The framework supports waste traceability, resource efficiency, and climate accountability using accessible, data-driven tools suitable for smallholder contexts. By demonstrating practical value addition and spatially explicit carbon monitoring, this study shows how integrated circular and geospatial strategies can advance sustainability and market competitiveness for the ‘Phulae’ pineapple industry and similar perennial crop systems. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

19 pages, 642 KiB  
Article
A Quantitative Study on the Interactive Changes Between China’s Final Demand Structure and Forestry Industry Production Structure
by Wenting Jia, Fuliang Cao and Xiaofeng Jia
Forests 2025, 16(8), 1212; https://doi.org/10.3390/f16081212 - 23 Jul 2025
Viewed by 189
Abstract
The effects of changes in China’s final demand structure on its forestry sector and associated supply chains have not been thoroughly examined. This study aims to provide a detailed analysis of the quantitative relationships and underlying mechanisms between these interactive changes. Using China’s [...] Read more.
The effects of changes in China’s final demand structure on its forestry sector and associated supply chains have not been thoroughly examined. This study aims to provide a detailed analysis of the quantitative relationships and underlying mechanisms between these interactive changes. Using China’s 153-sector input–output tables from the National Bureau of Statistics and applying a Leontief-based input–output model, we conducted scenario simulations through three distinct schemes, generating both quantitative and qualitative results. Our findings indicate that (1) For China’s forestry sector and its entire value chain to thrive, policymakers should boost consumer demand. This can better stimulate the development of forestry and the “agriculture-forestry-animal husbandry-fishery services” sector and related service industries; (2) Increased investment demand effectively stimulates the development of tertiary industries and secondary industries within the forestry supply chain and boosts the demand and production of intermediate products; (3) Changes in net exports have a significant impact on forestry and the forestry industry chain. To reduce dependence on foreign timber resources, China should strategically expand commercial plantation development; (4) Regarding intermediate product production, investment has a more pronounced effect on increasing total volume compared to consumption. Additionally, the Sino–US tariff disputes negatively impact the forestry industries of both countries. China needs to accelerate import substitution strategies for timber products, adjust international trade markets, and expand domestic consumption and investment to ensure the healthy and stable development of its forestry sector. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
21 pages, 4519 KiB  
Article
Determining the Authenticity of Information Uploaded by Blockchain Based on Neural Networks—For Seed Traceability
by Kenan Zhao, Meng Zhang, Xiaofei Fan, Bo Peng, Huanyue Wang, Dongfang Zhang, Dongxiao Li and Xuesong Suo
Agriculture 2025, 15(15), 1569; https://doi.org/10.3390/agriculture15151569 - 22 Jul 2025
Viewed by 264
Abstract
Traditional seed supply chains face several hidden risks. Certain regulatory departments tend to focus primarily on entity circulation while neglecting the origin and accuracy of data in seed quality supervision, resulting in limited precision and low credibility of traceability information related to quality [...] Read more.
Traditional seed supply chains face several hidden risks. Certain regulatory departments tend to focus primarily on entity circulation while neglecting the origin and accuracy of data in seed quality supervision, resulting in limited precision and low credibility of traceability information related to quality and safety. Blockchain technology offers a systematic solution to key issues such as data source distortion and insufficient regulatory penetration in the seed supply chain by enabling data rights confirmation, tamper-proof traceability, smart contract execution, and multi-node consensus mechanisms. In this study, we developed a system that integrates blockchain and neural networks to provide seed traceability services. When uploading seed traceability information, the neural network models are employed to verify the authenticity of information provided by humans and save the tags on the blockchain. Various neural network architectures, such as Multilayer Perceptron, Recurrent Neural Network, Fully Convolutional Neural Network, and Long Short-term Memory model architectures, have been tested to determine the authenticity of seed traceability information. Among these, the Long Short-term Memory model architecture demonstrated the highest accuracy, with an accuracy rate of 90.65%. The results demonstrated that neural networks have significant research value and potential to assess the authenticity of information in a blockchain. In the application scenario of seed quality traceability, using blockchain and neural networks to determine the authenticity of seed traceability information provides a new solution for seed traceability. This system empowers farmers by providing trustworthy seed quality information, enabling better purchasing decisions and reducing risks from counterfeit or substandard seeds. Furthermore, this mechanism fosters market circulation of certified high-quality seeds, elevates crop yields, and contributes to the sustainable growth of agricultural systems. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

