Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (191)

Search Parameters:
Keywords = agricultural and property damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1092 KiB  
Article
Exogenous Application of Nano-Silicon and Melatonin Ameliorates Salinity Injury in Coix Seedlings
by Beibei Qi, Junkai Liu, Ruixue Zheng, Jiada Huang and Chao Wu
Agronomy 2025, 15(8), 1862; https://doi.org/10.3390/agronomy15081862 - 31 Jul 2025
Viewed by 128
Abstract
Soil salinization is a major environmental constraint that poses a significant threat to global agricultural productivity and food security. Coix lacryma-jobi L., a minor cereal crop that is valued for its nutritional and medicinal properties, displays moderate susceptibility to salinity stress. Although exogenous [...] Read more.
Soil salinization is a major environmental constraint that poses a significant threat to global agricultural productivity and food security. Coix lacryma-jobi L., a minor cereal crop that is valued for its nutritional and medicinal properties, displays moderate susceptibility to salinity stress. Although exogenous treatments have been demonstrated to enhance plant resilience against various biotic and abiotic stresses, the potential of nano-silicon (NaSi), melatonin (MT), and their combined application in mitigating salinity-induced damage, particularly in relation to the medicinal properties of this medicinal and edible crop, remains poorly understood. This study investigated the effects of exogenous NaSi and MT application on Coix under salinity stress using two varieties with contrasting salinity tolerances. The plants were subjected to salinity stress and treated with NaSi, MT, or a combination of both. The results revealed that salinity stress significantly impaired the agronomic traits, physiological performance, and accumulation of medicinal compounds of Coix. Exogenous MT application effectively alleviated salinity-induced damage to agronomic and physiological parameters, exhibiting superior protective effects compared to NaSi treatment. Strikingly, the combined application of MT and NaSi demonstrated synergistic effects, leading to substantial improvements in growth and physiological indices. However, the medicinal components were only marginally affected by exogenous treatments under both control and salinity-stressed conditions. Further clarification of the molecular mechanisms underlying salinity stress responses and exogenous substance-induced effects is critical to achieving a comprehensive understanding of these protective mechanisms. Full article
Show Figures

Figure 1

29 pages, 9335 KiB  
Review
Plant Disease Suppressiveness Enhancement via Soil Health Management
by Chinmayee Priyadarshini, Rattan Lal, Pu Yuan, Wenshan Liu, Ashna Adhikari, Santosh Bhandari and Ye Xia
Biology 2025, 14(8), 924; https://doi.org/10.3390/biology14080924 - 23 Jul 2025
Viewed by 426
Abstract
Managing soil-borne pathogens and diseases in plants is particularly challenging because the pathogens that cause them can persist in the soil for extended periods, often resulting in repeated crop damage in affected areas. These destructive diseases compromise plant health by weakening the root [...] Read more.
Managing soil-borne pathogens and diseases in plants is particularly challenging because the pathogens that cause them can persist in the soil for extended periods, often resulting in repeated crop damage in affected areas. These destructive diseases compromise plant health by weakening the root systems, which makes the plants more susceptible to environmental stress and nutritional deficiencies. Every year in the United States, a whopping $9.6 million is allocated to reverse the harmful effects of pesticides on humans, plants, animals, and the environment. On the contrary, disease-suppressive soils offer an effective strategy for controlling pathogens while ensuring the least contamination of the environment. These soils can be managed by both conventional and advanced methods, such as reduced tillage, crop rotation, organic amendments, nanoparticles, omics approaches, and biofumigation. However, these soils can be local in nature, and their properties might be disrupted by common agricultural practices like tillage and agro-chemical application. This review synthesizes the concepts and mechanisms of disease suppression in soils and explores the ways that can be improved through the management of soil health for enhanced plant health and yield. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants (2nd Edition))
Show Figures

