Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,007)

Search Parameters:
Keywords = agricultural mapping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8148 KiB  
Article
Inland Flood Analysis in Irrigated Agricultural Fields Including Drainage Systems and Pump Stations
by Inhyeok Song, Heesung Lim and Hyunuk An
Water 2025, 17(15), 2299; https://doi.org/10.3390/w17152299 (registering DOI) - 2 Aug 2025
Abstract
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial [...] Read more.
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial drainage systems. A case study was conducted in a rural area near the Sindae drainage station in Cheongju, South Korea, using rainfall data from an extreme weather event in 2017. The models simulated inland flooding and were validated against flood trace maps provided by the Ministry of the Interior and Safety (MOIS). Receiver Operating Characteristic (ROC) analysis showed a true positive rate of 0.565, a false positive rate of 0.21, and an overall accuracy of 0.731, indicating reasonable agreement with observed inundation. Scenario analyses were also conducted to assess the effectiveness of three improvement strategies: reducing the Manning coefficient, increasing pump station capacity, and widening drainage channels. Among them, increasing pump capacity most effectively reduced flood volume, while channel widening had the greatest impact on reducing flood extent. These findings demonstrate the potential of urban flood models for application in agricultural contexts and support data-driven planning for rural flood mitigation. Full article
22 pages, 4300 KiB  
Article
Optimised DNN-Based Agricultural Land Cover Mapping Using Sentinel-2 and Landsat-8 with Google Earth Engine
by Nisha Sharma, Sartajvir Singh and Kawaljit Kaur
Land 2025, 14(8), 1578; https://doi.org/10.3390/land14081578 (registering DOI) - 1 Aug 2025
Abstract
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of [...] Read more.
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of agricultural lands through thematic mapping, which is critical for crop monitoring, land management, and sustainable development. Here, a Hyper-tuned Deep Neural Network (Hy-DNN) model was created and used for land use and land cover (LULC) classification into four classes: agricultural land, vegetation, water bodies, and built-up areas. The technique made use of multispectral data from Sentinel-2 and Landsat-8, processed on the Google Earth Engine (GEE) platform. To measure classification performance, Hy-DNN was contrasted with traditional classifiers—Convolutional Neural Network (CNN), Random Forest (RF), Classification and Regression Tree (CART), Minimum Distance Classifier (MDC), and Naive Bayes (NB)—using performance metrics including producer’s and consumer’s accuracy, Kappa coefficient, and overall accuracy. Hy-DNN performed the best, with overall accuracy being 97.60% using Sentinel-2 and 91.10% using Landsat-8, outperforming all base models. These results further highlight the superiority of the optimised Hy-DNN in agricultural land mapping and its potential use in crop health monitoring, disease diagnosis, and strategic agricultural planning. Full article
Show Figures