33 pages, 1578 KiB  
Article
Machine Learning-Based Prediction of Resilience in Green Agricultural Supply Chains: Influencing Factors Analysis and Model Construction
by Daqing Wu, Tianhao Li, Hangqi Cai and Shousong Cai
Systems 2025, 13(7), 615; https://doi.org/10.3390/systems13070615 - 21 Jul 2025
Viewed by 277
Abstract
Exploring the action mechanisms and enhancement pathways of the resilience of agricultural product green supply chains is conducive to strengthening the system’s risk resistance capacity and providing decision support for achieving the “dual carbon” goals. Based on theories such as dynamic capability theory [...] Read more.
Exploring the action mechanisms and enhancement pathways of the resilience of agricultural product green supply chains is conducive to strengthening the system’s risk resistance capacity and providing decision support for achieving the “dual carbon” goals. Based on theories such as dynamic capability theory and complex adaptive systems, this paper constructs a resilience framework covering the three stages of “steady-state maintenance–dynamic adjustment–continuous evolution” from both single and multiple perspectives. Combined with 768 units of multi-agent questionnaire data, it adopts Structural Equation Modeling (SEM) and fuzzy-set Qualitative Comparative Analysis (fsQCA) to analyze the influencing factors of resilience and reveal the nonlinear mechanisms of resilience formation. Secondly, by integrating configurational analysis with machine learning, it innovatively constructs a resilience level prediction model based on fsQCA-XGBoost. The research findings are as follows: (1) fsQCA identifies a total of four high-resilience pathways, verifying the core proposition of “multiple conjunctural causality” in complex adaptive system theory; (2) compared with single algorithms such as Random Forest, Decision Tree, AdaBoost, ExtraTrees, and XGBoost, the fsQCA-XGBoost prediction method proposed in this paper achieves an optimization of 66% and over 150% in recall rate and positive sample identification, respectively. It reduces false negative risk omission by 50% and improves the ability to capture high-risk samples by three times, which verifies the feasibility and applicability of the fsQCA-XGBoost prediction method in the field of resilience prediction for agricultural product green supply chains. This research provides a risk prevention and control paradigm with both theoretical explanatory power and practical operability for agricultural product green supply chains, and promotes collaborative realization of the “carbon reduction–supply stability–efficiency improvement” goals, transforming them from policy vision to operational reality. Full article
(This article belongs to the Topic Digital Technologies in Supply Chain Risk Management)
Show Figures

Figure 1

27 pages, 2572 KiB  
Article
Parallel Agent-Based Framework for Analyzing Urban Agricultural Supply Chains
by Manuel Ignacio Manríquez, Veronica Gil-Costa and Mauricio Marin
Future Internet 2025, 17(7), 316; https://doi.org/10.3390/fi17070316 - 19 Jul 2025
Viewed by 159
Abstract
This work presents a parallel agent-based framework designed to analyze the dynamics of vegetable trade within a metropolitan area. The system integrates agent-based and discrete event techniques to capture the complex interactions among farmers, vendors, and consumers in urban agricultural supply chains. Decision-making [...] Read more.
This work presents a parallel agent-based framework designed to analyze the dynamics of vegetable trade within a metropolitan area. The system integrates agent-based and discrete event techniques to capture the complex interactions among farmers, vendors, and consumers in urban agricultural supply chains. Decision-making processes are modeled in detail: farmers select crops based on market trends and environmental risks, while vendors and consumers adapt their purchasing behavior according to seasonality, prices, and availability. To efficiently handle the computational demands of large-scale scenarios, we adopt an optimistic approximate parallel execution strategy. Furthermore, we introduce a credit-based load balancing mechanism that mitigates the effects of heterogeneous communication patterns and improves scalability. This framework enables detailed analysis of food distribution systems in urban contexts, offering insights relevant to smart cities and digital agriculture initiatives. Full article
(This article belongs to the Special Issue Intelligent Agents and Their Application)
Show Figures

Figure 1

20 pages, 9135 KiB  
Article
Kolmogorov–Arnold Networks for Interpretable Crop Yield Prediction Across the U.S. Corn Belt
by Mustafa Serkan Isik, Ozan Ozturk and Mehmet Furkan Celik
Remote Sens. 2025, 17(14), 2500; https://doi.org/10.3390/rs17142500 - 18 Jul 2025
Viewed by 698
Abstract
Accurate crop yield prediction is essential for stabilizing food supply chains and reducing the uncertainties in financial risks related to agricultural production. Yet, it is even more essential to understand how crop yield models make predictions depending on their relationship to Earth Observation [...] Read more.
Accurate crop yield prediction is essential for stabilizing food supply chains and reducing the uncertainties in financial risks related to agricultural production. Yet, it is even more essential to understand how crop yield models make predictions depending on their relationship to Earth Observation (EO) indicators. This study presents a state-of-the-art explainable artificial intelligence (XAI) method to estimate corn yield prediction over the Corn Belt in the continental United States (CONUS). We utilize the recently introduced Kolmogorov–Arnold Network (KAN) architecture, which offers an interpretable alternative to the traditional Multi-Layer Perceptron (MLP) approach by utilizing learnable spline-based activation functions instead of fixed ones. By including a KAN in our crop yield prediction framework, we are able to achieve high prediction accuracy and identify the temporal drivers behind crop yield variability. We create a multi-source dataset that includes biophysical parameters along the crop phenology, as well as meteorological, topographic, and soil parameters to perform end-of-season and in-season predictions of county-level corn yields between 2016–2023. The performance of the KAN model is compared with the commonly used traditional machine learning (ML) models and its architecture-wise equivalent MLP. The KAN-based crop yield model outperforms the other models, achieving an R2 of 0.85, an RMSE of 0.84 t/ha, and an MAE of 0.62 t/ha (compared to MLP: R2 = 0.81, RMSE = 0.95 t/ha, and MAE = 0.71 t/ha). In addition to end-of-season predictions, the KAN model also proves effective for in-season yield forecasting. Notably, even three months prior to harvest, the KAN model demonstrates strong performance in in-season yield forecasting, achieving an R2 of 0.82, an MAE of 0.74 t/ha, and an RMSE of 0.98 t/ha. These results indicate that the model maintains a high level of explanatory power relative to its final performance. Overall, these findings highlight the potential of the KAN model as a reliable tool for early yield estimation, offering valuable insights for agricultural planning and decision-making. Full article
Show Figures

