Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,403)

Search Parameters:
Keywords = agricultural product consumers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 718 KiB  
Review
State of the Art on the Interaction of Entomopathogenic Nematodes and Plant Growth-Promoting Rhizobacteria to Innovate a Sustainable Plant Health Product
by Islam Ahmed Abdelalim Darwish, Daniel P. Martins, David Ryan and Thomais Kakouli-Duarte
Crops 2025, 5(4), 52; https://doi.org/10.3390/crops5040052 - 6 Aug 2025
Abstract
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground [...] Read more.
Insect pests cause severe damage and yield losses to many agricultural crops globally. The use of chemical pesticides on agricultural crops is not recommended because of their toxic effects on the environment and consumers. In addition, pesticide toxicity reduces soil fertility, poisons ground waters, and is hazardous to soil biota. Therefore, applications of entomopathogenic nematodes (EPNs) and plant growth-promoting rhizobacteria (PGPR) are an alternative, eco-friendly solution to chemical pesticides and mineral-based fertilizers to enhance plant health and promote sustainable food security. This review focuses on the biological and ecological aspects of these organisms while also highlighting the practical application of molecular communication approaches in developing a novel plant health product. This insight will support this innovative approach that combines PGPR and EPNs for sustainable crop production. Several studies have reported positive interactions between nematodes and bacteria. Although the combined presence of both organisms has been shown to promote plant growth, the molecular interactions between them are still under investigation. Integrating molecular communication studies in the development of a new product could help in understanding their relationships and, in turn, support the combination of these organisms into a single plant health product. Full article
13 pages, 988 KiB  
Article
Assessing the Applicability of a Partial Alcohol Reduction Method to the Fine Wine Analytical Composition of Pinot Gris
by Diána Ágnes Nyitrainé Sárdy, Péter Bodor-Pesti and Szabina Steckl
Foods 2025, 14(15), 2738; https://doi.org/10.3390/foods14152738 - 5 Aug 2025
Abstract
Climate change has a significant negative impact on agriculture and food production. This trend requires technological development and the adaptation of new technologies in both the grapevine production and winemaking sectors. High temperatures and heat accumulation during the growing season result in faster [...] Read more.
Climate change has a significant negative impact on agriculture and food production. This trend requires technological development and the adaptation of new technologies in both the grapevine production and winemaking sectors. High temperatures and heat accumulation during the growing season result in faster ripening and a higher sugar content, leading to a higher alcohol content during fermentation. The negative consequences are an imbalanced wine character and consumer reluctance, as lower alcoholic beverages are now in high demand. Over the last decade, several methods have been developed to handle this impact and reduce the alcohol content of wines. In this study, we used the MASTERMIND® REMOVE membrane-based dealcoholization system to reduce the alcohol concentration in of Pinot gris wines from 12.02% v/v to 10.69% v/v and to investigate the effect on analytical parameters in three steps (0.5%, 1%, and 1.5% reductions) along the treatment. To evaluate the impact of the partial alcohol reduction and identify correlations between the wine chemical parameters, data were analyzed with ANOVA, PCA, multivariate linear regression and cluster analysis. The results showed that except for the extract, sugar content and proline content, the treatment had a significant effect on the chemical parameters. Both free and total SO2 levels were significantly reduced as well as volatile acid, glycerol and succinic acid levels. It must be highlighted that some parameters were not differing significantly between the untreated and the final wine, while the change was statistically verified in the intermediate steps of the partial alcohol reduction. This was the case for example for n-Propanol, i-Amylalcohol, Acetaldehyde, and Ethyl acetate. The multivariate linear regression model explained 18.84% of the total variance, indicating a modest but meaningful relationship between the alcohol content and the investigated analytical parameters. Our results showed that even if the applied instrument significantly modified some of the wine chemical parameters, those changes would not influence significantly the wine sensory attributes. Full article
(This article belongs to the Special Issue Winemaking: Innovative Technology and Sensory Analysis)
Show Figures