Figure 1

27 pages, 6085 KiB  
Article
Assessing Model Trade-Offs in Agricultural Remote Sensing: A Review of Machine Learning and Deep Learning Approaches Using Almond Crop Mapping
by Mashoukur Rahaman, Jane Southworth, Yixin Wen and David Keellings
Remote Sens. 2025, 17(15), 2670; https://doi.org/10.3390/rs17152670 (registering DOI) - 1 Aug 2025
Abstract
This study presents a comprehensive review and comparative analysis of traditional machine learning (ML) and deep learning (DL) models for land cover classification in agricultural remote sensing. We evaluate the reported successes, trade-offs, and performance metrics of ML and DL models across diverse [...] Read more.
This study presents a comprehensive review and comparative analysis of traditional machine learning (ML) and deep learning (DL) models for land cover classification in agricultural remote sensing. We evaluate the reported successes, trade-offs, and performance metrics of ML and DL models across diverse agricultural contexts. Building on this foundation, we apply both model types to the specific case of almond crop field identification in California’s Central Valley using Landsat data. DL models, including U-Net, MANet, and DeepLabv3+, achieve high accuracy rates of 97.3% to 97.5%, yet our findings demonstrate that conventional ML models—such as Decision Tree, K-Nearest Neighbor, and Random Forest—can reach comparable accuracies of 96.6% to 96.8%. Importantly, the ML models were developed using data from a single year, while DL models required extensive training data spanning 2008 to 2022. Our results highlight that traditional ML models offer robust classification performance with substantially lower computational demands, making them especially valuable in resource-constrained settings. This paper underscores the need for a balanced approach in model selection—one that weighs accuracy alongside efficiency. The findings contribute actionable insights for agricultural land cover mapping and inform ongoing model development in the geospatial sciences. Full article
32 pages, 9914 KiB  
Review
Technology Advancements and the Needs of Farmers: Mapping Gaps and Opportunities in Row Crop Farming
by Rana Umair Hameed, Conor Meade and Gerard Lacey
Agriculture 2025, 15(15), 1664; https://doi.org/10.3390/agriculture15151664 (registering DOI) - 1 Aug 2025
Abstract
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the [...] Read more.
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the robotic systems used in row crop farming. We review current commercial agricultural robots and research, and map these to the needs of farmers, as expressed in the literature, to identify the key issues holding back large-scale adoption. From initial pool of 184 research articles, 19 survey articles, and 82 commercial robotic solutions, we selected 38 peer-reviewed academic studies, 12 survey articles, and 18 commercially available robots for in-depth review and analysis for this study. We identify the key challenges faced by farmers and map them directly to the current and emerging capabilities of agricultural robots. We supplement the data gathered from the literature review of surveys and case studies with in-depth interviews with nine farmers to obtain deeper insights into the needs and day-to-day operations. Farmers reported mixed reactions to current technologies, acknowledging efficiency improvements but highlighting barriers such as capital costs, technical complexity, and inadequate support systems. There is a notable demand for technologies for improved plant health monitoring, soil condition assessment, and enhanced climate resilience. We then review state-of-the-art robotic solutions for row crop farming and map these technological capabilities to the farmers’ needs. Only technologies with field validation or operational deployment are included, to ensure practical relevance. These mappings generate insights that underscore the need for lightweight and modular robot technologies that can be adapted to diverse farming practices, as well as the need for farmers’ education and simpler interfaces to robotic operations and data analysis that are actionable for farmers. We conclude with recommendations for future research, emphasizing the importance of co-creation with the farming community to ensure the adoption and sustained use of agricultural robotic solutions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

24 pages, 10190 KiB  
Article
MSMT-RTDETR: A Multi-Scale Model for Detecting Maize Tassels in UAV Images with Complex Field Backgrounds
by Zhenbin Zhu, Zhankai Gao, Jiajun Zhuang, Dongchen Huang, Guogang Huang, Hansheng Wang, Jiawei Pei, Jingjing Zheng and Changyu Liu
Agriculture 2025, 15(15), 1653; https://doi.org/10.3390/agriculture15151653 - 31 Jul 2025
Abstract
Accurate detection of maize tassels plays a crucial role in yield estimation of maize in precision agriculture. Recently, UAV and deep learning technologies have been widely introduced in various applications of field monitoring. However, complex field backgrounds pose multiple challenges against the precision [...] Read more.
Accurate detection of maize tassels plays a crucial role in yield estimation of maize in precision agriculture. Recently, UAV and deep learning technologies have been widely introduced in various applications of field monitoring. However, complex field backgrounds pose multiple challenges against the precision detection of maize tassels, including maize tassel multi-scale variations caused by varietal differences and growth stage variations, intra-class occlusion, and background interference. To achieve accurate maize tassel detection in UAV images under complex field backgrounds, this study proposes an MSMT-RTDETR detection model. The Faster-RPE Block is first designed to enhance multi-scale feature extraction while reducing model Params and FLOPs. To improve detection performance for multi-scale targets in complex field backgrounds, a Dynamic Cross-Scale Feature Fusion Module (Dy-CCFM) is constructed by upgrading the CCFM through dynamic sampling strategies and multi-branch architecture. Furthermore, the MPCC3 module is built via re-parameterization methods, and further strengthens cross-channel information extraction capability and model stability to deal with intra-class occlusion. Experimental results on the MTDC-UAV dataset demonstrate that the MSMT-RTDETR significantly outperforms the baseline in detecting maize tassels under complex field backgrounds, where a precision of 84.2% was achieved. Compared with Deformable DETR and YOLOv10m, improvements of 2.8% and 2.0% were achieved, respectively, in the mAP50 for UAV images. This study proposes an innovative solution for accurate maize tassel detection, establishing a reliable technical foundation for maize yield estimation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

