Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = agricultural machinery chassis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 3472 KiB  
Review
The Current Development Status of Agricultural Machinery Chassis in Hilly and Mountainous Regions
by Renkai Ding, Xiangyuan Qi, Xuwen Chen, Yixin Mei and Anze Li
Appl. Sci. 2025, 15(13), 7505; https://doi.org/10.3390/app15137505 - 3 Jul 2025
Viewed by 403
Abstract
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability [...] Read more.
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability for mechanization, traditional agricultural machinery experiences significantly reduced operational efficiency—typically by 30% to 50%—along with poor mobility. These limitations impose serious constraints on grain yield stability and the advancement of agricultural modernization. Therefore, enhancing the scenario-adaptive performance of chassis systems (e.g., slope adaptability ≥ 25°, lateral tilt stability > 30°) is a major research priority for China’s agricultural equipment industry. This paper presents a systematic review of the global development status of agricultural machinery chassis tailored for hilly and mountainous environments. It focuses on three core subsystems—power systems, traveling systems, and leveling systems—and analyzes their technical characteristics, working principles, and scenario-specific adaptability. In alignment with China’s “Dual Carbon” strategy and the unique operational requirements of hilly–mountainous areas (such as high gradients, uneven terrain, and small field sizes), this study proposes three key technological directions for the development of intelligent agricultural machinery chassis: (1) Multi-mode traveling mechanism design: Aimed at improving terrain traversability (ground clearance ≥400 mm, obstacle-crossing height ≥ 250 mm) and traction stability (slip ratio < 15%) across diverse landscapes. (2) Coordinated control algorithm optimization: Designed to ensure stable torque output (fluctuation rate < ±10%) and maintain gradient operation efficiency (e.g., less than 15% efficiency loss on 25° slopes) through power–drive synergy while also optimizing energy management strategies. (3) Intelligent perception system integration: Facilitating high-precision adaptive leveling (accuracy ± 0.5°, response time < 3 s) and enabling terrain-adaptive mechanism optimization to enhance platform stability and operational safety. By establishing these performance benchmarks and focusing on critical technical priorities—including terrain-adaptive mechanism upgrades, energy-drive coordination, and precision leveling—this study provides a clear roadmap for the development of modular and intelligent chassis systems specifically designed for China’s hilly and mountainous regions, thereby addressing current bottlenecks in agricultural mechanization. Full article
Show Figures

Figure 1

17 pages, 2768 KiB  
Article
An Accelerated Editing Method for Stress Signal on Combine Harvester Chassis Using Wavelet Transform
by Shengcao Huang, Zihan Yang, Zhenghe Song, Zhiwei Yu, Xiaobo Guo and Du Chen
Sensors 2025, 25(13), 4100; https://doi.org/10.3390/s25134100 - 30 Jun 2025
Viewed by 311
Abstract
This paper presents a load spectrum acceleration editing method based on wavelet transform. The principle of the method is to decompose the target signal using wavelet transform to obtain high-frequency wavelet components, which are classified and combined based on their frequency components for [...] Read more.
This paper presents a load spectrum acceleration editing method based on wavelet transform. The principle of the method is to decompose the target signal using wavelet transform to obtain high-frequency wavelet components, which are classified and combined based on their frequency components for accelerated editing. During the damage segment identification stage, a threshold selection method based on the pseudo-damage gradient of the segment identification results is proposed. An envelope-based damage identification method is used to extract high-damage segments from the original signal, which are then concatenated to form an accelerated signal. Using the stress signal on the chassis of a combine harvester as a case study, the effectiveness of various accelerated editing methods is compared, with a discussion on the selection of wavelet function parameters. The results indicate that, compared to the time-domain damage retention method and the traditional wavelet transform accelerated editing method, the proposed improvement enhances the acceleration effect of the time-domain signal by 7.76% and 15.92%, respectively. The accelerated signal is consistent with the original signal in terms of statistical parameters and power spectral density. Additionally, we also found that an appropriate selection of the wavelet function’s vanishing moment can further reduce the time-domain signal length of the accelerated result by 4.8%. This study can provide beneficial experiential references for load spectrum development in the accelerated durability testing of agricultural machinery. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

