The Effect of Different Tillage Methods on Spring Barley Productivity and Grain Quality Indicators
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Meteorological Conditions
2.3. Crop Productivity and Quality Indicators
- Protein content: the method is given in standard LST EN ISO 12099 (Lithuanian Standardization Department, Lithuania, Vilnius, 2025 (http://www.lsd.lt)) “Determination of protein content of whole barley by near-infrared spectroscopy”, “INFRATEC 1241” from FOSS.
- Starch content (%) was determined by Ewers polarimetric method, “INFRATEC 1241” device from FOSS, in standard LST 1797:2024 (Lithuanian Standardization Department, Lithuania, Vilnius, 2025 (http://www.lsd.lt)).
- Hectoliter mass (kg hl−1) was determined using infrared spectroscopy method, “INFRATEC 1241” from FOSS, in standard LST EN ISO 7971-3 (Lithuanian Standardization Department, Lithuania, Vilnius, 2025 (http://www.lsd.lt)).
- Grain moisture content (%) was determined using the infrared spectroscopy method, “INFRATEC 1241” from FOSS, in standard LST EN ISO 712 (Lithuanian Standardization Department, Lithuania, Vilnius, 2025 (http://www.lsd.lt)).
2.4. Comprehensive Evaluation
2.5. Statistical Analysis
3. Results
3.1. Crop Productivity Indicators
3.2. Quality Indicators of Spring Barley
3.3. Comprehensive Evaluation of the Long-Term Effects of Tillage Technologies on the Agroecosystem
4. Discussion
4.1. Crop Productivity Under Different Tillage Systems
4.2. Crop Quality Indicators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Šabajevienė, G. Aplinkos temperatūros ir substrato drėgmės poveikis vasarinių miežių fiziologiniams rodikliams. Zemdirb.-Agric. 2008, 95, 71–80. [Google Scholar]
- Lenssen, A.W.; John Son, G.D.; Carl Son, G.R. Cropping sequence and tillage system influences annual crop production and water use in semiarid Montana. Field Crop Res. 2007, 100, 32–43. [Google Scholar] [CrossRef]
- Guo, X.; Wang, H.; Ahmad, N.; Wang, R.; Wang, X.; Li, J. Effects of 12-year cropping systems and tillage practices on crop yield and carbon trade-off in dryland Loess Plateau. Field Crops Res. 2024, 318, 109598. [Google Scholar] [CrossRef]
- Chetan, F.; Chetan, C. Improvement of the Water Management by Applying the No Tillage System for the Winter Wheat Production. Agriculture 2021, 78, 22–27. [Google Scholar] [CrossRef]
- Maikštienė, S.; Velykis, A.; Arlauskienė, A. Tausojamoji Žemdirbystė Našiuose Dirvožemiuose: Monografija. Lietuvos Žemdirbystės Institutas; Akademija, Kėdainių r.: Kėdainiai, Lithuania, 2008; p. 327. [Google Scholar]
- Šimanskaitė, D. Arimo ir beplūgio žemės dirbimo įtaka dirvožemio fizikinėms savybėms ir augalų produktyvumui. Žemės Ūkio Moksl. 2007, 14, 9–19. [Google Scholar]
- Jodaugienė, D. Ilgamečio Arimo ir Purenimo Įtaka Dirvožemiui ir Žemės Ūkio Augalų Pasėliams Supaprastinto Žemės Dirbimo Sistemoje. Ph.D. Thesis, Aleksandro Stulginskio Universitetas, Kaunas, Lithuania, 2002; p. 166. [Google Scholar]
- Ahmad, N.; Virk, A.L.; Hussain, S.; Hafeez, M.B.; Haider, F.U.; Rehmani, M.I.A.; Asif, A. Integrated application of plant bioregulator and micronutrients improves crop physiology, productivity and grain biofortification of delayed sown wheat. Environ. Sci. Pollut. Res. 2022, 29, 52534–52543. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Y.; Zhang, Q.; Ahmad, N.; Liu, P.; Wang, R.; Wang, X. Converting continuous cropping to rotation including subsoiling improves crop yield and prevents soil water deficit: A 12-yr in-situ study in the Loess Plateau, China. Agric. Water Manag. 2021, 256, 107062. [Google Scholar] [CrossRef]