17 pages, 6625 KiB  
Article
Management Zones for Irrigated and Rainfed Grain Crops Based on Data Layer Integration
by Luiz Gustavo de Góes Sterle and José Paulo Molin
Agronomy 2025, 15(8), 1864; https://doi.org/10.3390/agronomy15081864 - 31 Jul 2025
Abstract
This study investigates the delineation of management zones (MZs) to support site-specific crop management by simplifying within-field variability in irrigated (54.6 ha) and rainfed (7.9 ha) sorghum and soybean fields in Brazil. Historical yield, apparent soil electrical conductivity (ECa) at 0.75 m and [...] Read more.
This study investigates the delineation of management zones (MZs) to support site-specific crop management by simplifying within-field variability in irrigated (54.6 ha) and rainfed (7.9 ha) sorghum and soybean fields in Brazil. Historical yield, apparent soil electrical conductivity (ECa) at 0.75 m and 1.50 m, and terrain data were analyzed using multivariate statistics to define MZs. Two clustering methods—fuzzy c-means (FCM) and hierarchical clustering—were compared for variance reduction effectiveness. Rainfed areas showed greater spatial variability (yield CV 9–12%; ECa CV 20–27%) than irrigated fields (yield CV < 7%; ECa CV ~5%). Principal component analysis (PCA) identified subsoil ECa and elevation as key variables in irrigated fields, while surface ECa and topography influenced rainfed variability. FCM produced more homogeneous zones with fewer classes, especially in irrigated fields, whereas hierarchical clustering better detected outliers but required more zones for similar variance reduction. Yield correlated strongly with slope and moisture in rainfed systems. These results emphasize aligning MZ delineation with production system characteristics—enabling variable rate irrigation in irrigated fields and promoting moisture conservation in rainfed systems. FCM is recommended for operational efficiency, while hierarchical clustering offers higher precision in complex contexts. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

21 pages, 4657 KiB  
Article
A Semi-Automated RGB-Based Method for Wildlife Crop Damage Detection Using QGIS-Integrated UAV Workflow
by Sebastian Banaszek and Michał Szota
Sensors 2025, 25(15), 4734; https://doi.org/10.3390/s25154734 (registering DOI) - 31 Jul 2025
Abstract
Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). [...] Read more.
Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices—Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)—based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts—DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the “moderate” and “low” vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

