Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,200)

Search Parameters:
Keywords = age of peak performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 741 KiB  
Article
Changes in Cardiac Function and Exercise Capacity Following Ferric Carboxymaltose Administration in HFrEF Patients with Iron Deficiency
by Anastasios Tsarouchas, Constantinos Bakogiannis, Dimitrios Mouselimis, Christodoulos E. Papadopoulos, Efstratios K. Theofillogiannakos, Efstathios D. Pagourelias, Ioannis Kelemanis, Aristi. Boulmpou, Antonios P. Antoniadis, Nikolaos Fragakis, Georgios Efthimiadis, Theodoros D. Karamitsos and Vassilios P. Vassilikos
Diagnostics 2025, 15(15), 1941; https://doi.org/10.3390/diagnostics15151941 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Iron deficiency (ID) is a common and prognostically relevant comorbidity in heart failure with reduced ejection fraction (HFrEF). It contributes to reduced functional status, exercise capacity, and survival. Intravenous ferric carboxymaltose (FCM) improves symptoms, but its effect on cardiac structure and function [...] Read more.
Background/Objectives: Iron deficiency (ID) is a common and prognostically relevant comorbidity in heart failure with reduced ejection fraction (HFrEF). It contributes to reduced functional status, exercise capacity, and survival. Intravenous ferric carboxymaltose (FCM) improves symptoms, but its effect on cardiac structure and function remains incompletely understood. The aim of this study was to assess the impact of intravenous FCM on echocardiographic indices of left ventricular (LV), left atrial (LA), and right ventricular (RV) morphology and function in HFrEF patients with ID and determine whether these changes correlate with improvements in exercise capacity. Methods: This sub-analysis of the RESAFE-HF registry (NCT04974021) included 86 HFrEF patients with ID (median age 71.8 years, 83% male). Transthoracic echocardiography was performed at baseline and 12 months post-FCM. Parameters assessed included LV ejection fraction (LVEF), LV global longitudinal strain (GLS), LV diastolic function grade, LAVi, LA strain, TAPSE, and RV free wall strain (FWS). Peak VO2 was measured to assess exercise capacity. Results: LVEF improved from 29.3 ± 7.8% to 32.5 ± 10.6% (p < 0.001), LV GLS from −7.89% to −8.62%, and the LV diastolic dysfunction grade improved (p < 0.001). LAVi, peak LA strain, TAPSE, and RV FWS also showed significant improvement. Peak VO2 increased from 11.3 ± 3.2 to 12.1 ± 4.1 mL/min/kg (p < 0.001). Improvements in LVEF, RV FWS, and LV GLS were independent predictors of VO2 increase (p < 0.001, p < 0.001, and p = 0.01, respectively), explaining 42% of the variance. Conclusions: FCM therapy improves biventricular and atrial function, with echocardiographic gains correlating with an enhanced exercise capacity in HFrEF patients with ID. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

22 pages, 6172 KiB  
Article
Ethnomedicinal Properties of Wild Edible Fruit Plants and Their Horticultural Potential Among Indigenous Isan Communities in Roi Et Province, Northeastern Thailand
by Piyaporn Saensouk, Surapon Saensouk, Thawatphong Boonma, Auemporn Junsongduang, Min Khant Naing and Tammanoon Jitpromma
Horticulturae 2025, 11(8), 885; https://doi.org/10.3390/horticulturae11080885 (registering DOI) - 1 Aug 2025
Abstract
Wild edible fruit plants are integral to the cultural, nutritional, medicinal, and economic practices of Indigenous Isan communities in Roi Et Province, northeastern Thailand, a region characterized by plateau and lowland topography and a tropical monsoon climate. This study aimed to document the [...] Read more.
Wild edible fruit plants are integral to the cultural, nutritional, medicinal, and economic practices of Indigenous Isan communities in Roi Et Province, northeastern Thailand, a region characterized by plateau and lowland topography and a tropical monsoon climate. This study aimed to document the diversity, traditional uses, phenology, and conservation status of these species to inform sustainable management and conservation efforts. Field surveys and ethnobotanical interviews with 200 informants (100 men, 100 women; random ages) were conducted across 20 local communities to identify species diversity and usage patterns, while phenological observations and conservation assessments were performed to understand reproductive cycles and species vulnerability between January and December 2023. A total of 68 species from 32 families were recorded, with peak flowering in March–April and fruiting in May–June. Analyses of Species Use Value (0.19–0.48) and Relative Frequency of Citation (0.15–0.44) identified key species with significant roles in food security and traditional medicine. Uvaria rufa had the highest SUV (0.48) and RFC (0.44). Informant consensus on medicinal applications was strong for ailments such as gastrointestinal and lymphatic disorders. Economically important species were also identified, with some contributing notable income through local trade. Conservation proposed one species as Critically Endangered and several others as Vulnerable. The results highlight the need for integrated conservation strategies, including community-based initiatives and recognition of Other Effective area-based Conservation Measures (OECMs), to ensure the preservation of biodiversity, traditional knowledge, and local livelihoods. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