15 pages, 7185 KiB  
Article
Influence of Surface Treatments and Adhesive Type on Bond Strength Between Stainless Steel and CFRP in Agricultural Machinery
by Leif Steuernagel, Carsten Schmidt and Christian Jenensch
Materials 2025, 18(13), 3027; https://doi.org/10.3390/ma18133027 - 26 Jun 2025
Viewed by 375
Abstract
In the domain of agricultural machinery, the utilization of carbon fiber-reinforced plastics (CFRP) for structural components, such as the chassis, facilitates substantial weight reduction. To integrate additional components, stainless-steel connection points can be bonded to the CFRP chassis using adhesives. This study investigates [...] Read more.
In the domain of agricultural machinery, the utilization of carbon fiber-reinforced plastics (CFRP) for structural components, such as the chassis, facilitates substantial weight reduction. To integrate additional components, stainless-steel connection points can be bonded to the CFRP chassis using adhesives. This study investigates surface preparation methods to enhance adhesive bonding strength at the coupon level. Three adhesives (DP490, MA8110, SG300) were tested on untreated, sandblasted, and sandpaper-grinded steel surfaces. Contrary to predictions, the highest strength (28.7 MPa) for DP490 was achieved after simple acetone cleaning, despite lower surface roughness (Ra = 1.60 µm), while sandblasting (Ra = 3.71 µm, 22 MPa) and grinding (Ra = 2.78 µm, 25.95 MPa) performed worse due to incomplete adhesive penetration. Subsequent tests on DP490 with laser structuring (Ra = 88.8 µm) and sandblasting with coating (Ra = 1.94 µm) provided strengths of 27.5 MPa and 29.3 MPa, respectively. The findings indicate that, under the examined conditions, surface cleanliness plays a more critical role in adhesive bonding strength than surface roughness. Practically, acetone cleaning is a cost-effective and time-efficient alternative to treatments like sandblasting or laser structuring. This makes it attractive for industrial use in agricultural machinery. While this study focuses on coupon-level surfaces, the findings provide a basis for scaling to component-level applications in future research. Full article
Show Figures

Figure 1

28 pages, 5901 KiB  
Review
Research Status and Prospects of Automatic Leveling Technology for Orchard Machinery
by Guangyu Xue, Jiwen Peng, Haiyang Shen, Gongpu Wang, Wenhao Zheng, Sen Huang, Zihan Huan, Lianglong Hu and Wenqin Ding
Sustainability 2025, 17(12), 5297; https://doi.org/10.3390/su17125297 - 8 Jun 2025
Viewed by 493
Abstract
China’s orchards cover vast areas, predominantly located in hilly regions where the terrain is complex, making mechanized operations difficult to implement effectively. This results in a low comprehensive mechanization rate in the fruit planting industry, severely restricting the development of agricultural mechanization in [...] Read more.
China’s orchards cover vast areas, predominantly located in hilly regions where the terrain is complex, making mechanized operations difficult to implement effectively. This results in a low comprehensive mechanization rate in the fruit planting industry, severely restricting the development of agricultural mechanization in China’s hilly areas. This article first explains the principles of automatic leveling technology, summarizing the characteristics and suitable application scenarios of different leveling technologies in the context of actual work in hilly orchards. It then provides an overview of the research progress in automatic leveling machinery for orchards from the perspectives of power machinery, operation platforms, and operating tools, analyzing the leveling control schemes of various orchard operation machinery equipped with automatic leveling features tailored for hilly orchard work. This article explores key technologies for chassis leveling, summarizes universal leveling mechanisms and control algorithms, analyzes the numerous challenges faced by the current development of automatic leveling technology for orchard machinery, and offers targeted development suggestions. Full article
Show Figures