23 pages, 7166 KiB  
Article
Deriving Early Citrus Fruit Yield Estimation by Combining Multiple Growing Period Data and Improved YOLOv8 Modeling
by Menglin Zhai, Juanli Jing, Shiqing Dou, Jiancheng Du, Rongbin Wang, Jichi Yan, Yaqin Song and Zhengmin Mei
Sensors 2025, 25(15), 4718; https://doi.org/10.3390/s25154718 (registering DOI) - 31 Jul 2025
Viewed by 45
Abstract
Early crop yield prediction is a major challenge in precision agriculture, and efficient and rapid yield prediction is highly important for sustainable fruit production. The accurate detection of major fruit characteristics, including flowering, green fruiting, and ripening stages, is crucial for early yield [...] Read more.
Early crop yield prediction is a major challenge in precision agriculture, and efficient and rapid yield prediction is highly important for sustainable fruit production. The accurate detection of major fruit characteristics, including flowering, green fruiting, and ripening stages, is crucial for early yield estimation. Currently, most crop yield estimation studies based on the YOLO model are only conducted during a single stage of maturity. Combining multi-growth period data for crop analysis is of great significance for crop growth detection and early yield estimation. In this study, a new network model, YOLOv8-RL, was proposed using citrus multigrowth period characteristics as a data source. A citrus yield estimation model was constructed and validated by combining network identification counts with manual field counts. Compared with YOLOv8, the number of parameters of the improved network is reduced by 50.7%, the number of floating-point operations is decreased by 49.4%, and the size of the model is only 3.2 MB. In the test set, the average recognition rate of citrus flowers, green fruits, and orange fruits was 95.6%, the mAP@.5 was 94.6%, the FPS value was 123.1, and the inference time was only 2.3 milliseconds. This provides a reference for the design of lightweight networks and offers the possibility of deployment on embedded devices with limited computational resources. The two estimation models constructed on the basis of the new network had coefficients of determination R2 values of 0.91992 and 0.95639, respectively, with a prediction error rate of 6.96% for citrus green fruits and an average error rate of 3.71% for orange fruits. Compared with network counting, the yield estimation model had a low error rate and high accuracy, which provided a theoretical basis and technical support for the early prediction of fruit yield in complex environments. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

21 pages, 1928 KiB  
Article
A CNN-Transformer Hybrid Framework for Multi-Label Predator–Prey Detection in Agricultural Fields
by Yifan Lyu, Feiyu Lu, Xuaner Wang, Yakui Wang, Zihuan Wang, Yawen Zhu, Zhewei Wang and Min Dong
Sensors 2025, 25(15), 4719; https://doi.org/10.3390/s25154719 (registering DOI) - 31 Jul 2025
Viewed by 56
Abstract
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning [...] Read more.
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning framework that integrates convolutional neural networks (CNNs) and Transformer architectures for multi-label recognition of predator–pest combinations. The model leverages a novel co-occurrence attention mechanism to capture semantic relationships between insect categories and employs a pairwise label matching loss to enhance ecological pairing accuracy. Evaluated on a field-constructed dataset of 5,037 images across eight categories, the model achieved an F1-score of 86.5%, mAP50 of 85.1%, and demonstrated strong generalization to unseen predator–pest pairs with an average F1-score of 79.6%. These results outperform several strong baselines, including ResNet-50, YOLOv8, and Vision Transformer. This work contributes a robust, interpretable approach for multi-object ecological detection and offers practical potential for deployment in smart farming systems, UAV-based monitoring, and precision pest management. Full article
(This article belongs to the Special Issue Sensor and AI Technologies in Intelligent Agriculture: 2nd Edition)
Show Figures

Figure 1

20 pages, 3518 KiB  
Article
YOLO-AWK: A Model for Injurious Bird Detection in Complex Farmland Environments
by Xiang Yang, Yongliang Cheng, Minggang Dong and Xiaolan Xie
Symmetry 2025, 17(8), 1210; https://doi.org/10.3390/sym17081210 - 30 Jul 2025
Viewed by 141
Abstract
Injurious birds pose a significant threat to food production and the agricultural economy. To address the challenges posed by their small size, irregular shape, and frequent occlusion in complex farmland environments, this paper proposes YOLO-AWK, an improved bird detection model based on YOLOv11n. [...] Read more.
Injurious birds pose a significant threat to food production and the agricultural economy. To address the challenges posed by their small size, irregular shape, and frequent occlusion in complex farmland environments, this paper proposes YOLO-AWK, an improved bird detection model based on YOLOv11n. Firstly, to improve the ability of the enhanced model to recognize bird targets in complex backgrounds, we introduce the in-scale feature interaction (AIFI) module to replace the original SPPF module. Secondly, to more accurately localize and identify bird targets of different shapes and sizes, we use WIoUv3 as a new loss function. Thirdly, to remove the noise interference and improve the extraction of bird residual features, we introduce the Kolmogorov–Arnold network (KAN) module. Finally, to improve the model’s detection accuracy for small bird targets, we add a small target detection head. The experimental results show that the detection performance of YOLO-AWK on the farmland bird dataset is significantly improved, and the final precision, recall, mAP@0.5, and mAP@0.5:0.95 reach 93.9%, 91.2%, 95.8%, and 75.3%, respectively, which outperforms the original model by 2.7, 2.3, 1.6, and 3.0 percentage points, respectively. These results demonstrate that the proposed method offers a reliable and efficient technical solution for farmland injurious bird monitoring. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Image Processing)
Show Figures