Figure 1

16 pages, 2821 KiB  
Article
Metabolomic Analysis Uncovers the Presence of Pimarenyl Cation-Derived Diterpenes as Insecticidal Constituents of Sphagneticola trilobata
by Lilia Chérigo, Juan Fernández, Ramy Martínez and Sergio Martínez-Luis
Plants 2025, 14(14), 2219; https://doi.org/10.3390/plants14142219 - 17 Jul 2025
Viewed by 398
Abstract
Aphis gossypii is a significant global pest that impacts numerous agricultural crops and vegetables, causing direct damage to food plants and indirect damage through the transmission of phytopathogenic viruses, primarily begomoviruses. In Panama, particularly in the Azuero region, viral infections transmitted by this [...] Read more.
Aphis gossypii is a significant global pest that impacts numerous agricultural crops and vegetables, causing direct damage to food plants and indirect damage through the transmission of phytopathogenic viruses, primarily begomoviruses. In Panama, particularly in the Azuero region, viral infections transmitted by this aphid can affect a substantial share of tomato crops cultivated for industrial use. A traditional alternative to synthetic pesticides involves exploring plant extracts with insecticidal properties derived from wild plants found in our tropical forests, which can be easily prepared and applied by farmers. In this context, the present research aimed to evaluate the insecticidal activity of ethanolic extracts from the stems and leaves of Sphagneticola trilobata on both nymphs and adults of A. gossypii. Mortality was assessed at 24, 48, and 72 h after applying three doses of each extract (25, 50, and 100 µg/L). A standard phytochemical analysis to determine insecticidal activity revealed that both extracts exhibited significant efficacy at the highest concentration tested; however, the leaf extract demonstrated greater effectiveness at lower concentrations. A comprehensive metabolomic study indicated that the active compounds are diterpenes derived from the pimarenyl cation. These compounds have been extensively documented for their insecticidal potential against various insect species, suggesting that ethanolic extracts from this plant could serve as viable candidates for agricultural insecticides to combat aphid infestations. Full article
(This article belongs to the Special Issue Sustainable Strategies for Managing Plant Diseases)
Show Figures

Figure 1

26 pages, 4733 KiB  
Article
Structural Characterization and Anti-Ultraviolet Radiation Damage Activity of Polysaccharides from Helianthus annuus (Sunflower) Receptacles
by Xiaochun Chen, Zhiying Wei, Xiaoying Mo, Yantong Lu, Guangjuan Pan, Zhenzhen Pan, Yaohua Li, Hui Tian and Xiaojiao Pan
Molecules 2025, 30(14), 2943; https://doi.org/10.3390/molecules30142943 - 11 Jul 2025
Viewed by 338
Abstract
Helianthus annuus L. (H. annuus) receptacles, a major agricultural by-product generated during seed processing, are currently underutilized. This study aimed to explore the valorization potential of this by-product by extracting H. annuus receptacles total polysaccharides (HRTP) and characterizing their potential [...] Read more.
Helianthus annuus L. (H. annuus) receptacles, a major agricultural by-product generated during seed processing, are currently underutilized. This study aimed to explore the valorization potential of this by-product by extracting H. annuus receptacles total polysaccharides (HRTP) and characterizing their potential as natural ingredients in ultraviolet (UV)-protective cosmetics. A new purified polysaccharide named H. annuus receptacles polysaccharide-1 (HRP-1) was isolated, likely exhibiting a backbone of alternating →4)-α-D-GalA-(1→ and →4)-α-D-GalA(6-OCH3)-(1→ units, with a weight-average molecular weight (Mw) of 163 kDa. HRTP demonstrated significant protective effects against UV-induced damage in human immortalized keratinocyte (HaCaT) cells by suppressing intracellular reactive oxygen species (ROS) levels and downregulating MAPK-p38/ERK/JNK pathways, thereby inhibiting inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) and matrix metalloproteinases (MMP-1, MMP-3, and MMP-9). Additionally, HRTP exhibited moisturizing properties. These findings highlight H. annuus receptacle polysaccharides as sustainable, bioactive ingredients for eco-friendly sunscreen formulations, providing a practical approach to converting agricultural by-products into high-value industrial biomaterials. Full article
Show Figures