Figure 1

12 pages, 562 KiB  
Review
Potential of the Use of Biostimulants in Lettuce Production
by Talys Moratti Lemos de Oliveira, Janyne Soares Braga Pires, Vinicius de Souza Oliveira, Ana Júlia Câmara Jeveaux Machado, Adriano Alves Fernandes, Lúcio de Oliveira Arantes and Sara Dousseau-Arantes
Plants 2025, 14(15), 2416; https://doi.org/10.3390/plants14152416 - 4 Aug 2025
Viewed by 161
Abstract
Lettuce (Lactuca sativa L.) is one of the main leafy vegetables in the world, being present in several countries. Due to its composition, which includes a substance with antioxidant action and beneficial effects on health, it is consumed constantly. However, due to [...] Read more.
Lettuce (Lactuca sativa L.) is one of the main leafy vegetables in the world, being present in several countries. Due to its composition, which includes a substance with antioxidant action and beneficial effects on health, it is consumed constantly. However, due to ongoing climate change that has had global effects, the crop has been suffering a reduction in productivity and quality. Thus, technologies aiming to mitigate the effects of climate extremes have been developed. In lettuce production, biostimulants make it possible to improve the growth and sustainable development of plants. This is due to their ability to activate physiological and biochemical processes in plants, resulting in an increase in the production of bioactive compounds such as vitamins, amino acids, and antioxidants. In addition, biostimulants contribute to improving the nutritional quality of lettuces, making them more resistant and adapted to different environmental conditions, resulting in a more sustainable development for the crop. This review aims to compile and discuss the available scientific evidence on the use of biostimulants in lettuce cultivation, addressing their mechanisms of action, the types of substances used, the results obtained in different cultivation systems, and their potential to promote more efficient and adaptable agriculture in the face of environmental changes. Full article
(This article belongs to the Special Issue Advances in Biostimulant Use on Horticultural Crops)
Show Figures

Figure 1

20 pages, 4467 KiB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 - 3 Aug 2025
Viewed by 106
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

30 pages, 1511 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 - 3 Aug 2025
Viewed by 244
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
Show Figures

Figure 1

14 pages, 2070 KiB  
Article
Carcass and Meat Quality Characteristics and Changes of Lean and Fat Pigs After the Growth Turning Point
by Tianci Liao, Mailin Gan, Yan Zhu, Yuhang Lei, Yiting Yang, Qianli Zheng, Lili Niu, Ye Zhao, Lei Chen, Yuanyuan Wu, Lixin Zhou, Jia Xue, Xiaofeng Zhou, Yan Wang, Linyuan Shen and Li Zhu
Foods 2025, 14(15), 2719; https://doi.org/10.3390/foods14152719 - 3 Aug 2025
Viewed by 322
Abstract
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire [...] Read more.
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire pig (YP) and the fatty-type Qingyu pig (QYP)—with the aim of elucidating breed-specific characteristics that influence pork quality and yield. Comprehensive evaluations of carcass traits, meat quality attributes, nutritional composition, and gene expression profiles were conducted. After the growth inflection point, carcass traits exhibited greater variability than meat quality traits in both breeds, though with distinct patterns. YPs displayed superior muscle development, with the longissimus muscle area (LMA) increasing rapidly before plateauing at ~130 kg, whereas QYPs maintained more gradual but sustained muscle growth. In contrast, intramuscular fat (IMF)—a key determinant of meat flavor and texture—accumulated faster in YPs post inflection but plateaued earlier in QYPs. Correlation and clustering analyses revealed more synchronized regulation of meat quality traits in QYPs, while YPs showed greater trait variability. Gene expression patterns aligned with these phenotypic trends, highlighting distinct regulatory mechanisms for muscle and fat development in each breed. In addition, based on the growth curves, we calculated the peak age at which the growth rate declined in lean-type and fat-type pigs, which was approximately 200 days for YPs and around 270 days for QYPs. This suggests that these ages may represent the optimal slaughter times for the respective breeds, balancing both economic efficiency and meat quality. These findings provide valuable insights for enhancing pork quality through precision management and offer theoretical guidance for developing breed-specific feeding strategies, slaughter timing, and value-added pork production tailored to consumer preferences in the modern food market. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