Figure 1

31 pages, 103100 KiB  
Article
Semantic Segmentation of Small Target Diseases on Tobacco Leaves
by Yanze Zou, Zhenping Qiang, Shuang Zhang and Hong Lin
Agronomy 2025, 15(8), 1825; https://doi.org/10.3390/agronomy15081825 - 28 Jul 2025
Viewed by 210
Abstract
The application of image recognition technology plays a vital role in agricultural disease identification. Existing approaches primarily rely on image classification, object detection, or semantic segmentation. However, a major challenge in current semantic segmentation methods lies in accurately identifying small target objects. In [...] Read more.
The application of image recognition technology plays a vital role in agricultural disease identification. Existing approaches primarily rely on image classification, object detection, or semantic segmentation. However, a major challenge in current semantic segmentation methods lies in accurately identifying small target objects. In this study, common tobacco leaf diseases—such as frog-eye disease, climate spots, and wildfire disease—are characterized by small lesion areas, with an average target size of only 32 pixels. This poses significant challenges for existing techniques to achieve precise segmentation. To address this issue, we propose integrating two attention mechanisms, namely cross-feature map attention and dual-branch attention, which are incorporated into the semantic segmentation network to enhance performance on small lesion segmentation. Moreover, considering the lack of publicly available datasets for tobacco leaf disease segmentation, we constructed a training dataset via image splicing. Extensive experiments were conducted on baseline segmentation models, including UNet, DeepLab, and HRNet. Experimental results demonstrate that the proposed method improves the mean Intersection over Union (mIoU) by 4.75% on the constructed dataset, with only a 15.07% increase in computational cost. These results validate the effectiveness of our novel attention-based strategy in the specific context of tobacco leaf disease segmentation. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

20 pages, 8154 KiB  
Article
Strategies for Soil Salinity Mapping Using Remote Sensing and Machine Learning in the Yellow River Delta
by Junyong Zhang, Xianghe Ge, Xuehui Hou, Lijing Han, Zhuoran Zhang, Wenjie Feng, Zihan Zhou and Xiubin Luo
Remote Sens. 2025, 17(15), 2619; https://doi.org/10.3390/rs17152619 - 28 Jul 2025
Viewed by 285
Abstract
In response to the global ecological and agricultural challenges posed by coastal saline-alkali areas, this study focuses on Dongying City as a representative region, aiming to develop a high-precision soil salinity prediction mapping method that integrates multi-source remote sensing data with machine learning [...] Read more.
In response to the global ecological and agricultural challenges posed by coastal saline-alkali areas, this study focuses on Dongying City as a representative region, aiming to develop a high-precision soil salinity prediction mapping method that integrates multi-source remote sensing data with machine learning techniques. Utilizing the SCORPAN model framework, we systematically combined diverse remote sensing datasets and innovatively established nine distinct strategies for soil salinity prediction. We employed four machine learning models—Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Geographical Gaussian Process Regression (GGPR) for modeling, prediction, and accuracy comparison, with the objective of achieving high-precision salinity mapping under complex vegetation cover conditions. The results reveal that among the models evaluated across the nine strategies, the SVR model demonstrated the highest accuracy, followed by RF. Notably, under Strategy IX, the SVR model achieved the best predictive performance, with a coefficient of determination (R2) of 0.62 and a root mean square error (RMSE) of 0.38 g/kg. Analysis based on SHapley Additive exPlanations (SHAP) values and feature importance indicated that Vegetation Type Factors contributed significantly and consistently to the model’s performance, maintaining higher importance than traditional salinity indices and playing a dominant role. In summary, this research successfully developed a comprehensive, high-resolution soil salinity mapping framework for the Dongying region by integrating multi-source remote sensing data and employing diverse predictive strategies alongside machine learning models. The findings highlight the potential of Vegetation Type Factors to enhance large-scale soil salinity monitoring, providing robust scientific evidence and technical support for sustainable land resource management, agricultural optimization, ecological protection, efficient water resource utilization, and policy formulation. Full article
Show Figures