Figure 1

37 pages, 14623 KiB  
Review
Research Review of Agricultural Machinery Power Chassis in Hilly and Mountainous Areas
by Yiyong Jiang, Ruochen Wang, Renkai Ding, Zeyu Sun, Yu Jiang and Wei Liu
Agriculture 2025, 15(11), 1158; https://doi.org/10.3390/agriculture15111158 - 28 May 2025
Viewed by 833
Abstract
The terrain in hilly and mountainous areas is complex, and the level of agricultural mechanization is low. This article systematically reviews the research progress of key technologies for agricultural machinery power chassis in hilly and mountainous areas, and conducts an analysis of five [...] Read more.
The terrain in hilly and mountainous areas is complex, and the level of agricultural mechanization is low. This article systematically reviews the research progress of key technologies for agricultural machinery power chassis in hilly and mountainous areas, and conducts an analysis of five aspects: the power system, walking system, steering system, leveling system, and automatic navigation and path tracking control system. In this manuscript, (1) in terms of the power system, the technical characteristics and application scenarios of mechanical, hydraulic, and electric drive systems were compared. (2) In terms of the walking system, the performance differences between wheeled, crawler, legged, and composite walking devices and the application of suspension systems in agricultural machinery chassis were discussed. (3) In terms of the steering system, the steering characteristics of wheeled chassis and crawler chassis were analyzed, respectively. (4) In terms of the leveling system, the research progress on hydraulic and electric leveling mechanisms, as well as intelligent leveling control algorithms, was summarized. (5) The technology of automatic navigation and path tracking for agricultural machinery chassis was discussed, focusing on multi-sensor fusion and advanced control algorithms. In the future, agricultural machinery chassis will develop towards the directions of intelligence, automation, greening, being lightweight, and being multi-functionality. Full article
Show Figures

Figure 1

28 pages, 3651 KiB  
Article
Intelligent Path Tracking for Single-Track Agricultural Machinery Based on Variable Universe Fuzzy Control and PSO-SVR Steering Compensation
by Huanyu Liu, Zhihang Han, Junwei Bao, Jiahao Luo, Hao Yu, Shuang Wang and Xiangnan Liu
Agriculture 2025, 15(11), 1136; https://doi.org/10.3390/agriculture15111136 - 24 May 2025
Viewed by 478
Abstract
Single-track electric agricultural chassis plays a vital role in autonomous navigation and driving operations in hilly and mountainous regions, where its path tracking performance directly affects the operational accuracy and stability. However, in complex farmland environments, traditional methods often suffer from frequent turning [...] Read more.
Single-track electric agricultural chassis plays a vital role in autonomous navigation and driving operations in hilly and mountainous regions, where its path tracking performance directly affects the operational accuracy and stability. However, in complex farmland environments, traditional methods often suffer from frequent turning and large tracking errors due to variable path curvature, uneven terrain, and track slippage. To address these issues, this paper proposes a path tracking algorithm combining a segmented preview model with variable universe fuzzy control, enabling dynamic adjustment of the preview distance for better curvature adaptation. Additionally, a heading deviation prediction model based on Support Vector Regression (SVR) optimized by Particle Swarm Optimization (PSO) is introduced, and a steering angle compensation controller is designed to improve the turning accuracy. Simulation and field experiments show that, compared with fixed preview distance and fixed-universe fuzzy control methods, the proposed algorithm reduces the average number of turns per control cycle by 30.19% and 18.23% and decreases the average lateral error by 34.29% and 46.96%, respectively. These results confirm that the proposed method significantly enhances path tracking stability and accuracy in complex terrains, providing an effective solution for autonomous navigation of agricultural machinery. Full article
Show Figures

Figure 1

19 pages, 3544 KiB  
Article
An Adaptive Path Tracking Controller with Dynamic Look-Ahead Distance Optimization for Crawler Orchard Sprayers
by Xu Wang, Bo Zhang, Xintong Du, Xinkang Hu, Chundu Wu and Jianrong Cai
Actuators 2025, 14(3), 154; https://doi.org/10.3390/act14030154 - 19 Mar 2025
Viewed by 674
Abstract
Based on the characteristics of small agricultural machinery in terms of flexibility and high efficiency when operating in small plots of hilly and mountainous areas, as well as the demand for improving the automation and intelligence levels of agricultural machinery, this paper conducted [...] Read more.
Based on the characteristics of small agricultural machinery in terms of flexibility and high efficiency when operating in small plots of hilly and mountainous areas, as well as the demand for improving the automation and intelligence levels of agricultural machinery, this paper conducted research on the path tracking control of the automatic navigation operation of a crawler sprayer. Based on the principles of the kinematic model and the position prediction model of the agricultural machinery chassis, a pure pursuit controller based on adaptive look-ahead distance was designed for the tracked motion chassis. Using a lightweight crawler sprayer as the research platform, integrating onboard industrial control computers, sensors, communication modules, and other hardware, an automatic navigation operation system was constructed, achieving precise control of the crawler sprayer during the path tracking process. Simulation test results show that the path tracking control method based on adaptive look-ahead distance has the characteristics of smooth control and small steady-state error. Field tests indicate that the crawler sprayer exhibits small deviations during path tracking, with an average absolute error of 2.15 cm and a maximum deviation of 4.08 cm when operating at a speed of 0.7 m/s. In the line-following test, with initial position deviations of 0.5 m, 1.0 m, and 1.5 m, the line-following times were 7.45 s, 11.91 s, and 13.66 s, respectively, and the line-following distances were 5.21 m, 8.34 m, and 9.56 m, respectively. The maximum overshoot values were 6.4%, 10.5%, and 12.6%, respectively. The autonomous navigation experiments showed a maximum deviation of 5.78 cm and a mean absolute error of 2.69 cm. The proportion of path deviations within ±5 cm and ±10 cm was 97.32% and 100%, respectively, confirming the feasibility of the proposed path tracking control method. This significantly enhanced the path tracking performance of the crawler sprayer while meeting the requirements for autonomous plant protection spraying operations. Full article
(This article belongs to the Special Issue Modeling and Nonlinear Control for Complex MIMO Mechatronic Systems)
Show Figures