Graphical abstract

14 pages, 2881 KiB  
Article
Nano-Titanium Dioxide Regulates the Phenylpropanoid Biosynthesis of Radish (Raphanus sativus L.) and Alleviates the Growth Inhibition Induced by Polylactic Acid Microplastics
by Lisi Jiang, Wenyuan Li, Yuqi Zhang, Zirui Liu, Yangwendi Yang, Lixin Guo, Chang Guo, Zirui Yu and Wei Fu
Agriculture 2025, 15(14), 1478; https://doi.org/10.3390/agriculture15141478 - 11 Jul 2025
Viewed by 335
Abstract
Nano-titanium dioxide (nano-TiO2) can alleviate oxidative damage in plants subjected to abiotic stress, interfere with related gene expression, and change metabolite content. Polylactic acid (PLA) microplastics can inhibit plant growth, induce oxidative stress in plant cells, and alter the biophysical properties [...] Read more.
Nano-titanium dioxide (nano-TiO2) can alleviate oxidative damage in plants subjected to abiotic stress, interfere with related gene expression, and change metabolite content. Polylactic acid (PLA) microplastics can inhibit plant growth, induce oxidative stress in plant cells, and alter the biophysical properties of rhizosphere soil. In this study, untargeted metabolomics (LC-MS) and RNA-seq sequencing were performed on radish root cells exposed to nano-TiO2 and PLA. The results showed that nano-TiO2 alleviated the growth inhibition of radish roots induced by PLA. Nano-TiO2 alleviated PLA-induced oxidative stress, and the activities of SOD and POD were decreased by 28.6% and 36.0%, respectively. A total of 1673 differentially expressed genes (DEGs, 844 upregulated genes, and 829 downregulated genes) were detected by transcriptome analysis. Metabolomics analysis showed that 5041 differential metabolites were involved; they mainly include terpenoids, fatty acids, alkaloids, shikimic acid, and phenylpropionic acid. Among them, phenylpropanoid biosynthesis as well as flavone and flavonol biosynthesis were the key metabolic pathways. This study demonstrates that nano-TiO2 mitigates PLA phytotoxicity in radish via transcriptional and metabolic reprogramming of phenylpropanoid biosynthesis. These findings provide important references for enhancing crop resilience against pollutants and underscore the need for ecological risk assessment of co-existing novel pollutants in agriculture. Full article
Show Figures

Figure 1

23 pages, 1237 KiB  
Review
Resource Recovery from Green Tide Biomass: Sustainable Cascading Biorefinery Strategies for Ulva spp.
by Gianluca Ottolina, Federica Zaccheria and Jacopo Paini
Biomass 2025, 5(3), 41; https://doi.org/10.3390/biomass5030041 - 2 Jul 2025
Viewed by 523
Abstract
This review examines sustainable cascading biorefinery strategies for the green alga Ulva, which is globally prevalent in eutrophic marine waters and often forms extensive “green tides.” These blooms cause substantial environmental and economic damage to coastal communities. The primary target products within [...] Read more.
This review examines sustainable cascading biorefinery strategies for the green alga Ulva, which is globally prevalent in eutrophic marine waters and often forms extensive “green tides.” These blooms cause substantial environmental and economic damage to coastal communities. The primary target products within an Ulva biorefinery typically encompass salts, lipids, proteins, cellulose, and ulvan. Each of these components possesses unique properties and diverse applications, contributing to the economic robustness of the biorefinery. Salts can be repurposed for agricultural or even human consumption. Lipids offer high-value applications in nutraceuticals and animal feed. Proteins present significant potential as plant-based nutritional supplements. Cellulose can be transformed into various advanced materials. Finally, ulvan, a polyanionic oligosaccharide unique to Ulva, holds promise due to its distinct properties, particularly in the biomedical field. Furthermore, state-of-the-art chemical modifications of ulvan are presented with the aim of tailoring its properties and broadening its potential applications. Future research should prioritize optimizing these integrated extraction and fractionation processes. Furthermore, a multi-product biorefining approach, integrated with robust Life Cycle Assessment studies, is vital for transforming this environmental challenge into a significant opportunity for sustainable resource valorization and economic growth. Full article
Show Figures