Figure 1

24 pages, 14323 KiB  
Article
GTDR-YOLOv12: Optimizing YOLO for Efficient and Accurate Weed Detection in Agriculture
by Zhaofeng Yang, Zohaib Khan, Yue Shen and Hui Liu
Agronomy 2025, 15(8), 1824; https://doi.org/10.3390/agronomy15081824 - 28 Jul 2025
Viewed by 275
Abstract
Weed infestation contributes significantly to global agricultural yield loss and increases the reliance on herbicides, raising both economic and environmental concerns. Effective weed detection in agriculture requires high accuracy and architectural efficiency. This is particularly important under challenging field conditions, including densely clustered [...] Read more.
Weed infestation contributes significantly to global agricultural yield loss and increases the reliance on herbicides, raising both economic and environmental concerns. Effective weed detection in agriculture requires high accuracy and architectural efficiency. This is particularly important under challenging field conditions, including densely clustered targets, small weed instances, and low visual contrast between vegetation and soil. In this study, we propose GTDR-YOLOv12, an improved object detection framework based on YOLOv12, tailored for real-time weed identification in complex agricultural environments. The model is evaluated on the publicly available Weeds Detection dataset, which contains a wide range of weed species and challenging visual scenarios. To achieve better accuracy and efficiency, GTDR-YOLOv12 introduces several targeted structural enhancements. The backbone incorporates GDR-Conv, which integrates Ghost convolution and Dynamic ReLU (DyReLU) to improve early-stage feature representation while reducing redundancy. The GTDR-C3 module combines GDR-Conv with Task-Dependent Attention Mechanisms (TDAMs), allowing the network to adaptively refine spatial features critical for accurate weed identification and localization. In addition, the Lookahead optimizer is employed during training to improve convergence efficiency and reduce computational overhead, thereby contributing to the model’s lightweight design. GTDR-YOLOv12 outperforms several representative detectors, including YOLOv7, YOLOv9, YOLOv10, YOLOv11, YOLOv12, ATSS, RTMDet and Double-Head. Compared with YOLOv12, GTDR-YOLOv12 achieves notable improvements across multiple evaluation metrics. Precision increases from 85.0% to 88.0%, recall from 79.7% to 83.9%, and F1-score from 82.3% to 85.9%. In terms of detection accuracy, mAP:0.5 improves from 87.0% to 90.0%, while mAP:0.5:0.95 rises from 58.0% to 63.8%. Furthermore, the model reduces computational complexity. GFLOPs drop from 5.8 to 4.8, and the number of parameters is reduced from 2.51 M to 2.23 M. These reductions reflect a more efficient network design that not only lowers model complexity but also enhances detection performance. With a throughput of 58 FPS on the NVIDIA Jetson AGX Xavier, GTDR-YOLOv12 proves both resource-efficient and deployable for practical, real-time weeding tasks in agricultural settings. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

