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Abstract: Aiming at the demand by unmanned farms for unmanned operation in the entire process of
field management, an unmanned plant protection robot for field management was developed based
on a platform comprising a traditional high-clearance spray rod sprayer, integrated unmanned driving
technology, image recognition technology, intelligent control technology, and precision operation
technology. According to the agricultural machinery operation mode, agricultural machinery path
planning, linear path tracking, and header path tracking algorithms were developed. Based on the
overall structure and working principle of the chassis, the robot control system, steering control
system, and operation control system were set. Based on the YOLOv5 image recognition algorithm,
the crop–weed recognition model was developed. After 6000 rounds of training, the accuracy, recall,
and mean average precision of the model were 87.7%, 84.5%, and 79.3%, respectively. Finally, a field
experiment was carried out with the unmanned plant protection robot equipped with a complete
system. Results show that the average lateral error of the robot is 0.036 m, the maximum lateral error
is 0.2 m, the average root mean square error is 0.053 m, the average velocity error is 0.034 m/s, and
the average root mean square error of velocity is 0.045 m/s when the robot works in a straight line. In
weeding operations, the area ratio of weedy zones to field is 25%, which saves 75% of the herbicide
compared to that dispensed in full spraying mode. The unmanned plant protection robot designed in
this study effectively achieves machinery’s autonomous operation, providing valuable insights for
research in unmanned farming and autonomous agricultural machinery.

Keywords: plant protection robot; agricultural navigation; path planning; weed identification;
precision weeding

1. Introduction

With the development of driverless, artificial intelligence, and intelligent control
technologies, intelligent perception, decision-making, and control technologies designed
for agricultural production have also begun to be applied to agricultural production. The
application of new technologies not only improves the efficiency of agricultural production
but also greatly reduces the labor intensity of practitioners, opening up a new direction for
the research of agricultural production tools [1–4].

As a typical agricultural field management production tool, plant protection machinery
is mainly used for weeding, fertilization, pesticide spraying, crop growth monitoring, crop
pest identification, farmland information collection and so on. Regarding unmanned
plant protection robots, a driverless system and intelligent operation system should be
added to traditional plant protection machinery to realize the entire unmanned plant
protection operation.

The existing unmanned system includes path planning and path tracking, and path
planning includes both global path planning [5,6] and local path planning [7,8]. The global
path-planning method used in this paper is the AB line operation algorithm. Compared
to other control algorithms, this method is simple and versatile. The commonly used
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path-tracking methods include path tracking based on kinematics [9,10], pure path track-
ing based on proportion integration differentiation (PID) [11,12], improved pure path
tracking [9,13–16], and Model Predictive Control (MPC) control [17–19], among others.

Since the method based on a kinematic model is used to linearize the model at a
certain speed, the stability and robustness of the control system become worse when the
speed changes. The pure tracking method is the most commonly used and mature path
tracking algorithm, but under different speed and curvature conditions, the choice of
forward distance directly determines the adjustment accuracy of the control system. MPC
and other control methods based on a dynamic model rely heavily on the dynamic model
of the controlled object, and how to establish an accurate dynamic model has always been
the difficulty in achieving intelligent control of agricultural machinery, so the algorithm is
still in the exploratory stage.

Intelligent operation system includes weed identification [20–22], pest identifica-
tion [23,24], target spraying [25,26], and robot weeding [27–29]. With the development
of convolutional neural network technology, target detection and semantic segmentation
have been widely used in agricultural production. The target detection method is fast in
recognition, but it cannot obtain an accurate contour of the object. Semantic segmentation
can obtain the pixel-level contour of the object, but it requires high computational power
and is difficult to apply to an embedded system.

The above-mentioned research on the unmanned plant protection technology of agri-
cultural machinery has laid the foundation for the development of intelligent agricultural
machinery. In the present work, we designed the navigation control, robot control, and
operation control systems of an unmanned plant protection robot based on the existing nav-
igation, control, and intelligent operation technologies of domestic unmanned agricultural
machinery. Our goals were to test the feasibility of an unmanned plant protection robot
through field experiments and to provide reference for researching unmanned agricultural
machinery operation systems.