- Ahmad, N.; Virk, A.L.; Hafeez, M.B.; Ercisli, S.; Golokhvast, K.S.; Qi, Y.; Li, J. Effects of different tillage and residue management systems on soil organic carbon stock and grain yield of rice–wheat double cropping system. Ecol. Indic. 2024, 158, 111452. [Google Scholar] [CrossRef]
- Kalnin, A.; Kalinina, V.; Teplinsky, I.; Ruzhev, V. Selection and justification of potato inter row tillage systems based on development of dynamic model of heat and moisture transfer between soil layers. Eng. Rural. Dev. 2020, 19, 819–825. [Google Scholar] [CrossRef]
- Chetan, F.; Chetan, C.; Muresanu, F.; Suciu, L.; Crisan, I. Research regarding the efficiency of soybean cultivation in different tillage systems and their influence on soil compaction, acumulation and water storage. Rom. J. Plant Prot. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Juchnevičienė, A.; Raudonius, S.; Avižienytė, D.; Romaneckas, K.; Bogužas, V. Ilgalaikio supaprastinto žemės dirbimo ir tiesioginės sėjos įtaka žieminių kviečių pasėliui. Žemės Ūkio Moksl. 2012, 19, 139–150. [Google Scholar] [CrossRef]
- Vach, M.; Strašil, Z.; Javůrek, M. Economic Efficiency of selected crops cultivated under different technology of soil tillage. Sci. Agric. Bohem. 2016, 4, 40–46. [Google Scholar] [CrossRef]
- Manekar, U.; Sharma, S.K.; Trivedi, S.K.; Meena, H. Effect of Tillage Management and Soil Slope on Annual Soil Loss under Cereal Crops in Central India. Int. J. Environ. Clim. Change 2023, 13, 2474–2480. [Google Scholar] [CrossRef]
- Shinoto, Y.; Matsunami, T.; Otani, R.; Maruyama, S. Growth and yield of maize using two tillage systems in crop rotation of paddy fields. Plant Prod. Sci. 2019, 22, 58–67. [Google Scholar] [CrossRef]
- Machanoff, C.H.; Vann, M.C.; Woodley, A.L.; Suchoff, D. Evaluation of conservation tillage practices in the production of organic flue-cured tobacco. Agrosyst. Geosci. Environ. 2022, 5, e20317. [Google Scholar] [CrossRef]
- Mantel, S.; Dondeyne, S.; Deckers, S. World reference base for soil resources (WRB). In Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, Netherlands, 2023; pp. 206–217. [Google Scholar]
- Volungevičius, J.; Kavaliauskas, P. Lietuvos dirvožemiai. Vilnius 2014, 133, 23. [Google Scholar]
- IUSSWorking Group, W.R.B. World Reference Base for Soil Resources 2023. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Report; FAO: Rome, Italy, 2023; Volume 186, pp. 151–163. [Google Scholar]
- Sinkevičienė, A.; Romaneckas, K.; Jackevičienė, K.; Petrikaitė, T.; Balandaitė, J.; Kimbirauskienė, R. Long-term effect of tillage systems on planosol physical properties, CO2 emissions and spring barley productivity. Land 2024, 13, 1289. [Google Scholar] [CrossRef]
- Lohmann, G. Entwicklung eines Bewertungsverfahrens für Anbausysteme mit Differenzierten Aufwandmengen Ertragssteigernder und Ertragssichernder Betriebsmittel. Ph.D. Thesis, Institut für Pflanzenbau der Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 1994. [Google Scholar]
- Heyland, K.U. Zur methodik einer integrierten darstellung und bewertung der produktionsverfahren im pflanzenbau. Pflanzenbauwissenschaften 1988, 2, 145–159. [Google Scholar]
- Leonavičienė, T. SPSS Programų Paketo Taikymas Statistiniuose Tyrimuose; Vilniaus Pedagoginio Universiteto Leidykla: Vilnius, Lithuania, 2007; p. 126. [Google Scholar]
- Raudonius, S. Application of statistics in plant and crop research: Important issues. Zemdirb.-Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef]
- Parvin, N.; Coucheney, E.; Gren, M.; Andersson, H.; Elofsson, K. On the relationships between the size of agricultural machinery, soil quality and net revenues for farmers and society. Soil Secur. 2022, 6, 100044. [Google Scholar] [CrossRef]