14 pages, 372 KiB  
Article
Submaximal Oxygen Deficit During Incremental Treadmill Exercise in Elite Youth Female Handball Players
by Bettina Béres, István Györe, Annamária Zsákai, Tamas Dobronyi, Peter Bakonyi and Tamás Szabó
Sports 2025, 13(8), 252; https://doi.org/10.3390/sports13080252 - 31 Jul 2025
Abstract
Laboratory-based assessment of cardiorespiratory function is a widely applied method in sports science. Most performance evaluations focus on oxygen uptake parameters. Despite the well-established concept of oxygen deficit introduced by Hill in the 1920s, relatively few studies have examined its behavior during submaximal [...] Read more.
Laboratory-based assessment of cardiorespiratory function is a widely applied method in sports science. Most performance evaluations focus on oxygen uptake parameters. Despite the well-established concept of oxygen deficit introduced by Hill in the 1920s, relatively few studies have examined its behavior during submaximal exercise, with limited exploration of deficit dynamics. The present study aimed to analyze the behavior of oxygen deficit in young female handball players (N = 42, age: 15.4 ± 1.3 years) during graded exercise. Oxygen deficit was estimated using the American College of Sports Medicine (ACSM) algorithm, restricted to subanaerobic threshold segments of a quasi-ramp exercise protocol. Cardiorespiratory parameters were measured with the spiroergometry test on treadmills, and body composition was assessed via Dual Energy X-ray Absorptiometry (DEXA). Cluster and principal component analyzes revealed two distinct athlete profiles with statistically significant differences in both morphological and physiological traits. Cluster 2 showed significantly higher relative VO2 peak (51.43 ± 3.70 vs. 45.70 ± 2.87 mL·kg−1·min−1; p < 0.001; Cohen’s d = 1.76), yet also exhibited a greater oxygen deficit per kilogram (39.03 ± 16.71 vs. 32.56 ± 14.33 mL·kg−1; p = 0.018; d = 0.80). Cluster 1 had higher absolute body mass (69.67 ± 8.13 vs. 59.66 ± 6.81 kg; p < 0.001), skeletal muscle mass (p < 0.001), and fat mass (p < 0.001), indicating that body composition strongly influenced oxygen deficit values. The observed differences in oxygen deficit profiles suggest a strong influence of genetic predispositions, particularly in cardiovascular and muscular oxygen utilization capacity. Age also emerged as a critical factor in determining the potential for adaptation. Oxygen deficit during submaximal exercise appears to be a multifactorial phenomenon shaped by structural and physiological traits. While certain influencing factors can be modified through training, others especially those of genetic origin pose inherent limitations. Early development of cardiorespiratory capacity may offer the most effective strategy for long-term optimization. Full article
Show Figures