2. Materials and Methods
2.1. Composition of Weeding Robot

An unmanned weeding robot mainly includes four parts: a navigation system, a
motion control system, intelligent working parts, and a data transmission unit (DTU). The
navigation system is responsible for robot motion path planning and path tracking control,
and the motion instructions are sent to the motion control system. The motion control sys-
tem converts the motion command to the action of the robot through the electro-hydraulic
control system, including speed regulation and clutch control. Intelligent working parts
are the core of autonomous operation of robots, including weed identification, spraying
control, and operation monitoring. The DTU is responsible for transmitting the robot’s
operation information to the remote-control platform of agricultural machinery. The robot
is shown in Figure 1, and the main performance parameters are in Table 1.
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Table 1. Main technical parameters of robot.

Technical Indicators Value

Engine power (kW) 15.4
Length × width × height (m) 4.1 × 2.2 × 2.54

Spraying width (m) 2
Ground clearance (m) 1.2

Turning radius (m) 3.5
Tank volume (L) 500
Speed (km·h−1) 0–5.6

Autopilot accuracy (cm) ±2.5
Weed identification rate (%) >80

The chassis of the weeding robot was adapted from the 3WP-500G high-pressure chas-
sis sprayer, manufactured by Shandong Huasheng Zhongtian Machinery Group Co., Ltd.
(Linyi, China). The weeding robot’s chassis is equipped with fully hydraulic power steer-
ing, hydrostatic transmission drive system, cable-type continuously variable transmission,
throttle regulator, and a braking device. The original steering wheel of the high-pressure
chassis sprayer has been replaced with the servo steering wheel (CES-T) produced by
Shanghai Huace Navigation Technology Co., Ltd. (Shanghai, China). The servo steering
wheel consists of two parts: the fixed part, which is the cylindrical motor stator connected
to the robot’s chassis, and the rotating part, comprising the motor rotor, steering wheel,
and spline sleeve. The upper part of the spline sleeve is securely attached to the rotor
with screws, while the lower end is connected to the robot’s steering column through
gear meshing.

Figure 2 illustrates the controllers used on the weeding robot, namely the T506 edge
computing box and the ZQWL IO expansion module. The T506 edge computing box is
manufactured by Shenzhen Tuwei Information Technology Co., Ltd. (Shenzhen, China). It
runs the Ubuntu 18.04 operating system, supports 4G/5G connectivity, features a fanless
design for passive heat dissipation, and boasts a lightweight and modern appearance.
It offers a variety of IO interface options and includes a bottom bracket for easy on-site
installation. The ZQWL IO expansion module is provided by Shenzhen Zhiqian Internet of
Things Electronic Technology Co., Ltd. (Shenzhen, China). It features an 8-channel serial
port relay controller capable of handling 8-channel switching value collection and 8-channel
relay output. The control board is equipped with RS232, RS485, and CAN communication
interfaces, enabling switch acquisition and relay output control through custom protocols.
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2.2. Path Planning

Path planning is used to generate the target trajectory of a robot and guide it to com-
plete tasks independently according to farmland information and operational requirements
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of the plant protection robot. In plant protection robots, the path contains elements of point
P, line L, and curve C, represented mathematically as:

P =
[
x y h

]−1, (1)

where P is the point in the plane, x the longitude in UTM coordinates, y the latitude in
UTM coordinates, and h the heading of the robot body at that point.

L= [P1 P2
]
, (2)

where L is the line, P1 the starting point of the line, and P2 the end point of the line.

C =
[
P1 P2 · · · Pn

]
, (3)

Curve C is composed of a series of points, P means the points in the curve, and
1, 2, . . ., n means the sequence of points in the curve.

Path planning is divided into linear path planning and header path planning. The
linear path is a series of parallel lines. The calculation method is:

L = L0 +

cos(α− π
2 )

sin(α− π
2 )

0

× [w w
]
, (4)

where L is the new line, L0 the reference line, w the width of the line, and α the angle
between the line and the x axis

As shown in Figure 3, the reference line A0B0 is determined before operation. Accord-
ing to the width of the field and the width of the machine operation, the corresponding
parallel operation lines A1B1, A2B2, . . ., AnBn are generated. During the operation, the
robot opens the operating component from point A0 to point B0 along the straight line A0B0
and then closes the operating component. The target path is switched to the multi-segment
curve B0B1 for tracking. After reaching point B1, the operating component is opened, and
the operating component is driven to point A1 along the straight line B1A1. The above steps
are repeated until the robot reaches point Bn and the operation is completed.
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Header path planning uses the Dubins path to plan the turning path, as shown in
Figure 4. According to the different paths of the steering mode, steering can be divided into
six modes: RSR, LSL, RSL, LSR, RLR, and LRL (where R denotes a right turn, S a straight
line, and L a left turn) [30]. For agricultural robots, because they operate according to a
parallel line, the heading difference between before and after turning is 180◦, and RSL and
LSR do not meet the operating conditions. In this paper, we only solved the four steering
modes RSR, LSL, RLR, and LRL. In addition, we selected the minimum path length scheme
as the target path.
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Figure 4. Dubins path planning diagram.