Figure 1

19 pages, 9881 KiB  
Article
Fatigue Analysis of PTO Gearboxes in Paddy Power Chassis Using Measured Loads
by Jianfei He, Zaiman Wang, Bo Gao, Dongyang Yu, Yifan Ma, Wenneng Zhong, Zhihao Zeng, Ziyou Guo and Jun Wang
Agriculture 2024, 14(9), 1436; https://doi.org/10.3390/agriculture14091436 - 23 Aug 2024
Cited by 1 | Viewed by 1152
Abstract
This study aims to analyze the fatigue life of a PTO (power take-off) gearbox used in a paddy field power chassis. The analysis considers factors such as stress concentration, dimensions, surface quality, and load characteristics affecting fatigue life. A finite element simulation was [...] Read more.
This study aims to analyze the fatigue life of a PTO (power take-off) gearbox used in a paddy field power chassis. The analysis considers factors such as stress concentration, dimensions, surface quality, and load characteristics affecting fatigue life. A finite element simulation was conducted using the Ansys 2022 software to identify the critical point of the PTO shell. The modified nominal stress fatigue analysis method, incorporating a stress adjustment coefficient, was employed to derive the modified S-N curve. Combined with the measured load data of the PTO bench operation, the load data and the 3D model of the PTO shell were imported into the fatigue analysis software n-code to analyze the fatigue life of the PTO gearbox of a paddy field power chassis and compare it with the prediction results from the traditional stress field strength method. The findings indicate that the optimized stress adjustment coefficient method predicts a fatigue life (31,699 h) closer to the actual operational life (20,000 h) compared to the traditional method (39,151 h). This research contributes to the advancement of the analytical techniques for predicting fatigue life in critical components of agricultural machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 21420 KiB  
Article
Design of a Leaf-Bottom Pest Control Robot with Adaptive Chassis and Adjustable Selective Nozzle
by Dongshen Li, Fei Gao, Zemin Li, Yutong Zhang, Chuang Gao and Hongbo Li
Agriculture 2024, 14(8), 1341; https://doi.org/10.3390/agriculture14081341 - 11 Aug 2024
Cited by 3 | Viewed by 2058
Abstract
Pest control is an important guarantee for agricultural production. Pests are mostly light-avoiding and often gather on the bottom of crop leaves. However, spraying agricultural machinery mostly adopts top-down spraying, which suffers from low pesticide utilization and poor insect removal effect. Therefore, the [...] Read more.
Pest control is an important guarantee for agricultural production. Pests are mostly light-avoiding and often gather on the bottom of crop leaves. However, spraying agricultural machinery mostly adopts top-down spraying, which suffers from low pesticide utilization and poor insect removal effect. Therefore, the upward spraying mode and intelligent nozzle have gradually become the research hotspot of precision agriculture. This paper designs a leaf-bottom pest control robot with adaptive chassis and adjustable selective nozzle. Firstly, the adaptive chassis is designed based on the MacPherson suspension, which uses shock absorption to drive the track to swing within a 30° angle. Secondly, a new type of cone angle adjustable selective nozzle was developed, which achieves adaptive selective precision spraying under visual guidance. Then, based on a convolutional block attention module (CBAM), the multi-CBAM-YOLOv5s network model was improved to achieve a 70% recognition rate of leaf-bottom spotted bad point in video streams. Finally, functional tests of the adaptive chassis and the adjustable selective spraying system were conducted. The data indicate that the adaptive chassis can adapt to diverse single-ridge requirements of soybeans and corn while protecting the ridge slopes. The selective spraying system achieves 70% precision in pesticide application, greatly reducing the use of pesticides. The scheme explores a ridge-friendly leaf-bottom pest control plan, providing a technical reference for improving spraying effect, reducing pesticide usage, and mitigating environmental pollution. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 7435 KiB  
Article
Design and Test of Hydraulic Driving System for Undercarriage of Paddy Field Weeder
by Maohua Xiao, Yuxiang Zhao, Hongxiang Wang, Xiaomei Xu, Petr Bartos and Yejun Zhu
Agriculture 2024, 14(4), 595; https://doi.org/10.3390/agriculture14040595 - 9 Apr 2024
Cited by 4 | Viewed by 1786
Abstract
In response to challenges such as inadequate driving stability and power in traditional weeding machinery, we designed and investigated a hydraulic chassis tailored for paddy field operations. Utilizing SolidWorks and RecurDyn V9R4 software, we obtained linear driving and steering curves to model and [...] Read more.