Figure 1

33 pages, 2838 KiB  
Article
Daily Profile of miRNAs in the Rat Colon and In Silico Analysis of Their Possible Relationship to Colorectal Cancer
by Iveta Herichová, Denisa Vanátová, Richard Reis, Katarína Stebelová, Lucia Olexová, Martina Morová, Adhideb Ghosh, Miroslav Baláž, Peter Štefánik and Lucia Kršková
Biomedicines 2025, 13(8), 1865; https://doi.org/10.3390/biomedicines13081865 - 31 Jul 2025
Abstract
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p [...] Read more.
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p in CRC progression was analyzed in DLD1 cell line and human CRC tissues. Results: Nearly 10% of mature miRNAs showed a daily rhythm in expression. A peak of miRNAs’ levels was in most cases observed during the first half of the D phase of the LD cycle. The highest amplitude was detected in expression of miR-150-5p and miR-142-3p. In the L phase of the LD cycle, the maximum in miR-30d-5p expression was detected. Gene ontology enrichment analysis revealed that genes interfering with miRNAs with peak expression during the D phase influence apoptosis, angiogenesis, the immune system, and EGF and TGF-beta signaling. Rhythm in miR-150-5p, miR-142-3p, and miR-30d-5p expression was confirmed by real-time PCR. Oncogenes bcl2 and myb and clock gene cry1 were identified as miR-150-5p targets. miR-150-5p administration promoted camptothecin-induced apoptosis. Expression of myb showed a rhythmic profile in DLD1 cells with inverted acrophase with respect to miR-150-5p. miR-150-5p was decreased in cancer compared to adjacent tissue in CRC patients. Decrease in miR-150-5p was age dependent. Older patients with lower expression of miR-150-5p and higher expression of cry1 showed worse survival in comparison with younger patients. Conclusions: miRNA signaling differs between the L and D phases of the LD cycle. miR-150-5p, targeting myb, bcl2, and cry1, can influence CRC progression in a phase-dependent manner. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 434 KiB  
Article
Association of TNF-R1 with Exercise Capacity in Asymptomatic Hypertensive Heart Disease—Mediating Role of Left Ventricular Diastolic Function Deterioration
by Anna Teresa Gozdzik and Marta Obremska
J. Clin. Med. 2025, 14(15), 5391; https://doi.org/10.3390/jcm14155391 (registering DOI) - 31 Jul 2025
Viewed by 87
Abstract
Background: TNF receptor 1 (TNF-R1) mediates the proinflammatory and proapoptotic effects of TNF-alpha, with its soluble form predicting incident heart failure (HF). While there is evidence linking TNF pathway activation to cardiac dysfunction, the mechanisms involved remain unclear. This study aimed to investigate [...] Read more.
Background: TNF receptor 1 (TNF-R1) mediates the proinflammatory and proapoptotic effects of TNF-alpha, with its soluble form predicting incident heart failure (HF). While there is evidence linking TNF pathway activation to cardiac dysfunction, the mechanisms involved remain unclear. This study aimed to investigate the association between TNF-R1, exercise capacity, and cardiac function in asymptomatic patients with hypertensive heart disease (HHD). Methods: We enrolled 80 patients (mean age 55 ± 12 years) with HHD and no clinical symptoms of HF (stages A and B). Echocardiography, including tissue Doppler and left atrial and left ventricular (LV) strain assessment, was performed at rest. Peripheral venous blood samples were collected to measure serum TNF-R1 concentration. Results: The study population was divided into two subsets based on the median exercise capacity (peak VO2) value. Patients with higher VO2 had lower serum TNF-R1 concentration and higher early peak mitral annular velocity (e’) and peak atrial longitudinal strain (PALS). After adjusting for other covariates, multivariable regression analysis identified TNF-R1 as an independent determinant of peak VO2. Mediation analysis revealed that the relationship between TNF-R1 and peak VO2 was mediated by LV diastolic function (PALS or e’), with a decrease in the beta coefficient after including mediator variables from 0.37 (p < 0.001) to 0.30 (p < 0.006) and 0.31 (p = 0.004), respectively. Conclusions: In patients with HHD, higher TNF-R1 levels are associated with lower exercise capacity, which may be mediated by impaired LV diastolic function. These findings might suggest a role of TNF signalling in early HF development, justifying further studies to evaluate TNF-R1 as a biomarker for risk of HF progression. Full article
(This article belongs to the Special Issue The Role of Biomarkers in Cardiovascular Diseases)
Show Figures

Figure 1

17 pages, 1134 KiB  
Article
Functional Asymmetries and Force Efficiency in Elite Junior Badminton: A Controlled Trial Using Hop Test Metrics and Neuromuscular Adaption Indices
by Mariola Gepfert, Artur Gołaś, Adam Maszczyk, Kajetan Ornowski and Przemysław Pietraszewski
Appl. Sci. 2025, 15(15), 8450; https://doi.org/10.3390/app15158450 - 30 Jul 2025
Viewed by 190
Abstract
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) [...] Read more.
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) were randomized into an experimental group (EG) undergoing neuromechanical training with EMG biofeedback or a control group (CG) following general plyometric exercises. Key performance metrics—Jump Height, Reactive Strength Index (RSI), Peak Power, and Active Stiffness—were evaluated pre- and post-intervention. Two novel composite indices, Force Efficiency Ratio (FER) and Asymmetry Impact Index (AII), were computed to assess force production efficiency and asymmetry burden. The EG showed significant improvements in Jump Height (p = 0.030), RSI (p = 0.012), and Peak Power (p = 0.028), while the CG showed no significant changes. Contrary to initial hypotheses, traditional asymmetry metrics showed no significant correlations with performance variables (r < 0.1). Machine learning models (Random Forest) using FER and AII failed to classify responders reliably (AUC = 0.50). The results suggest that targeted interventions can improve lower-limb explosiveness in youth athletes; however, both traditional and composite asymmetry indices may not reliably predict training outcomes in small elite groups. The results highlight the need for multidimensional and individualized approaches in athlete diagnostics and training optimization, especially in asymmetry-prone sports like badminton. Full article
(This article belongs to the Special Issue Exercise Physiology and Biomechanics in Human Health: 2nd Edition)
Show Figures