- Sae-Tun, O.; Bodner, G.; Rosinger, C.; Zechmeister-Boltenstern, S.; Mentler, A.; Keiblinger, K. Fungal biomass and microbial necromass facilitate soil carbon sequestration and aggregate stability under different soil tillage intensities. Appl. Soil Ecol. 2022, 179, 104599. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef]
- Feiza, V.; Šlepetienė, A.; Feizienė, D.; Liaudanskienė, I.; Deveikytė, I.; Pranaitienė, S. Ilgalaikio įvairaus intensyvumo išteklių naudojimo poveikis skirtingos genezės dirvožemiams ir kitiems agroekosistemų komponentams. In Agrariniai ir Miškininkystės Mokslai: Naujausi Tyrimų Rezultatai ir Inovatyvūs Sprendimai: Mokslinės Konferencijos Pranešimai; Lietuvos agrarinių ir Miškų Mokslų Centras: Kėdainiai, Lithuania, 2019; Volume 9, pp. 8–9. [Google Scholar]
- Mahalingam, R.; Bregitzer, P. Impact on physiology and malting quality of barley exposed to heat, drought and their combination during different growth stages under controlled environment. Physiol. Plant. 2019, 165, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Taraškevičius, D.; Šešok, A. Research of the relationship between body composition and physical fitness. Sci.–Future Lith. 2015, 7, 653–657. [Google Scholar] [CrossRef]
- Long, S.P.; Zhu, X.G.; Naidu, S.L.; Ort, D.R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef]
- Pyrantienė, D.; Savilionis, A.; Liakas, V. Kompiuterinio modeliavimo panaudojimas žieminių kviečių derlingumui prognozuoti. Vagos 2002, 56, 100–104. [Google Scholar]
- Del Pozo, A.; Dennett, M.D. Analysis of the distribution of light, leaf nitrogen, and photosynthesis within the canopy of Vicia faba L. at two contrasting plant densities. Aust. J. Agric. Res. 1999, 50, 183–190. [Google Scholar] [CrossRef]
- Nakano, S.; Purcell, L.C.; Homma, K.; Shiraiwa, T. Modeling leaf area development in soybean (Glycine max L.) based on the branch growth and leaf elongation. Plant Prod. Sci. 2020, 23, 247–259. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Harasim, E.; Klikocka-Wiśniewska, O. Effect of catch crops and tillage systems on the content of selected nutrients in spring wheat grain. Agronomy 2022, 12, 1054. [Google Scholar] [CrossRef]
- Balčiūnas, M.; Jankauskienė, Z.; Brazaitytė, A.; Duchovskis, P. Lapų indekso ir fotosintezės pigmentų dinamika įvairaus tankumo pluoštinių linų pasėlyje. Žemdirbystė 2008, 95, 97–109. [Google Scholar]
- Butkutė, B.; Cesevičienė, J. Lygčių kūrimas kviečių grūdų kokybę vertinant spektrometru NIRS6500I. Grūdų kokybės ir optinių duomenų bazės charakteristika. Zemdirb.-Agric. 2009, 96, 62–77. [Google Scholar]
- Kinderienė, I. Piktžolėtumo pokyčiai javų pasėliuose taikant neariminį žemės dirbimą eroduojamose dirvose. Žemės Ūkio Moksl. 2014, 21, 151–160. [Google Scholar] [CrossRef]
- Marcinkevičienė, A.; Čmukas, A.; Velička, R.; Kosteckas, R.; Skinulienė, L. Comparative Analysis of Undersown Cover Crops and Bio-Preparations on Weed Spread and Organically Grown Spring Oilseed Rape Yield. Sustain. 2023, 15, 13594. [Google Scholar] [CrossRef]
- Mass, M.T.; Verdu, A.M. Tillage system effects on weed communities in a 4-year crop rotation under Mediterranean dryland conditions. Soil Tillage Res. 2003, 74, 15–24. [Google Scholar] [CrossRef]
- Melander, B.; Rasmussen, J.; Sørensen, P. Cover crop effects on the growth of perennial weeds in two long-term organic crop rotations. Renew. Agric. Food Syst. 2024, 39, e20. [Google Scholar] [CrossRef]
- Semaškienė, R.; Auškalnienė, O. Vasariniai kviečiai. Tyrimų Rezultatai ir Auginimo Patirtis LŽI; Akademija, Kėdainių r., Lietuvos Agrarinių ir Miškų Mokslų Centras: Akademija, Lithuania, 2018; pp. 2–19. [Google Scholar]