In response to challenges such as inadequate driving stability and power in traditional weeding machinery, we designed and investigated a hydraulic chassis tailored for paddy field operations. Utilizing SolidWorks and RecurDyn V9R4 software, we obtained linear driving and steering curves to model and simulate the dynamics of the mower chassis. Through the AMESim software, we further modeled and simulated the hydraulic chassis system, focusing on the hydraulic characteristics of the components relevant to its operation. Subsequently, we developed a hydraulic-driven paddy weeder and conducted tests to evaluate the linear deviation and paddy slip rates. Our findings indicate that the designed hydraulic weeder chassis exhibits commendable dynamic performance and driving stability, with the actual average deviation and paddy slip rates measured at 2.61% and 3.59%, respectively. These results underscore the efficacy of our approach in addressing the challenges inherent in traditional weeding machinery and highlight the potential of hydraulic systems in enhancing agricultural operations. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 5577 KiB  
Article
Path Planning and Control System Design of an Unmanned Weeding Robot
by Tengxiang Yang, Chengqian Jin, Youliang Ni, Zhen Liu and Man Chen
Agriculture 2023, 13(10), 2001; https://doi.org/10.3390/agriculture13102001 - 15 Oct 2023
Cited by 8 | Viewed by 2637
Abstract
Aiming at the demand by unmanned farms for unmanned operation in the entire process of field management, an unmanned plant protection robot for field management was developed based on a platform comprising a traditional high-clearance spray rod sprayer, integrated unmanned driving technology, image [...] Read more.
Aiming at the demand by unmanned farms for unmanned operation in the entire process of field management, an unmanned plant protection robot for field management was developed based on a platform comprising a traditional high-clearance spray rod sprayer, integrated unmanned driving technology, image recognition technology, intelligent control technology, and precision operation technology. According to the agricultural machinery operation mode, agricultural machinery path planning, linear path tracking, and header path tracking algorithms were developed. Based on the overall structure and working principle of the chassis, the robot control system, steering control system, and operation control system were set. Based on the YOLOv5 image recognition algorithm, the crop–weed recognition model was developed. After 6000 rounds of training, the accuracy, recall, and mean average precision of the model were 87.7%, 84.5%, and 79.3%, respectively. Finally, a field experiment was carried out with the unmanned plant protection robot equipped with a complete system. Results show that the average lateral error of the robot is 0.036 m, the maximum lateral error is 0.2 m, the average root mean square error is 0.053 m, the average velocity error is 0.034 m/s, and the average root mean square error of velocity is 0.045 m/s when the robot works in a straight line. In weeding operations, the area ratio of weedy zones to field is 25%, which saves 75% of the herbicide compared to that dispensed in full spraying mode. The unmanned plant protection robot designed in this study effectively achieves machinery’s autonomous operation, providing valuable insights for research in unmanned farming and autonomous agricultural machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 5639 KiB  
Article
Study on Vibration Characteristics of Paddy Power Chassis under Different Driving Conditions
by Dongyang Yu, Jianfei He, Feihu Peng, Cheng Qian, Ying Zang, Minghua Zhang, Wenwu Yang, Guoxiang Zeng, Jianpeng Chen, Wei Qin and Zaiman Wang
Agriculture 2023, 13(9), 1842; https://doi.org/10.3390/agriculture13091842 - 20 Sep 2023
Cited by 5 | Viewed by 1644
Abstract
To elucidate the vibrational characteristics of power chassis in paddy fields, we examined the Yanmar VPG6G rice transplanter across diverse terrains, including paddy fields, dry land, and concrete roads. Vibrational acceleration measurements, taken in longitudinal, transverse, and vertical orientations at key chassis locations, [...] Read more.
To elucidate the vibrational characteristics of power chassis in paddy fields, we examined the Yanmar VPG6G rice transplanter across diverse terrains, including paddy fields, dry land, and concrete roads. Vibrational acceleration measurements, taken in longitudinal, transverse, and vertical orientations at key chassis locations, revealed noteworthy findings. The Mizuta power chassis exhibited its lowest root-mean-square (RMS) vibrational acceleration on concrete, while the highest was observed on paddy fields. The acceleration power spectra predominantly peaked between 1~14 Hz, with peak values amplifying as speed increased. Additionally, pendant orientation frequencies exceeded those of longitudinal and lateral directions. Both front and rear wheels mirrored the vibrational accelerations of the rear axle, but dynamic load coefficients for the front wheels consistently surpassed the rear, particularly at elevated speeds. This research not only enhances our understanding of terrain-induced vibrations and the intricate dynamics between terrain and tires but also lays the groundwork for designing optimized vibration-damping solutions tailored to prevalent road conditions. Full article
(This article belongs to the Special Issue Agricultural Automation in Smart Farming)
Show Figures