Figure 1

17 pages, 8549 KiB  
Article
A Fully Automated Analysis Pipeline for 4D Flow MRI in the Aorta
by Ethan M. I. Johnson, Haben Berhane, Elizabeth Weiss, Kelly Jarvis, Aparna Sodhi, Kai Yang, Joshua D. Robinson, Cynthia K. Rigsby, Bradley D. Allen and Michael Markl
Bioengineering 2025, 12(8), 807; https://doi.org/10.3390/bioengineering12080807 - 27 Jul 2025
Viewed by 267
Abstract
Four-dimensional (4D) flow MRI has shown promise for the assessment of aortic hemodynamics. However, data analysis traditionally requires manual and time-consuming human input at several stages. This limits reproducibility and affects analysis workflows, such that large-cohort 4D flow studies are lacking. Here, a [...] Read more.
Four-dimensional (4D) flow MRI has shown promise for the assessment of aortic hemodynamics. However, data analysis traditionally requires manual and time-consuming human input at several stages. This limits reproducibility and affects analysis workflows, such that large-cohort 4D flow studies are lacking. Here, a fully automated artificial intelligence (AI) 4D flow analysis pipeline was developed and evaluated in a cohort of over 350 subjects. The 4D flow MRI analysis pipeline integrated a series of previously developed and validated deep learning networks, which replaced traditionally manual processing tasks (background-phase correction, noise masking, velocity anti-aliasing, aorta 3D segmentation). Hemodynamic parameters (global aortic pulse wave velocity (PWV), peak velocity, flow energetics) were automatically quantified. The pipeline was evaluated in a heterogeneous single-center cohort of 379 subjects (age = 43.5 ± 18.6 years, 118 female) who underwent 4D flow MRI of the thoracic aorta (n = 147 healthy controls, n = 147 patients with a bicuspid aortic valve [BAV], n = 10 with mechanical valve prostheses, n = 75 pediatric patients with hereditary aortic disease). Pipeline performance with BAV and control data was evaluated by comparing to manual analysis performed by two human observers. A fully automated 4D flow pipeline analysis was successfully performed in 365 of 379 patients (96%). Pipeline-based quantification of aortic hemodynamics was closely correlated with manual analysis results (peak velocity: r = 1.00, p < 0.001; PWV: r = 0.99, p < 0.001; flow energetics: r = 0.99, p < 0.001; overall r ≥ 0.99, p < 0.001). Bland–Altman analysis showed close agreement for all hemodynamic parameters (bias 1–3%, limits of agreement 6–22%). Notably, limits of agreement between different human observers’ quantifications were moderate (4–20%). In addition, the pipeline 4D flow analysis closely reproduced hemodynamic differences between age-matched adult BAV patients and controls (median peak velocity: 1.74 m/s [automated] or 1.76 m/s [manual] BAV vs. 1.31 [auto.] vs. 1.29 [manu.] controls, p < 0.005; PWV: 6.4–6.6 m/s all groups, any processing [no significant differences]; kinetic energy: 4.9 μJ [auto.] or 5.0 μJ [manu.] BAV vs. 3.1 μJ [both] control, p < 0.005). This study presents a framework for the complete automation of quantitative 4D flow MRI data processing with a failure rate of less than 5%, offering improved measurement reliability in quantitative 4D flow MRI. Future studies are warranted to reduced failure rates and evaluate pipeline performance across multiple centers. Full article
(This article belongs to the Special Issue Recent Advances in Cardiac MRI)
Show Figures