Figure 1

20 pages, 675 KiB  
Review
An Overview of α-Pyrones as Phytotoxins Produced by Plant Pathogen Fungi
by Antonio Evidente
Molecules 2025, 30(13), 2813; https://doi.org/10.3390/molecules30132813 - 30 Jun 2025
Viewed by 273
Abstract
Crop diseases negatively affect the quality and quantity of agricultural products, with significant economic and social consequences. These problems become emergencies in a world where the safe production of food for human health is becoming increasingly pressing. Microorganisms, including phytopathogenic fungi, are the [...] Read more.
Crop diseases negatively affect the quality and quantity of agricultural products, with significant economic and social consequences. These problems become emergencies in a world where the safe production of food for human health is becoming increasingly pressing. Microorganisms, including phytopathogenic fungi, are the main organisms responsible for these diseases, which cause devastating damage. Environmental pollution generated by human activities causes further significant reductions in agricultural production, as well as the expansion of metropolitan areas, and climate change. Phytotoxins produced by pathogenic fungi play a fundamental role in the induction of diseases by directly interfering with the physiological processes of agricultural plants. They are secondary metabolites that can belong to all the different classes of natural compounds, and their structures and biological activities have been extensively studied. These substances have often been shown to possess other interesting biological activities for potential applications both in agriculture and in other fields, such as biotechnology and medicine. This review focuses on phytotoxic α-pyrones produced by plant pathogenic fungi, describing in detail all their chemical and biological properties and, in some cases, the results of studies on their structure-activity relationship and on the potential practical applications in various sectors. Full article
Show Figures

Figure 1

19 pages, 2415 KiB  
Article
Coupled Effects of Polyethylene Microplastics and Cadmium on Soil–Plant Systems: Impact on Soil Properties and Cadmium Uptake in Lettuce
by Zhiqin Zhang and Boyuan Bi
Toxics 2025, 13(7), 555; https://doi.org/10.3390/toxics13070555 - 30 Jun 2025
Viewed by 780
Abstract
Microplastics (MPs) and cadmium (Cd) in the soil environment are expected to pose a serious threat to agricultural production. However, the effect of the interaction between them on the soil–plant system and the mechanism of MPs on plant Cd uptake are still unclear. [...] Read more.
Microplastics (MPs) and cadmium (Cd) in the soil environment are expected to pose a serious threat to agricultural production. However, the effect of the interaction between them on the soil–plant system and the mechanism of MPs on plant Cd uptake are still unclear. Therefore, the effects of different concentrations of polyethylene (PE-MPs, 0, 1.0% and 2.0%), alone or combined with Cd, on soil properties, plant growth and Cd uptake were investigated through pot experiments. The results showed that the single contamination of MPs and Cd and their interaction (MPs + Cd) significantly decreased soil moisture and pH; however, it increased soil organic matter (SOM) and total nitrogen (TN). Soil urease and catalase activities were significantly decreased and sucrase and alkaline phosphatase activities were increased with or without Cd addition. The exposure of PE and Cd, alone or combined, significantly and negatively affected plant biomass, photosynthetic parameters, and caused oxidative damage to plants, and the overall toxicity to plants increases with the increase in PE concentration. Moreover, co-pollution causes greater plant toxicity than the individual pollution of PE or Cd. Plants can resist oxidative stress by increasing superoxide dismutase (SOD) and peroxidase (POD) activities. The heat map showed that soil environmental factors were significantly correlated with plant growth; and the results of redundancy analysis (RDA) indicated that for plant physiological characteristics, soil properties under PE, alone or co-contaminated with Cd, explained a total of 85.77% and 97.45%, respectively. This indicated that the alteration of the soil microenvironment is the key factor influencing plant growth. The results of the partial least squares path model (PLS-PM) indicated that plant oxidative damage and biomass had significant positive and negative direct effects on plant Cd uptake, respectively. The linear model of relative importance (%) further revealed in depth that soil moisture (relative importance: 33.60%) and plant biomass (relative importance: 20.23%) were, respectively, regarded as the most important soil environmental factors and plant indicators affecting their Cd uptake. This study provided theoretical support for assessing the risks of MPs and Cd co-pollution to agricultural ecosystems. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