Figure 1

19 pages, 4681 KiB  
Article
Evaluation of Soil Infiltration Variability in Compacted and Uncompacted Soil Using Two Devices
by Ján Jobbágy, Koloman Krištof, Michal Angelovič and József Zsembeli
Water 2023, 15(10), 1918; https://doi.org/10.3390/w15101918 - 18 May 2023
Cited by 1 | Viewed by 3589
Abstract
Infiltration is defined by the expression of the hydraulic conductivity of the soil, which we decided to monitor on an experimental field applying a modern system of land management (control traffic farming). The present study compared two different methods of monitoring the hydraulic [...] Read more.
Infiltration is defined by the expression of the hydraulic conductivity of the soil, which we decided to monitor on an experimental field applying a modern system of land management (control traffic farming). The present study compared two different methods of monitoring the hydraulic conductivity of soil on a selected 16 ha plot of land in the suburbs of the village Kolíňany (Slovak Republic). During the growing seasons, crops such as oilseed rape, winter wheat, spring barley, winter barley, spring peas, and maize alternated in individual years. In addition to the study of hydraulic conductivity, a long-term experiment is underway to investigate the influence of technogenic factors on soil degradation using a system of controlled movement of machines in the field. A mini disk infiltrometer (method one) was used to evaluate the unsaturated hydraulic conductivity of the soil, and a double ring infiltrometer (method two) was used to measure the saturated hydraulic conductivity. Monitoring changes in soil infiltration capacity within the compacted and uncompacted lines required 26 monitoring points (20 for method one and 6 for method two). The first longitudinal line was compacted by an agricultural machinery chassis, and the second line remained uncompressed. The research also created transverse compacted lines at eight monitoring points (six for method one and two for method two). The results did not show a statistically significant difference when examining the effect of soil infiltration monitoring (compacted p = 0.123; uncompacted p = 0.99). When evaluating the statistical dependence on the compression caused by machinery in the track line, the hypothesis of significance was not confirmed (p = 0.12, at the level of 0.05). However, the results showed variability in the value of the difference factor between the two methods, ranging from 0 to 0.24. On average, it can be concluded that the results achieved using the double ring infiltrometer were 4.16 times higher than those measured with the mini disk infiltrometer. The variability of hydraulic conductivity was demonstrated not only in the compacted but also in the non-compacted part of the plot. In some places, the phenomenon of water repellency appeared, which could be caused by the drier location of the targeted plot. Full article
Show Figures