19 pages, 6372 KiB  
Article
Detecting Planting Holes Using Improved YOLO-PH Algorithm with UAV Images
by Kaiyuan Long, Shibo Li, Jiangping Long, Hui Lin and Yang Yin
Remote Sens. 2025, 17(15), 2614; https://doi.org/10.3390/rs17152614 - 28 Jul 2025
Viewed by 254
Abstract
The identification and detection of planting holes, combined with UAV technology, provides an effective solution to the challenges posed by manual counting, high labor costs, and low efficiency in large-scale planting operations. However, existing target detection algorithms face difficulties in identifying planting holes [...] Read more.
The identification and detection of planting holes, combined with UAV technology, provides an effective solution to the challenges posed by manual counting, high labor costs, and low efficiency in large-scale planting operations. However, existing target detection algorithms face difficulties in identifying planting holes based on their edge features, particularly in complex environments. To address this issue, a target detection network named YOLO-PH was designed to efficiently and rapidly detect planting holes in complex environments. Compared to the YOLOv8 network, the proposed YOLO-PH network incorporates the C2f_DyGhostConv module as a replacement for the original C2f module in both the backbone network and neck network. Furthermore, the ATSS label allocation method is employed to optimize sample allocation and enhance detection effectiveness. Lastly, our proposed Siblings Detection Head reduces computational burden while significantly improving detection performance. Ablation experiments demonstrate that compared to baseline models, YOLO-PH exhibits notable improvements of 1.3% in mAP50 and 1.1% in mAP50:95 while simultaneously achieving a reduction of 48.8% in FLOPs and an impressive increase of 26.8 FPS (frames per second) in detection speed. In practical applications for detecting indistinct boundary planting holes within complex scenarios, our algorithm consistently outperforms other detection networks with exceptional precision (F1-score = 0.95), low computational cost, rapid detection speed, and robustness, thus laying a solid foundation for advancing precision agriculture. Full article
Show Figures

Figure 1

29 pages, 3125 KiB  
Article
Tomato Leaf Disease Identification Framework FCMNet Based on Multimodal Fusion
by Siming Deng, Jiale Zhu, Yang Hu, Mingfang He and Yonglin Xia
Plants 2025, 14(15), 2329; https://doi.org/10.3390/plants14152329 - 27 Jul 2025
Viewed by 404
Abstract
Precisely recognizing diseases in tomato leaves plays a crucial role in enhancing the health, productivity, and quality of tomato crops. However, disease identification methods that rely on single-mode information often face the problems of insufficient accuracy and weak generalization ability. Therefore, this paper [...] Read more.
Precisely recognizing diseases in tomato leaves plays a crucial role in enhancing the health, productivity, and quality of tomato crops. However, disease identification methods that rely on single-mode information often face the problems of insufficient accuracy and weak generalization ability. Therefore, this paper proposes a tomato leaf disease recognition framework FCMNet based on multimodal fusion, which combines tomato leaf disease image and text description to enhance the ability to capture disease characteristics. In this paper, the Fourier-guided Attention Mechanism (FGAM) is designed, which systematically embeds the Fourier frequency-domain information into the spatial-channel attention structure for the first time, enhances the stability and noise resistance of feature expression through spectral transform, and realizes more accurate lesion location by means of multi-scale fusion of local and global features. In order to realize the deep semantic interaction between image and text modality, a Cross Vision–Language Alignment module (CVLA) is further proposed. This module generates visual representations compatible with Bert embeddings by utilizing block segmentation and feature mapping techniques. Additionally, it incorporates a probability-based weighting mechanism to achieve enhanced multimodal fusion, significantly strengthening the model’s comprehension of semantic relationships across different modalities. Furthermore, to enhance both training efficiency and parameter optimization capabilities of the model, we introduce a Multi-strategy Improved Coati Optimization Algorithm (MSCOA). This algorithm integrates Good Point Set initialization with a Golden Sine search strategy, thereby boosting global exploration, accelerating convergence, and effectively preventing entrapment in local optima. Consequently, it exhibits robust adaptability and stable performance within high-dimensional search spaces. The experimental results show that the FCMNet model has increased the accuracy and precision by 2.61% and 2.85%, respectively, compared with the baseline model on the self-built dataset of tomato leaf diseases, and the recall and F1 score have increased by 3.03% and 3.06%, respectively, which is significantly superior to the existing methods. This research provides a new solution for the identification of tomato leaf diseases and has broad potential for agricultural applications. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

Back to TopTop