26 pages, 3348 KiB  
Article
Revalorization of Vinasse as a Farmland Improver Through Multi-Objective Genetic Algorithms: A Circular Economy Approach
by Aarón Montiel-Rosales, Nayeli Montalvo-Romero, Gregorio Fernández-Lambert, Horacio Bautista-Santos, Yair Romero-Romero and Juan Manuel Carrión-Delgado
Land 2025, 14(7), 1359; https://doi.org/10.3390/land14071359 - 26 Jun 2025
Viewed by 594
Abstract
Vinasse is a waste generated from the sugarcane ethanol production process. It is an effluent that, when discharged into the environment, causes serious damage. This study evaluated the potential of vinasse as a regenerator of agricultural soil through Multi-Objective Genetic Algorithms (MOGAs). This [...] Read more.
Vinasse is a waste generated from the sugarcane ethanol production process. It is an effluent that, when discharged into the environment, causes serious damage. This study evaluated the potential of vinasse as a regenerator of agricultural soil through Multi-Objective Genetic Algorithms (MOGAs). This study focused on optimizing the amount of vinasse that should be applied, depending on its composition and the needs of the agricultural land. The methodology included five phases where the properties of the cultivated land with and without vinasse were evaluated; with the experimental data, MOGAs were constructed to evaluate soil: (a) fertility, (b) quality, and (c) health. The vinasse was characterized; meanwhile, to understand how the soil behaves depending on the incorporation of vinasse, a factorial experiment was designed in soils where sugarcane is grown in Mexico. The models were built and optimized using MATLAB® and evaluated using Pareto Front. This study showed that vinasse improved soil fertility, quality, and health, with an optimal ratio of mixture formed by 40% vinasse and 60% irrigation water. This ratio allows the development of appropriate soil conditions for the growth of the crop—this is achieved after the application of the vinasse during the preparation of the land for cultivation, which is reached at approximately 20 cm depth—(a) fertility with K of 150 to 230 mg/kg, P of 25 to 35 mg/kg, and N of 17 to 19 mg/kg; (b) quality with MC of 90 to 95%, OM of 3.5 to 4%, and pH of 6.5 to 7.5 UpH; and (c) health with equity of 78% to 80%, abundance of 75% to 80%, and diversity of 80% to 95%. A comparative analysis between an experimental field with and without vinasse showed a 24% increase (ton/ha) in sugarcane yield. The value of vinasse is highlighted, not only as a waste to be treated, but as a regenerative input aligned with the Circular Economy. Full article
Show Figures