To facilitate the path transition, the entry and exit points of the solved path are ex-
tended by 2 m along the tangent direction to enhance the smoothness of the path connection.
Four Dubins paths become SRSRS, SLSLS, SRLRS, and SLRLS. Each path is divided into five
sections, and each section is composed of arcs or straight lines. The above path is a multi-
segment continuous function. For the processor, it is necessary to discretely sample the arcs
and lines and represent the turnaround path as a set of points. The path is composed of
straight lines and arc curves, so the straight lines and curves are sampled separately.

The linear sampling method is expressed as:

Pi =

xA + id cos(α)
yA + id sin(α)

α

, (5)

(xA, yA) is the starting point of the line, d the sampling distance, α the angle between
the line and x axis, and i the sampling sequence.

The curve discrete method is expressed as:

Pi =

xC − R cos(σ− i ∗ ∆σ)
yC − R sin(σ− i ∗ ∆σ)

σ− π/2− i ∗ ∆σ

, (6)

(xC, yC) is the arc center, R the arc radius, σ the angle between the arc starting point
and arc center line and x axis, ∆σ the sampling angle, and i the sampling sequence.

As shown in Figure 5, the header path is divided into three parts: straight line segment
A0B0, circular arc segment B0B1, and straight-line segment B1A1. When the robot moves
along the A0B0 straight line during operation, and when the front end of the robot crosses
the straight line L3, which is 2 m from straight line L1, the head adjustment path B0B1
is calculated. After the calculation is completed, the target path is switched to the head
adjustment path. A 2 m overlap exists between the header path and the linear path, which
can ensure the smooth transition of the path during the driving process of the robot. When
the end of the robot crosses the line L1 formed by B0B1 from inside the field, the working
parts are closed. When the end of the robot crosses line L2 1 m from line L1 from the outside
of the field, the operating component is opened.
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2.3. Path Tracing

The path-tracking algorithm is designed based on the pure path-tracking model. As
shown in Figure 6, O is the origin of the world coordinate system, C the vehicle steering
center, and E the vertical foot of the vehicle steering center C to the target straight path AB.
In the world coordinate system:

→
OE =

→
AB ·

→
AC

→
|AB|

2

→
AB +

→
OA, (7)
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In the equation below, G is the preview point, v is the ground speed of the robot, and t
is the preview time. It can be seen that:

→
OG = vt

→
AB∣∣∣∣ →AB
∣∣∣∣ +

→
OE, (8)

In the equation below, ∠α is the angle between the target point G and body axis CH in
the body coordinate system. According to the pure path-tracking model algorithm, it can
be seen that: →

|CG|
sin(2α)

=
R

sin(π
2 − α)

, (9)

The available turning radius R is:

R =

∣∣∣∣ →CG
∣∣∣∣

2
∣∣∣∣ →HG

∣∣∣∣2
, (10)

According to Ackerman steering geometry, the robot front wheel steering angle δ is:

δ = arctan(
L

2R
), (11)

The lateral error Elat is:

Elat =

∣∣∣∣ →CE
∣∣∣∣ = ‖

→
AB×

→
AC‖

‖
→

AB‖
, (12)
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The principle of header path tracking is shown in Figure 7. A pure path-tracking
model based on preview point search is adopted. Its control principle is similar to that of
linear tracking. The preview point G is obtained by the curve path search method and then
the steering angle δ of the front wheel calculated. The process is as follows.
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(1) Curve path AB is searched to find the closest point Pe to the Pc using Euclidean distance:

min
e=i

(‖
→

CPi‖)(i ∈ 0 . . . n), (13)

(2) The preview distance is calculated according to the vehicle speed v and preview
time t. Curve path EB is searched, and the closest point Pg with distance vt from point Pe
is found:

min
g=i

(‖
→

PiPe‖ − |vt|)(i ∈ e . . . n), (14)

Additionally, the vehicle steering angle δ is calculated using Formulas (9)–(11).