27 pages, 4190 KiB  
Article
Dairy’s Development and Socio-Economic Transformation: A Cross-Country Analysis
by Ana Felis, Ugo Pica-Ciamarra and Ernesto Reyes
World 2025, 6(3), 105; https://doi.org/10.3390/world6030105 - 1 Aug 2025
Viewed by 184
Abstract
Global policy narratives on livestock development increasingly emphasize environmental concerns, often overlooking the social dimensions of the sector. In the case of dairy, the world’s most valuable agricultural commodity, its role in social and economic development remains poorly quantified. Our study contributes to [...] Read more.
Global policy narratives on livestock development increasingly emphasize environmental concerns, often overlooking the social dimensions of the sector. In the case of dairy, the world’s most valuable agricultural commodity, its role in social and economic development remains poorly quantified. Our study contributes to a more balanced vision of the UN SDGs thanks to the inclusion of a socio-economic dimension. Here we present a novel empirical approach to assess the socio-economic impacts of dairy development using a new global dataset and non-parametric modelling techniques (local polynomial regressions), with yield as a proxy for sectoral performance. We find that as dairy systems intensify, the number of farm households engaged in production declines, yet household incomes rise. On-farm labour productivity also increases, accompanied by a reduction in employment but higher wages. In dairy processing, employment initially grows, peaks, and then contracts, again with rising wages. The most substantial impact is observed among consumers: an increased milk supply leads to lower prices and improved affordability, expanding the access to dairy products. Additionally, dairy development is associated with greater agricultural value added, an expanding tax base, and the increased formalization of the economy. These findings suggest that dairy development, beyond its environmental footprint, plays a significant and largely positive role in social transformation, yet is having to adapt sustainably while tackling labour force relocation, and that dairy development’s social impacts mimic the general agricultural sector. These results might be of interest for the assessment of policies regarding dairy development. Full article
Show Figures

Graphical abstract

20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 198
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

24 pages, 4199 KiB  
Article
Hazelnut Kernel Percentage Calculation System with DCIoU and Neighborhood Relationship Algorithm
by Sultan Murat Yılmaz, Serap Çakar Kaman and Erkan Güler
Processes 2025, 13(8), 2414; https://doi.org/10.3390/pr13082414 - 30 Jul 2025
Viewed by 383
Abstract
Hazelnut (Corylus avellana L.) is a significant global agricultural product due to its high economic and nutritional worth. The traditional methods used to measure the hazelnut kernel percentage for quality assessment are often time-consuming, expensive, and prone to human errors. Inaccurate measurements [...] Read more.
Hazelnut (Corylus avellana L.) is a significant global agricultural product due to its high economic and nutritional worth. The traditional methods used to measure the hazelnut kernel percentage for quality assessment are often time-consuming, expensive, and prone to human errors. Inaccurate measurements can adversely impact the market value, shelf life, and industrial applications of hazelnuts. This research introduces a novel system for calculating hazelnut kernel percentage utilizing a non-destructive X-ray imaging technique along with deep learning methods to assess hazelnut quality more efficiently and reliably. An image dataset of hazelnut kernels has been developed using X-ray technology, and defective areas are identified employing YOLOv7 architecture. Additionally, a novel bounding box regression technique called DCIoU and an algorithm for Neighborhood Relationship have been introduced to enhance object detection capabilities and to improve the selection of the target box with greater precision, respectively. The performance of these proposed methods has been evaluated using both the created hazelnut dataset and the COCO-128 dataset. The results indicate that the system can serve as a valuable tool for measuring hazelnut kernel percentages by accurately identifying defects in hazelnuts. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