- Gelsomino, A.; Araniti, F.; Lupini, A.; Princi, G.; Petro-Vičova, B.; Abenovoli, M.R. Phenolic acids in plant-soil interactions: A microcosm experiment. J. Allelochem. Interact. 2015, 1, 25–38. [Google Scholar]
- Triboi, E.; Triboi-Blondel, A.M. Productivity and grain or seed composition: A new approach to an old problem-invited paper. Eur. J. Agron. 2002, 16, 163–186. [Google Scholar] [CrossRef]
- Šiuliauskas, A. Praktinė Augalininkystė. Javai ir Rapsai; Leidykla Eugrimas: Vilnius, Lithuania, 2015; pp. 10–95. [Google Scholar]
- Zhu, X.G.; Long, S.; Ort, D. What is the maximum efficiency with which photosyntesis can corvert solar energy into biomass? Curr. Opin. Biotechnol. 2008, 19, 153–159. [Google Scholar] [CrossRef]
- Velykis, A.; Satkus, A. Supaprastinto sunkių priemolių dirbimo įtaka vasarinių miežių piktžolėtumui ir derlingumui. Žemės Ūkio Moksl. 2012, 19, 236–248. [Google Scholar] [CrossRef]
- Sharma–Natu, P.; Ghildiyal, M. Potential targets for improving photosynthesis and crop yield. Curr. Sci. 2005, 88, 1918–1928. [Google Scholar]
- Žekonienė, V.; Daugėlienė, N.; Bakutis, B. Mokslinių Rekomendacijų Taikymo Ekologiniame Ūkyje Pagrindai; Lietuvos žemės ūkio universitetas: Kėdainiai, Lithuania, 2006; p. 32. [Google Scholar]
- Mašauskienė, A.; Mašauskas, V. Žieminių kviečių derlingumo potencialas ir grūdų baltymingumas. Maisto Chem. Ir Technol. 2005, 39, 38–45. [Google Scholar]
- Abdel-Gawad, A.S.; Youssef, M.K.E.; Abou-Elhawa, S.H.; Abdel-Rahman, A.M. Different Moisture Contents of Tempered Hull Barley and Hull-Less Barley Grains Prior to Milling 2. Effect on Physical and Sensory Properties of Bread Baked from these Barley Flours. J. Food Dairy Sci. 2018, 3, 77–90. [Google Scholar] [CrossRef]
- Vozgirdienė, G.; Povilaitienė, N. Analysis of the need for social assistance of families caring for a disabled person. Appl. Sci. Res. 2023, 2, 87–96. [Google Scholar]
- Juodeikienė, G.; Bašinskienė, L.; Repečienė, A. Grūdų Cheminės Sudėties ir Technologinių Savybių Nustatymas: Mokomoji Knyga; Kauno Technologijos Universitetas, Maisto Produktų Technologijos Katedra: Kaunas, Lithuania, 2008; p. 134. [Google Scholar]
- Cesevičienė, J.; Mašauskienė, A. Žieminių kviečių grūdų technologinių savybių kitimas sandėliavimo metu. Zemdirb. Moksl. Darb. 2009, 96, 154–169. [Google Scholar]
- Lloyd, B.J.; Siebenmorgen, T.J.; Bacon, R.K.; Vories, E. Harvest date and conditioned moisture content effects on test weight of soft red winter wheat. Appl. Eng. Agric. 1999, 15, 525–534. [Google Scholar] [CrossRef]
- Kassam, A. Conservation agriculture for regenerative and resilient production systems. In Biological Approaches to Regenerative Soil Systems; CRC Press: Boca Raton, FL, USA, 2023; pp. 251–264. [Google Scholar]
- Vagusevičienė, I.; Romaneckas, K.; Lekas, V.; Uselis, N.; Kriaučiūnienė, Z.; Duchovskis, P.; Kadžiulienė, Ž.; Jankauskienė, J. Augalų Produktyvumas; LAMMC, VDU ŽŪA: Kaunas, Lithuania, 2024; p. 304. [Google Scholar]
- Lõiveke, H.; Ilumäe, E.; Laitamm, H. Microfungi in grain and grain feeds and their potentialtoxicity. Agron. Res. 2004, 1, 195–206. [Google Scholar]
- Feiza, V.; Feizienė, D.; Auškalnis, A.; Kadžienė, G. Sustainable tillage: Results from long-term field experiments on Cambisol. Zemdirb.-Agric. 2010, 97, 3–14. [Google Scholar]
- Bashandy, S.O.; Sarhan, M. Response of Soybean (Glycine max L.) Plant and Soil Properties to NPK Fertilization and Humate Substances Application under Different Tillage Systems. J. Soil Sci. Agric. Eng. 2021, 12, 469–479. [Google Scholar] [CrossRef]
- Kochiieru, M.; Veršulienė, A.; Feiza, V.; Feizienė, D. Trend for soil CO2 efflux in grassland and forest land in relation with meteorological conditions and root parameters. Sustainability 2023, 15, 7193. [Google Scholar] [CrossRef]