Figure 1

16 pages, 7057 KiB  
Article
Vibration Test and Analysis of Crawler Pepper Harvester under Multiple Working Conditions
by Xinzhong Wang, Yuhao Cao, Weiquan Fang and Haoran Sheng
Sustainability 2023, 15(10), 8112; https://doi.org/10.3390/su15108112 - 16 May 2023
Cited by 8 | Viewed by 2131
Abstract
Nowadays, many scholars at home and abroad have studied the vibration of agricultural machinery, especially harvesting machinery. However, this research has lacked the analysis of vibration characteristics of harvesters under the condition of multi-vibration excitation in field work. Therefore, by taking the chassis [...] Read more.
Nowadays, many scholars at home and abroad have studied the vibration of agricultural machinery, especially harvesting machinery. However, this research has lacked the analysis of vibration characteristics of harvesters under the condition of multi-vibration excitation in field work. Therefore, by taking the chassis frame and main vibration sources of a 4JZ-1700 crawler pepper harvester as the research object, this paper aims to investigate the vibration characteristics of the pepper harvester under different working conditions, and the impact of the excitation of various working parts on the chassis frame. Firstly, a modal simulation was carried out with the modal module of ANSYS Workbench to study the natural frequency of the chassis frame. The results demonstrated that the natural frequency of the chassis frame was within 23–76 Hz. A DH5902 dynamic signal acquisition instrument was used to collect vibration signals from seven measuring points under different working conditions of the whole machine, and the collected time domain signals were extracted by Fourier transform. According to the time domain signal, the amplitude at the engine support was the largest under the static no-load condition, and the transmission of engine vibration was attenuated to a certain extent, which imposes a significant effect on the vibration isolation and vibration reduction of the harvester frame. Under the field walking condition, the amplitudes of the left front of the chassis frame and the driving shaft of the cleaning separation device were abnormal, which was mainly attributed to the unequal road surface and the high center of gravity of the cleaning separation device. Through frequency domain analysis, it can be found that the main vibration frequency of most measuring points of the harvester was close to the vibration frequency of the engine under the static no-load condition, and the excitation frequency of most measuring points approximated to the working frequency of the picking drum and the cleaning separation device under the field walking condition. In addition, there were plenty of phenomena in which the main frequency of vibration was detected in the high frequency region above 200 Hz, with messy frequency values. This is due to the poor lubrication of the bearing part of the harvester, causing intense friction between the rotating shaft and the bearing, which also drives the high frequency vibration of the chassis frame. In general, this study can provide a method reference for vibration analysis of agricultural machinery and propose effective measures to reduce vibration based on the conclusions. Full article
(This article belongs to the Special Issue Sustainable Technology in Agricultural Engineering)
Show Figures

Figure 1

12 pages, 1517 KiB  
Article
Levels of Whole-Body Vibrations Transmitted to the Driver of a Tractor Equipped with Self-Levelling Cab during Soil Primary Tillage
by Daniele Pochi, Laura Fornaciari, Gennaro Vassalini, Renato Grilli and Roberto Fanigliulo
AgriEngineering 2022, 4(3), 695-706; https://doi.org/10.3390/agriengineering4030044 - 1 Aug 2022
Cited by 12 | Viewed by 3294
Abstract
Agricultural tractor drivers’ health preservation and comfort represent important aspects of the evolution of agricultural machinery and led to the development of devices aimed at improving working conditions, such as soundproof cab and driver seat suspension, nowadays commonly adopted in tractors. The vibrations [...] Read more.
Agricultural tractor drivers’ health preservation and comfort represent important aspects of the evolution of agricultural machinery and led to the development of devices aimed at improving working conditions, such as soundproof cab and driver seat suspension, nowadays commonly adopted in tractors. The vibrations are one of the factors mostly affecting health and comfort conditions, resulting from the characteristics and interaction of specific tractor’s parts (tyres, axles, chassis, cab). Trying to improve their products, manufacturers developed a cab prototype equipped with an automatic self-levelling system, whose goal is to maintain the driver’s vertebral column in a correct position during heavy agricultural operations such as primary soil tillage. A tractor with a such a prototype was tested to assess its effectiveness in maintaining the cab horizontal and any effects on the transmitted levels of whole-body vibration, during soil primary tillage carried out by means of a mouldboard plough and a subsoiling plough, both in plain and hilly surfaces. The results showed that the device worked well at a slope lower than the operating limits of the system, keeping the cabin horizontal through progressive adjustments. A slight reduction of the level of vibration was observed with a self-levelling system working during the tillage tests in the plain, compared to the traditional condition. Full article
Show Figures

Figure 1

Back to TopTop