Figure 1

43 pages, 856 KiB  
Review
Antioxidant Application of Clove (Syzygium aromaticum) Essential Oil in Meat and Meat Products: A Systematic Review
by Eduardo Valarezo, Guicela Ledesma-Monteros, Ximena Jaramillo-Fierro, Matteo Radice and Miguel Angel Meneses
Plants 2025, 14(13), 1958; https://doi.org/10.3390/plants14131958 - 26 Jun 2025
Viewed by 822
Abstract
The essential oil isolated from clove (Syzygium aromaticum) is used in food, medicine, cosmetics, agriculture, and aromatherapy for its antimicrobial, antioxidant, and analgesic properties. This systematic review, following the PRISMA 2020 methodology, evaluates the application of clove essential oil in meat [...] Read more.
The essential oil isolated from clove (Syzygium aromaticum) is used in food, medicine, cosmetics, agriculture, and aromatherapy for its antimicrobial, antioxidant, and analgesic properties. This systematic review, following the PRISMA 2020 methodology, evaluates the application of clove essential oil in meat and meat products to determine its effectiveness in preventing oxidative damage and improving product quality. A search was performed in various databases, obtaining 639 studies. After removing duplicates and applying inclusion and exclusion criteria, 43 relevant articles were selected. Studies published between 1999 and 2024 that evaluated clove essential oil in meat for human consumption were included, excluding research on extracts other than essential oil or supplements for animal feed. The studies suggest that clove essential oil improves parameters such as oxidative stability, colour preservation, and the reduction in reactive compounds such as thiobarbituric acid-reactive substances, thereby increasing the shelf life and safety of meat and meat products. Oxidation is reduced through free radical inhibition and lipid protection. The main variability detected includes the type of meat, application method and storage conditions. The concentrations used ranged from 2.65 mL/kg to 5%. Although variability in methodologies and concentrations used is a limitation for meta-analysis, the findings support the potential of clove essential oil as a natural alternative for preserving meat products, responding to consumer demand for safer foods free of synthetic preservatives. Full article
(This article belongs to the Special Issue Chemical Analysis and Biological Activities of Plant Essential Oils)
Show Figures

Figure 1

36 pages, 4774 KiB  
Review
Exploring the Role of Advanced Composites and Biocomposites in Agricultural Machinery and Equipment: Insights into Design, Performance, and Sustainability
by Ehsan Fartash Naeimi, Kemal Çağatay Selvi and Nicoleta Ungureanu
Polymers 2025, 17(12), 1691; https://doi.org/10.3390/polym17121691 - 18 Jun 2025
Viewed by 745
Abstract
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers [...] Read more.
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers (FRPs)—offer appealing alternatives due to their high specific strength and stiffness, corrosion resistance, and design flexibility. Meanwhile, increasing environmental awareness has triggered interest in biocomposites, which contain natural fibers (e.g., flax, hemp, straw) and/or bio-based resins (e.g., PLA, biopolyesters), aligned with circular economy principles. This review offers a comprehensive overview of synthetic composites and biocomposites for agricultural machinery and equipment (AME). It briefly presents their fundamental constituents—fibers, matrices, and fillers—and recapitulates relevant mechanical and environmental properties. Key manufacturing processes such as hand lay-up, compression molding, resin transfer molding (RTM), pultrusion, and injection molding are discussed in terms of their applicability, benefits, and limits for the manufacture of AME. Current applications in tractors, sprayers, harvesters, and planters are covered in the article, with advantages such as lightweighting, corrosion resistance, flexibility and sustainability. Challenges are also reviewed, including the cost, repairability of damage, and end-of-life (EoL) issues for composites and the moisture sensitivity, performance variation, and standardization for biocomposites. Finally, principal research needs are outlined, including material development, long-term performance testing, sustainable and scalable production, recycling, and the development of industry-specific standards. This synthesis is a practical guide for researchers, engineers, and manufacturers who want to introduce innovative material solutions for more efficient, longer lasting, and more sustainable agricultural machinery. Full article
(This article belongs to the Special Issue Biopolymers for Food Packaging and Agricultural Applications)
Show Figures