- Sinkevičius, A. Žemės Dirbimo Technologijų Ilgalaikis Poveikis Agroekosistemų Tvarumui. Ph.D. Thesis, Vytauto Didžiojo Universitetas, Žemės Ūkio Akademija, Kaunas, Lithuania, 2023; p. 275. [Google Scholar]
- Kanapickas, A.; Vagusevičienė, I.; Sujetovienė, G. The effects of different sowing dates on the autumn development and yield of winter wheat in Central Lithuania. Atmosphere 2024, 15, 738. [Google Scholar] [CrossRef]
- Miller, G.A.; Rees, R.M.; Griffiths, B.S.; Ball, B.C.; Cloy, J.M. The sensitivity of soil organic carbon pools to land management varies depending on former tillage practices. Soil Tillage Res. 2019, 194, 104299. [Google Scholar] [CrossRef]
- Cesevičius, G.; Janušauskaitė, D. Dirvožemio mikrobiologinės ir fizikinės savybės įvairiose žemės dirbimo sistemose. Žemdirbystė 2006, 93, 18–34. [Google Scholar]
- Poorter, H.; Navas, M.L. Plant growth and competition at elevated CO2: On winners, losers and functional groups. New Phytol. 2003, 157, 175–198. [Google Scholar] [CrossRef]
- Jaleel, C.A.; Manivannan, P.; Sankar, B.; Kishorekumar, A.; Gopi, R. Water deficit stress mitigation by calcium chloride in Catharanthus roseus: Effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids Surf. B Biointerfaces 2007, 60, 110–116. [Google Scholar] [CrossRef]
Deep, cm | Cation Sorption Capacity, mekv kg−1 | PHKCl | Humus, % | Carbon Content, % | Nitrogen Content, % | C/N | P2O5, mg kg−1 | K2O, mg kg−1 | Sand (2.0–0.05), mm | Dust (0.05–0.002), mm | Mud < 0.002 mm |
---|---|---|---|---|---|---|---|---|---|---|---|
0–15 | 95.0 | 7.2 | 2.6 | 1.58 | 0.20 | 7.9 | 220.0 | 139.0 | 45.6 | 41.7 | 12.7 |
15–30 | 95.0 | 7.0 | 2.4 | 1.54 | 0.18 | 8.6 | 179.0 | 100.0 |
Operation | Year | ||
---|---|---|---|
2022 | 2023 | 2024 | |
Cultivated 1st time | 13/04/2022 | 07/04/2023 | 07/04/2024 |
Cultivated 2nd time | 18/04/2022 | 14/04/2023 | 10/04/2024 |
Sprayed with “Glyphogan” 360 SL 3 l ha−1 5 var. (no-tillage) | 19/04/2022 | 11/04/2023 | 10/04/2024 |
Sown spring barley ‘Crescendo’, seed rate 180 kg ha−1, sowing depth 3 cm | 21/04/2022 | 19/04/2023 | 11/04/2024 |
Fertilized with N16P16K16 300 kg ha−1 | 21/04/2022 | 18/04/2023 | 11/04/2024 |
Fertilized with N34.4 125 kg ha−1 ammonium nitrate | 15/05/2022 | 01/06/2023 | 03/05/2024 |
Sprayed with “Elegant® 2FD” 0.4 l ha−1 | 10/05/2022 | 11/05/2023 | 17/05/2024 |
Sprayed with “MCPA 750” 1.0 l ha−1 (in combination with an undersown) | 10/05/2022 | 22/05/2023 | 17/05/2024 |
Sprayed with “Mirador 250 SC” 0.8 l ha−1 | - | 14/06/2023 | 29/05/2024 |
Spring barley harvested | 04/08/2022 | 10/08/2023 | 10/08/2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinkevičienė, A.; Romaneckas, K.; Meškinytė, E.; Kimbirauskienė, R. The Effect of Different Tillage Methods on Spring Barley Productivity and Grain Quality Indicators. Agronomy 2025, 15, 1823. https://doi.org/10.3390/agronomy15081823
Sinkevičienė A, Romaneckas K, Meškinytė E, Kimbirauskienė R. The Effect of Different Tillage Methods on Spring Barley Productivity and Grain Quality Indicators. Agronomy. 2025; 15(8):1823. https://doi.org/10.3390/agronomy15081823
Chicago/Turabian StyleSinkevičienė, Aušra, Kęstutis Romaneckas, Edita Meškinytė, and Rasa Kimbirauskienė. 2025. "The Effect of Different Tillage Methods on Spring Barley Productivity and Grain Quality Indicators" Agronomy 15, no. 8: 1823. https://doi.org/10.3390/agronomy15081823
APA StyleSinkevičienė, A., Romaneckas, K., Meškinytė, E., & Kimbirauskienė, R. (2025). The Effect of Different Tillage Methods on Spring Barley Productivity and Grain Quality Indicators. Agronomy, 15(8), 1823. https://doi.org/10.3390/agronomy15081823