31 pages, 4963 KiB  
Article
Individual Action or Collaborative Scientific Research Institutions? Agricultural Support from Enterprises from the Perspective of Subsidies
by Ziyi Zhang, Yantong Zhong, Guitao Zhang, Tianyu Zhai, Zongru Li and Shuaicheng Lin
Sustainability 2025, 17(15), 6873; https://doi.org/10.3390/su17156873 - 29 Jul 2025
Viewed by 206
Abstract
Under China’s “Rural Revitalisation” strategy, contract farming faces challenges including farmers’ limited access to advanced technologies and high operational risks for agricultural support enterprises. The collaborative involvement of scientific research institutions offers potential solutions but remains underexplored. This study employs Stackelberg game theory [...] Read more.
Under China’s “Rural Revitalisation” strategy, contract farming faces challenges including farmers’ limited access to advanced technologies and high operational risks for agricultural support enterprises. The collaborative involvement of scientific research institutions offers potential solutions but remains underexplored. This study employs Stackelberg game theory to model a contract farming supply chain under two agricultural assistance modes: enterprise-led (EL) and collaborative assistance with scientific research institutions (CI). We further propose two government subsidy mechanisms: subsidies to enterprises and subsidies to scientific research institutions. The models analyze optimal decisions, supply chain performance, and subsidy efficiency, validated through numerical experiments. Key findings reveal the following: (1) The CI mode enhances agricultural output and farmer revenue but may reduce enterprise profits, deterring collaboration. (2) Government subsidies incentivize enterprise–institution collaboration. Subsidizing scientific research institutions typically improves agricultural productivity and economic benefits more effectively than subsidizing enterprises. (3) Synergistic effects exist among the government subsidy coefficient, cost coefficient of technical assistance, consumer preferences for agricultural quality, and profit-sharing ratio. The latter three parameters significantly influence subsidy model selection. This research provides policy insights for enhancing agricultural assistance efficiency and sustainable contract farming development. Full article
Show Figures

Figure 1

18 pages, 2105 KiB  
Communication
Morphological and Nutritional Characterization of the Native Sunflower as a Potential Plant Resource for the Sierra Gorda of Querétaro
by Ana Patricia Arenas-Salazar, Mark Schoor, María Isabel Nieto-Ramírez, Juan Fernando García-Trejo, Irineo Torres-Pacheco, Ramon Gerardo Guevara-González, Humberto Aguirre-Becerra and Ana Angélica Feregrino-Pérez
Resources 2025, 14(8), 121; https://doi.org/10.3390/resources14080121 - 29 Jul 2025
Viewed by 413
Abstract
Problems with primary food production (food insecurity, malnutrition, and socioeconomic problems) persist throughout the world, especially in rural areas. Despite these problems, the available natural food resources are underutilized; residents are no longer interested in growing and consuming foods native to their region. [...] Read more.
Problems with primary food production (food insecurity, malnutrition, and socioeconomic problems) persist throughout the world, especially in rural areas. Despite these problems, the available natural food resources are underutilized; residents are no longer interested in growing and consuming foods native to their region. In this regard, this study carries out the morphological and nutritional characterization of a native sunflower (Helianthus annuus) grown in the Sierra Gorda, Querétaro, Mexico, known as “Maíz de teja”, to implement a sustainable monoculture production system. The results were compared with some other sunflower varieties and other oilseeds grown and consumed in the country. This study determined that this native sunflower seed is a good source of linoleic acid (84.98%) and zinc (17.2 mg/100 g). It is an alternative protein source (18.6 g/100 g), comparable to foods of animal origin. It also provides a good amount of fiber (22.6 g/100 g) and bioactive compounds (total phenolic compounds (TPC) 3.434 ± 0.03 mg/g and total flavonoids (TFC) 0.67 ± 0.02 mg/g), and seed yield 341.13 kg/ha. This study demonstrated a valuable nutritional profile of this native seed and its potential for cultivation. Further research is needed to improve agricultural management to contribute to food security and improve the socioeconomic status of the community. Full article
Show Figures