Figure 1

31 pages, 1290 KiB  
Article
Application of Intuitionistic Fuzzy Approaches and Bonferroni Mean Operators in the Selection of Suppliers of Agricultural Equipment and Machinery for the Needs of the Agriculture 4.0 System
by Adis Puška, Saša Igić, Nedeljko Prdić, Branislav Dudić, Ilija Stojanović, Lazar Stošić and Miroslav Nedeljković
Mathematics 2025, 13(14), 2268; https://doi.org/10.3390/math13142268 - 14 Jul 2025
Viewed by 302
Abstract
The development of technology has influenced agricultural production and the establishment of the Agriculture 4.0 system in practice. This research is focused on the selection of equipment and machinery suppliers for the needs of the MAMEX Company. When selecting suppliers, an approach based [...] Read more.
The development of technology has influenced agricultural production and the establishment of the Agriculture 4.0 system in practice. This research is focused on the selection of equipment and machinery suppliers for the needs of the MAMEX Company. When selecting suppliers, an approach based on the application of an intuitionistic fuzzy set for decision-making was used. This approach allows the uncertainty present in decision-making to be incorporated, considered, and, hopefully, reduced in order to make a final decision on which of the observed suppliers is the most suitable for this company. Ten criteria were used that enable the application of sustainability in the supply chain. Eight local suppliers of equipment and machinery were observed with these criteria. The results obtained by applying the SWARA (Step-wise Weight Assessment Ratio Analysis) method showed that the most important criterion for selecting suppliers is the reliability and quality of equipment and machinery, while the results of the CORASO (COmpromise Ranking from Alternative Solutions) method showed that the SUP2 supplier is the best choice for establishing partnership relations with the MAMEX company. This supplier should help the MAMEX company improve its business and achieve better results in the market. The contribution of this research is to improve the application of intuitionistic fuzzy sets in decision-making, and to emphasize the importance of equipment and machinery in agricultural production in the Agriculture 4.0 system. Full article
Show Figures

Figure 1

16 pages, 747 KiB  
Article
Development and Application of the Agricultural Product Safety Index in Major Countries and Imported Food Safety Index for Korea
by Da-Eun Jung and Sung-Bum Yang
Foods 2025, 14(14), 2461; https://doi.org/10.3390/foods14142461 - 14 Jul 2025
Viewed by 394
Abstract
With the growth of international trade, concerns over the safety of imported agricultural products in South Korea have intensified due to factors such as the COVID-19 pandemic, radiation contamination risks, and the prevalence of GMOs. In response, this study develops two composite indices—the [...] Read more.
With the growth of international trade, concerns over the safety of imported agricultural products in South Korea have intensified due to factors such as the COVID-19 pandemic, radiation contamination risks, and the prevalence of GMOs. In response, this study develops two composite indices—the Agricultural Product Safety Index (APSI) and the Imported Food Safety Index (IFSI)—to quantitatively assess food safety risks across major exporting countries and apply them to Korea’s import structure. The indices integrate production and distribution risk indicators based on publicly available data and adhere to five key principles, including applicability, reliability, boundedness, independence, and representativeness. Empirical results from 2014 to 2021 indicate that Australia consistently demonstrates the highest food safety level, followed by the United States, Argentina, Ukraine, and Brazil. While the indices provide a structured and transparent framework for monitoring import-related safety, their scope is limited to selected countries and excludes biological hazards due to data limitations. Future research should expand the geographical coverage and incorporate empirical validation techniques. These findings contribute to the development of evidence-based policy instruments aimed at enhancing food safety governance in global supply chains. Full article
(This article belongs to the Section Food Systems)
Show Figures

Figure 1

Back to TopTop