2.4. Speed Control System

The robot transmission route is shown in Figure 8. The engine output shaft is con-
nected to the input shaft of the hydrostatic electrodeless transmission (HSET) electrodeless
transmission through the belt, and the output shaft of the HSET electrodeless transmission
is connected with the gearbox through the coupling. The two output shafts of the gearbox
distribute the power to the front and rear axles of the vehicle body through the transmission
shaft. The front axle of the vehicle body distributes the power to the left and right front
wheels of the vehicle body through the differential. The structure of the rear axle of the
vehicle body is similar.
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Speed control is realized by a cascade PID controller. As shown in Figure 9, the outer
loop is a speed proportional integral (PI) controller, and the inner loop is a proportion
differentiation (PD) controller to control the opening of the HSET valve. The PI controller
is expressed as follows:

Q̃(k)+ = Kpv(Ev(k)− Ev(k− 1)) + KivEv(k), (15)

where Q̃ is the target opening of the HSET valve, Kpv and Kiv are the proportional and
integral parameters of the PI controller, respectively, and Ev is the speed error—which is
the difference between the target speed and the actual speed v—as follows:

Ev(k) = ṽ(k)− v(k), (16)
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The HSET valve PD expression is:

M(k) = KpqEq(k) + Kdq
(
Eq(k)− Eq(k− 1)

)
, (17)

Eq(k) = Q̃(k)−Q(k), (18)

M is the motor voltage, Kpq and Kdq are the proportional and differential parameters
of the PD controller, Q is the actual position of the HSET valve, and Eq is the angle error of
the HSET valve.

2.5. Steering Control System

The robot steering system, shown in Figure 10, mainly includes an electric steering
wheel, hydraulic steering valve, oil tank, hydraulic pump, cooler, and front and rear
steering hydraulic cylinders. The hydraulic pump is connected to the engine to provide
power for the steering system. When the steering wheel turns right, the hydraulic oil
outputs from the R port of the steering valve drive the front steering hydraulic cylinder to
move left, and the front wheel turns right. The rear steering hydraulic cylinder is in series
with the front steering hydraulic cylinder and drives the rear wheel to turn left. When the
robot body turns left, the principle is the same as that of turning right, and the direction
is opposite.
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Wheel steering control is realized by the PID algorithm. The input is the target angle
of the wheel, the output is the position of the motor, and the feedback is the actual angle of
the wheel. To achieve better control of the wheel angle, the front wheel steering angle is
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measured via the method of integrating the kinematic estimation and transfer model of the
steering system, expressed as:

δ̂(k)= Gδa(k) + (1−G)δb(k), (19)

G is the weight parameter used for front wheel steering angle estimation, δa is the
front wheel steering angle through the hydraulic steering system transfer model, and δb
is the front wheel steering angle obtained via kinematics estimation. According to the
research [31], the relationship between steering wheel angular velocity and front wheel
steering angle is expressed as:

δa(k) = δ̃(k− 1) +
∫
(Ghωs(k) + µ)dt, (20)

where Gh is the transfer coefficient of the hydraulic steering system, ωs the angular rate of
the steering wheel motor, and µ the angular rate noise caused by hydraulic leakage.

δb(k) = arctan(
.
φ(k)L
2v(k)

), (21)

where
.
φ is the angular rate of rotation along the direction of the robot body, v the speed of

the reference point of the robot body, and L the axial distance.

2.6. Dataset Production

The dataset used was collected by a vehicle camera installed at the bottom of the
high-altitude gap sprayer; the camera was placed 80 cm above the ground. The data were
collected on 27 August 2020 at the Baima Experimental Base of the Nanjing Institute of
Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, China. The onboard
camera was a Ruierwei model USBFHD01M with a maximum resolution of 1920 × 1080. A
total of 436 images were obtained via frame sampling and clipping.

The rectangular box-labeling tool in Labelme (v4.5.10) was used to label the crop
objects in the image, where corn is labeled as 1 and weeds as 0. The labeled data were
divided into a training set and a verification set in a ratio of 8:2. Owing to the small size of
the dataset, the data were repeated twice. In addition, the images were enhanced using
random contrast adjustment, random brightness adjustment, random left–right flipping,
and random noise addition according to the probability of 50%. The original image sizes
were adjusted to 640 × 320 pixels to facilitate easier training.

2.7. Model Building and Training

YOLOv5 was used in the present work for weed identification. The network includes
three modules: feature extraction, feature aggregation, and target prediction layers [32].
The feature extraction layer is mainly used to extract feature information at different levels
from an image. The feature aggregation layer is used to enhance the detection ability of the
network for objects of different scales. The target prediction layer is used to associate the
feature information of the image with the shape and position information of the object.