Figure 1

22 pages, 963 KiB  
Article
The Impact of E-Commerce Live Streaming on Purchase Intention for Sustainable Green Agricultural Products: A Study in the Context of Agricultural Tourism Integration
by Wenkui Jin and Wenying Zhang
Sustainability 2025, 17(15), 6850; https://doi.org/10.3390/su17156850 - 28 Jul 2025
Viewed by 357
Abstract
Growing awareness of sustainable development and green consumer concerns is driving the market expansion for green agriculture products. E-commerce live streaming gives rural enterprises a new channel through scenario-building and interaction, while agro-tourism integration combines resources to generate a variety of promotion scenarios. [...] Read more.
Growing awareness of sustainable development and green consumer concerns is driving the market expansion for green agriculture products. E-commerce live streaming gives rural enterprises a new channel through scenario-building and interaction, while agro-tourism integration combines resources to generate a variety of promotion scenarios. This study examines the effects of external stimuli, including social networks, resource endowment, infrastructure, and the characteristics of e-commerce streamers, on the perception, trust, perceived value, and purchase intention of green consumption. It is based on the SOR (Stimulus–Organism–Response) theoretical model and focuses on e-commerce live streaming in the agriculture-tourism integration scenario. According to a structural equation modeling (SEM) analysis of 350 consumer questionnaires, these external stimuli primarily influence purchase intention through perceived value, trust, and green consumption cognition, with resource endowment having the most significant impact. The effects of infrastructure on perceived value and streamer attractiveness on green consumption cognition are not statistically significant. This research not only broadens the use of the SOR model in the emerging field of agritourism integration but also offers rural businesses theoretical backing and useful guidance to maximize e-commerce live marketing and enhance agritourism integration. Full article
Show Figures

Figure 1

19 pages, 966 KiB  
Article
Agricultural and Food Product Assessment—Methodological Choices in Sustainability Reporting Using the LCA Method
by Tinkara Ošlovnik and Matjaž Denac
Sustainability 2025, 17(15), 6837; https://doi.org/10.3390/su17156837 - 28 Jul 2025
Viewed by 323
Abstract
Consumers are increasingly exposed to environmental claims on food products. These claims often lack scientific validation and there are different methodologies that can be used for grounding these claims, which can lead to misleading results. The European Union’s (EU) Environmental Footprint methodology excludes [...] Read more.
Consumers are increasingly exposed to environmental claims on food products. These claims often lack scientific validation and there are different methodologies that can be used for grounding these claims, which can lead to misleading results. The European Union’s (EU) Environmental Footprint methodology excludes the aggregation of environmental impacts, including damage to human health. This fact reduces transparency and limits the consumers’ ability to make information-based sustainable choices. This study aims to address this issue by calculating aggregated impacts on human health via life cycle assessment (LCA) in the agriculture and food-production sectors. In the study the IMPACT World+ method was used, including trustworthy databases and proper functional unit definition. The assessment encompassed three types of vegetables, four types of fruit, and four types of ready meals. The study also attempts to assess the impact of different farming systems (organic and conventional) on human health. Two standardised functional units, i.e., the unit based on product weight and product energy value were considered for each group of products. Our findings showed significant differences in results when different functional units were used. Additionally, no conclusion could be drawn regarding which farming system is more sustainable. Therefore, it is essential that the regulator clearly defines the criteria for selecting the appropriate functional unit in LCA within the agriculture and food-production sectors. In the absence of these criteria, results should be presented for all alternatives. Although not required by EU regulation, the authors suggest that companies should nevertheless disclose information regarding the environmental impact of agriculture and food production on human health, as this is important for consumers. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