Figure 1

31 pages, 1469 KiB  
Review
Neurotoxic Effects of Pesticides: Implications for Neurodegenerative and Neurobehavioral Disorders
by Alexandra Andreea Botnaru, Ancuta Lupu, Paula Cristina Morariu, Alexandra Jităreanu, Alin Horatiu Nedelcu, Branco Adrian Morariu, Emil Anton, Maria Luisa Di Gioia, Vasile Valeriu Lupu, Oana Maria Dragostin, Madalina Vieriu and Ionela Daniela Morariu
J. Xenobiot. 2025, 15(3), 83; https://doi.org/10.3390/jox15030083 - 1 Jun 2025
Viewed by 1765
Abstract
Pesticides play an essential role in modern agriculture, yet increasing evidence links their widespread use to neurotoxic effects that contribute to both neurodegenerative and neurodevelopmental disorders. In recent years, new classes of pesticides such as neonicotinoids and pyrethroids have garnered attention due to [...] Read more.
Pesticides play an essential role in modern agriculture, yet increasing evidence links their widespread use to neurotoxic effects that contribute to both neurodegenerative and neurodevelopmental disorders. In recent years, new classes of pesticides such as neonicotinoids and pyrethroids have garnered attention due to their potential to disrupt neurodevelopment, even at low exposure levels. Furthermore, emerging evidence underscores the involvement of the gut–brain axis, neuroinflammation, and epigenetic modulation in pesticide-induced neuropathology. This review aims to synthesize these latest advancements while highlighting underexplored mechanisms, thereby offering a comprehensive and current perspective on pesticide-related neurotoxicity. Data from the Rapid Alert System for Food and Feed (RASFF) indicate that several food products include residues of pesticides recognized for their neurotoxic properties. Although environmental exposure levels are lower than those in occupational contexts, the magnitude and persistence of food-based exposure demand thorough evaluation. This review integrates evidence coming from epidemiological, in vivo and in vitro investigations, emphasizing the correlations between pesticide exposure and conditions such as Alzheimer’s disease, Parkinson’s disease, and cognitive deficits in children. Neurodevelopmental toxicity is especially alarming since symptoms may manifest subtly and with a delayed onset after early-life exposure, indicating the significant neurotoxic potential of pesticide residues and emphasizing the need for their careful evaluation in food safety assessments. Improved regulatory procedures and public health efforts are essential to reducing long-term brain damage. Full article
Show Figures

Graphical abstract

14 pages, 4128 KiB  
Article
Laser Texturing to Improve Wear Resistance of 65Mn Steel Rotary Tiller Blades: Effects of Scanning Speed
by Heng Xiao, Dongyan Yang, Yiding Ou, Junlan Zhang, Yue Hu and Lei Ma
Lubricants 2025, 13(5), 224; https://doi.org/10.3390/lubricants13050224 - 16 May 2025
Viewed by 589
Abstract
With rapid advancements in agricultural mechanization, enhancing the wear resistance and lifespan of rotary tiller blades is crucial for boosting productivity. This study examines how surface textures affect the friction and wear of 65Mn steel in quartz sand slurry. The results show that [...] Read more.
With rapid advancements in agricultural mechanization, enhancing the wear resistance and lifespan of rotary tiller blades is crucial for boosting productivity. This study examines how surface textures affect the friction and wear of 65Mn steel in quartz sand slurry. The results show that laser processing treatment significantly improves the wear resistance of 65Mn steel blades through the lubrication effect due to the wear debris capturing ability of the laser-processed micro-pits. Samples with surface textures processed using a laser scanning speed of 200 mm/s exhibit the best anti-wear property under loads of both 70 N and 100 N, reducing the wear loss by approximately 44.19% and 36.22%, respectively, compared to the non-textured samples. With the applied load increase to 100 N, laser-processed textures can still reduce wear damage but with an impaired anti-wear effect due to the gradually flattening of some textures due to long-term friction and crush damage by high load conditions. These findings help to augment wear resistance and prolong the operational lifespan of 65Mn steel rotary tiller blades, thereby contributing to a more robust understanding of the tribological enhancements achievable through the laser surface texturing process. Full article
Show Figures