The model training platform configuration was an Intel core i7 10700 CPU with a main
frequency of 4.8 GHz and 16 GB of memory and an Nvidia RTX 2060 GPU with 11 GB of
memory. The environment was the Ubuntu 20.04 operating system, and the programming
language was Python 3.9.0. The stochastic gradient descent method was used to train the
model. The batch size was set to 8 and the momentum factor to 0.9. The other parameters
used the default values of YOLOv5. The confidence threshold was set as 0.5, and the
evaluation indexes selected were precision, recall, and mean average precision (mAP).

Precision =
TP

TP + FP
, (22)
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Recall =
TP

TP + FN
, (23)

mAP =
AP1 + AP2

2
, (24)

The training results of the model are shown in Figure 11. In the first 3000 rounds, the
jitter of each index is relatively intense, and the training parameters tend to be stable in
the range 3000–6000 rounds. After 6000 rounds, the accuracy of the model increases and
the recall rate and mAP value decrease. Therefore, the model output after 6000 rounds
of training was selected as the weed identification model in the present work, with an
accuracy, recall rate, and mAP of 87.7%, 84.5%, and 79.3%, respectively.

1 

.

Figure 11. Model training results.

Figure 12 displays the identification results of corn and weeds based on the YOLOv5
convolutional neural network model. It is evident that the model accurately identifies both
corn and weed targets in complex field images, and the segmentation results closely align
with the actual values.
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2.8. Weeding Decision Method

The spraying control flowchart is shown in Figure 13. The camera installed at the
bottom of the machine automatically obtains an image of the working area with a length of
2 m and a width of 1 m, obtains the contour and position information of crops and weeds
through the crop–weed identification network, and then calculates whether there are weeds
in the spraying area of each nozzle. If there are weeds in the area, the nozzle is opened for
tk, and if not, no action is taken. The solenoid valve opening time tk can be calculated by
the solenoid valve dead time tdead, the distance len from the camera to the solenoid valve,
and the vehicle speed v. Here, tdead = 2 s and len = 1 m:

tk = tdead +
len
v

(25)
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2.9. Spray System

The spray system of the plant protection robot is shown in Figure 14. The spraying
module includes the tank, pump, valve group, distributor, electronic control nozzle, and other
components which can adjust the pressure and flow of the spraying as well as control each
nozzle to open and close independently. The electrical system is composed of a distributed
input/output (IO) module and wiring harness. Through the controller area network (CAN)
bus, the navigation system, the robot control, and working systems are connected, and the
working state of the working parts is adjusted based on the control instructions.
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3. Results and Discussion

To test the feasibility of the proposed plant protection robot unmanned operation
system, a field experiment was carried out at the Baima Experimental Base of the Nanjing
Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, China in
August 2021. The row spacing of the tested maize was 50 cm, the plant spacing 25 cm, and
the plant height 15–25 cm. The main component of herbicide is mesotrione, which is safe
for corn at the 3–5-leaf stage. The experiment was carried out twice. The first area was 60 m
long, 6 m wide, and consisted of three working paths. The second area was 50 m long, 8 m
wide, and consisted of four working paths. During the operation, the robot traveled and
operated according to the planned path, setting a straight-line speed of 3.6 km/h. During
operation, the lateral deviation of the robot and the opening and closing of the solenoid
valve were recorded using a GCAN-401 data recorder.

Figure 15 shows the statistical data of the lateral error of the operating path of the
plant protection robot. When the robot works in a straight line, the average lateral error of
the robot is 0.036 m, the maximum lateral error 0.2 m, and the average root-mean-square
error of lateral is 0.053 m, the average velocity error is 0.034 m/s, and the average root
mean square error of velocity is 0.045 m/s.

Agriculture 2023, 13, x FOR PEER REVIEW 13 of 16 
 

 

Figure 14. Spray system. 

3. Results and Discussion 

To test the feasibility of the proposed plant protection robot unmanned operation 

system, a field experiment was carried out at the Baima Experimental Base of the Nanjing 

Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, China 

in August 2021. The row spacing of the tested maize was 50 cm, the plant spacing 25 cm, 

and the plant height 15–25 cm. The main component of herbicide is mesotrione, which is 

safe for corn at the 3–5-leaf stage. The experiment was carried out twice. The first area was 

60 m long, 6 m wide, and consisted of three working paths. The second area was 50 m 

long, 8 m wide, and consisted of four working paths. During the operation, the robot trav-

eled and operated according to the planned path, setting a straight-line speed of 3.6 km/h. 