15 pages, 1843 KiB  
Article
Multidimensional Evaluation of Local Rye Bread Fortified with Whey as a Model for Food Waste Valorization: From Recipe Development to Consumer Acceptance
by Márcio Moura-Alves, João Mota, Diogo Lameirão, Ana Francisca Teixeira, Cristina Saraiva, María Ángeles Romero-Rodríguez, Alice Vilela and Carla Gonçalves
Sustainability 2025, 17(15), 6710; https://doi.org/10.3390/su17156710 - 23 Jul 2025
Viewed by 317
Abstract
The growing demand for functional and sustainable foods has driven food innovation, enhancing its nutritional value. This study aimed to develop a nutritious bread using local rye from the Trás-os-Montes region of Portugal and incorporating whey, a by-product of the dairy industry, as [...] Read more.
The growing demand for functional and sustainable foods has driven food innovation, enhancing its nutritional value. This study aimed to develop a nutritious bread using local rye from the Trás-os-Montes region of Portugal and incorporating whey, a by-product of the dairy industry, as a replacement for water. Three bread formulations were tested: a traditional recipe with 37.5% rye flour and water (Control—CTR); the same recipe using whey instead of water (Rye Whey—RW); and a formulation with 100% local rye and whey replacing water (Full Rye Whey—FRW). Nutritional composition was assessed, including moisture, ash, protein, dietary fiber, sodium, potassium, lipids, and carbohydrates. Sensory analysis included both quantitative descriptive analysis and consumer acceptance testing. Microbiological quality was also evaluated. Whey-containing samples showed lower moisture and increased levels of ash, lipids, carbohydrates, and potassium. RW had the highest protein content (6.54 ± 0.28 g/100 g, p < 0.05), while FRW exhibited the highest dietary fiber (6.96 ± 0.15 g/100 g, p < 0.05). RW demonstrated a balanced nutritional and sensory profile, with high consumer acceptance. Overall, the combination of local rye and whey presents a promising strategy for producing nutritious bread while valorizing local agricultural resources and dairy by-products. These findings support sustainable food production practices and contribute to circular economy approaches. Full article
Show Figures

Figure 1

19 pages, 642 KiB  
Article
A Quantitative Study on the Interactive Changes Between China’s Final Demand Structure and Forestry Industry Production Structure
by Wenting Jia, Fuliang Cao and Xiaofeng Jia
Forests 2025, 16(8), 1212; https://doi.org/10.3390/f16081212 - 23 Jul 2025
Viewed by 189
Abstract
The effects of changes in China’s final demand structure on its forestry sector and associated supply chains have not been thoroughly examined. This study aims to provide a detailed analysis of the quantitative relationships and underlying mechanisms between these interactive changes. Using China’s [...] Read more.
The effects of changes in China’s final demand structure on its forestry sector and associated supply chains have not been thoroughly examined. This study aims to provide a detailed analysis of the quantitative relationships and underlying mechanisms between these interactive changes. Using China’s 153-sector input–output tables from the National Bureau of Statistics and applying a Leontief-based input–output model, we conducted scenario simulations through three distinct schemes, generating both quantitative and qualitative results. Our findings indicate that (1) For China’s forestry sector and its entire value chain to thrive, policymakers should boost consumer demand. This can better stimulate the development of forestry and the “agriculture-forestry-animal husbandry-fishery services” sector and related service industries; (2) Increased investment demand effectively stimulates the development of tertiary industries and secondary industries within the forestry supply chain and boosts the demand and production of intermediate products; (3) Changes in net exports have a significant impact on forestry and the forestry industry chain. To reduce dependence on foreign timber resources, China should strategically expand commercial plantation development; (4) Regarding intermediate product production, investment has a more pronounced effect on increasing total volume compared to consumption. Additionally, the Sino–US tariff disputes negatively impact the forestry industries of both countries. China needs to accelerate import substitution strategies for timber products, adjust international trade markets, and expand domestic consumption and investment to ensure the healthy and stable development of its forestry sector. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Back to TopTop