Figure 1

17 pages, 3505 KiB  
Article
A Novel Hybrid Peptide VLP-Aβ Exhibits Antioxidant Activity In Vitro and In Vivo via KEAP1-NRF2-ARE Signaling Pathway
by Junyong Wang, Wenxiu Zhang, Rijun Zhang, Xuelian Zhao, Jing Zhang, Yichen Zhou, Yucui Tong, Zaheer Abbas, Zhenzhen Li, Haosen Zhang, Di Yang, Sichao Chen, Cong Hu, Dayong Si and Xubiao Wei
Antioxidants 2025, 14(5), 583; https://doi.org/10.3390/antiox14050583 - 12 May 2025
Viewed by 515
Abstract
Oxidative stress plays a crucial role in the development and progression of various diseases. Antioxidant peptides have attracted great attention in agricultural, food, and clinical fields due to their low toxicity, high efficacy, and easy absorption, but the development of antioxidant peptides and [...] Read more.
Oxidative stress plays a crucial role in the development and progression of various diseases. Antioxidant peptides have attracted great attention in agricultural, food, and clinical fields due to their low toxicity, high efficacy, and easy absorption, but the development of antioxidant peptides and their in-depth molecular mechanisms are still lacking. The previous study established a platform for the high-throughput design and screening of multifunctional peptides and successfully identified a novel hybrid peptide, VLP-Aβ (VA), which exhibits both antioxidant and immunomodulatory properties. This study aimed to evaluate the antioxidant activity of VA and investigate the underlying molecular mechanisms. The antioxidant effects of VA were evaluated using both in vitro (H2O2-induced oxidative damage in HepG2 cells) and in vivo (CCl4-induced liver damage in mice) models. VA exhibited significant antioxidant activity both in vitro and in vivo, significantly improving the cell viability and increasing the levels of antioxidant enzymes (SOD, CAT, GSH-Px) to alleviate oxidative stress. These findings indicated that the antioxidant effect of VA is dependent on NRF2, as evidenced by NRF2 knockdown experiments. Further investigation revealed that VA alleviates oxidative stress by modulating the KEAP1-NRF2-ARE signaling pathway. These findings provide insights into the properties of the antioxidant peptide VA, expand the understanding of its molecular mechanisms, and suggest new opportunities for developing VA as a novel functional agent in the agricultural, food, and clinical industries. Full article
Show Figures

Figure 1

20 pages, 2336 KiB  
Article
The Impact of Extreme Weather Events on Agricultural Insurance in Europe
by Alina Claudia Manescu, Flavia Mirela Barna, Horatiu Dan Regep, Camelia Maria Manescu and Cristina Cerba
Agriculture 2025, 15(9), 995; https://doi.org/10.3390/agriculture15090995 - 3 May 2025
Viewed by 1126
Abstract
In Europe, climate change has a big impact on agriculture, due to an increase in the frequency and severity of extreme weather events. Many and prolonged droughts, heatwaves, floods, and hailstorms cause major economic losses that affect crop quality and generate instability in [...] Read more.
In Europe, climate change has a big impact on agriculture, due to an increase in the frequency and severity of extreme weather events. Many and prolonged droughts, heatwaves, floods, and hailstorms cause major economic losses that affect crop quality and generate instability in supply chains. In this study, we analyse the evolution of extreme weather events across Europe starting from the 1980s. The economic losses caused by extreme events were divided into three categories: heatwaves, frost, and fires; floods; and storms. In order to identify the trend and any shifts of the trend of the extreme weather events, we calculated moving averages over different periods: 5, 10, 20, and 30 years. The moving average analysis shows how climate change has altered from causing isolated and temporary economic losses to generate a consistent upward trend in losses, with an increasingly significant impact in the short, medium, and long term. In the second part of this study, we conducted a correlation analysis between the economic losses caused by extreme weather events and variations in property insurance premiums (fire and other property damage—which includes crop insurance premiums) and we calculated correlation coefficients directly, with a one-year lag, and with a two-year lag. Thus, we analysed whether insurance markets respond immediately to incurred losses or whether, depending on climate trends, there are delays in premium adjustments. Full article
Show Figures

Figure 1

Back to TopTop