During operation, the lateral deviation of the robot and the opening and closing of the 

solenoid valve were recorded using a GCAN-401 data recorder. 

Figure 15 shows the statistical data of the lateral error of the operating path of the 

plant protection robot. When the robot works in a straight line, the average lateral error 

of the robot is 0.036 m, the maximum lateral error 0.2 m, and the average root-mean-square 

error of lateral is 0.053 m, the average velocity error is 0.034 m/s, and the average root 

mean square error of velocity is 0.045 m/s. 

 

Figure 15. Lateral and velocity error of the path: (a) Data of Path1; (b) Data of Path2; (c) Data of 

Path3; (d) Data of Path4; (e) Data of Path5; (f) Data of Path6; 

Figure 16 shows the results of the weeding operation, in which green represents the 

weedy zone of the test field and the red is the clean zone. As determined statistically, the 

area of the test field is 720 m2 and the area of the weedy zones in the test field is 180 m2. 

The area ratio of weedy zones to field is 25%, which saves 75% of the herbicide compared 

that dispensed in full spraying mode. The area of weedy zones in the blue frame ac-

counted for 62.3% of the weedy zones in the field, and the area ratio of weedy zones in the 

blue frame to field was 51.7%, which was approximately 2.05 times of that not in the blue 

frame. It can be concluded from the operational effectiveness diagram that weeds tend to 

cluster in the field environment. In other words, weed distribution in the field is uneven, 

with certain areas having a significantly higher ratio of weed distribution area to land area 

compared to others. This analysis suggests that guiding robot applications based on weed 

identification can lead to a substantial reduction in pesticide usage. 

Figure 15. Lateral and velocity error of the path: (a) Data of Path1; (b) Data of Path2; (c) Data of
Path3; (d) Data of Path4; (e) Data of Path5; (f) Data of Path6.

Figure 16 shows the results of the weeding operation, in which green represents the
weedy zone of the test field and the red is the clean zone. As determined statistically, the
area of the test field is 720 m2 and the area of the weedy zones in the test field is 180 m2. The
area ratio of weedy zones to field is 25%, which saves 75% of the herbicide compared that
dispensed in full spraying mode. The area of weedy zones in the blue frame accounted for
62.3% of the weedy zones in the field, and the area ratio of weedy zones in the blue frame
to field was 51.7%, which was approximately 2.05 times of that not in the blue frame. It can
be concluded from the operational effectiveness diagram that weeds tend to cluster in the
field environment. In other words, weed distribution in the field is uneven, with certain
areas having a significantly higher ratio of weed distribution area to land area compared to
others. This analysis suggests that guiding robot applications based on weed identification
can lead to a substantial reduction in pesticide usage.
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Figure 16. Map of weeding: “Weedy zone” refers to an area in which the weed identification system
detected weeds within that region under a confidence threshold of 0.5. “Clean zone” indicates that
under a confidence threshold of 0.5, the system did not detect any weeds within that area.

4. Conclusions

In this paper, we have designed a weeding robot by harnessing the power of both
intelligent control technology and deep learning. To achieve the goal of unmanned weeding
assignments, we have developed automatic path-planning and path-tracking algorithms.
To enable autonomous driving, we have implemented speed control and steering wheel
systems using PID algorithms. For enhanced intelligent operation, we have designed a
weed identification system based on YOLOv5. To achieve precise weeding, we have also
created an electronic spraying system.

According to the results of field experiment, the average lateral error of the robot is
0.036 m, the maximum lateral error is 0.2 m, the average root mean square error is 0.053 m,
the average velocity error is 0.034 m/s, and the average root mean square error of velocity
is 0.045 m/s when the robot works in a straight line. In the weeding operations, the area
ratio of weedy zones to field is 25%, which saves 75% of the herbicide compared to that
dispensed in full spraying mode.

In the future, we plan to delve deeper into the vehicle body dynamics model of the
robot to enhance path tracking accuracy. We will also create a comprehensive weed dataset
to improve weed identification accuracy under various working conditions. Additionally,
we aim to incorporate more sensors, such as laser radar, ultrasonic waves, and gyroscopes,
to further enhance the robot’s positioning and control accuracy.
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