Figure 1

18 pages, 2920 KiB  
Article
Comprehensive Evaluation and Analysis of Aging Performance of Polymer-Rich Anchoring Adhesives
by Bing Zeng, Shuo Wu and Shufang Yao
Materials 2025, 18(15), 3484; https://doi.org/10.3390/ma18153484 - 25 Jul 2025
Viewed by 245
Abstract
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. [...] Read more.
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. In this study, polymer-rich anchoring adhesives underwent three artificial aging treatments (alkali medium, hygrothermal, and water bath) to evaluate their aging performance. Alkali treatment reduced bending strength by up to 70% (sample 5#) within 500 h before stabilizing, while hygrothermal and water-curing treatments caused reductions of 16–51% and 15–77%, respectively, depending on adhesive composition. Dynamic thermomechanical analysis revealed significant loss factor decreases (e.g., epoxy adhesives dropped from >1.0 to stable lower values after 500 h aging), indicating increased rigidity. Infrared spectroscopy confirmed chemical degradation, including ester group breakage in vinyl ester resins (peak shifts at 1700 cm−1 and 1100 cm−1) and molecular chain scission in unsaturated polyesters. The three test methods consistently demonstrated that 500 h of aging sufficiently captured performance trends, with alkali exposure causing the most severe degradation in sensitive formulations (e.g., samples 5# and 6#). These results can be used to establish quantitative benchmarks for adhesive durability assessment in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 4589 KiB  
Article
Unveiling the Photocatalytic Behavior of PNTP on Au-Ag Alloy Nanoshells Through SERS
by Wenpeng Yang, Wenguang Geng, Xiyuan Lu, Lihua Qian, Shijun Luo, Lei Xu, Yu Shi, Tengda Song and Mengyang Li
Catalysts 2025, 15(8), 705; https://doi.org/10.3390/catal15080705 - 24 Jul 2025
Viewed by 380
Abstract
Au-Ag alloy nanoshells (ANSs) were synthesized via chemical reduction, exhibiting superior plasmonic photocatalytic performance. TEM revealed uniform hollow structures (~80 nm), while EDS mapping confirmed homogeneous Au-Ag distribution throughout the shell. According to EDX analysis, the alloy contained 71.40% Ag by weight. XRD [...] Read more.
Au-Ag alloy nanoshells (ANSs) were synthesized via chemical reduction, exhibiting superior plasmonic photocatalytic performance. TEM revealed uniform hollow structures (~80 nm), while EDS mapping confirmed homogeneous Au-Ag distribution throughout the shell. According to EDX analysis, the alloy contained 71.40% Ag by weight. XRD verified the formation of a substitutional solid solution without phase separation. The photocatalytic activity was evaluated using p-nitrothiophenol (PNTP) to 4,4′-dimercapto-azobenzene (DMAB) conversion monitored by SERS. UV-Vis spectroscopy showed LSPR peaks of ANSs between Au and Ag NPs, confirming effective alloying. Kinetic studies revealed that ANSs exhibited reaction rates 250–351 times higher than those of Au NPs and 5–10 times higher than those of Ag NPs. This resulted from the synergistic catalysis of Au-Ag and enhanced electromagnetic fields. ANSs demonstrated dual functionality as SERS substrates and photocatalysts, providing a foundation for developing multifunctional nanocatalytic materials. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

11 pages, 387 KiB  
Article
Use of Instrumented Timed Up and Go in Adults with Traumatic Brain Injury
by Shanti M. Pinto, Nahir A. Habet, Tamar C. Roomian, Kathryn M. Williams, Marc Duemmler, Kelly A. Werts, Stephen H. Sims and Mark A. Newman
BioMed 2025, 5(3), 16; https://doi.org/10.3390/biomed5030016 - 23 Jul 2025
Viewed by 202
Abstract
Objective: The primary objective was to identify whether there were differences in performance for the individual subcomponents of the instrumented timed “Up and Go” (iTUG) between adults with traumatic brain injury (TBI) and healthy controls. Methods: Fifteen adults with moderate-to-severe TBI [...] Read more.
Objective: The primary objective was to identify whether there were differences in performance for the individual subcomponents of the instrumented timed “Up and Go” (iTUG) between adults with traumatic brain injury (TBI) and healthy controls. Methods: Fifteen adults with moderate-to-severe TBI and fifteen age- and sex-matched controls completed two separate trials of the iTUG. Paired t-tests or Wilcoxon signed rank tests were used to determine the differences between groups. Results: Adults with moderate-to-severe TBI took more time to complete the iTUG (14.50 ± 2.36 s vs. 9.85 ± 1.71 s; p-value = 0.0002), had slower chest flexion angular velocities (63.52 ± 23.25 s vs. 88.19 ± 29.20 s; p-value = 0.0486) and vertical acceleration (2.22 [1.23–2.74] s vs. 3.89 [3.36–5.02] s; p-value = 0.0005) during the sit-to-stand movements, and had slower angular velocities during the turns (p-value < 0.05 for both mean and peak turn angular velocities) compared with the controls. Conclusions: Adults with moderate-to-severe TBI completed the iTUG more slowly than healthy controls. Significant differences were noted in the sit-to-stand and turn subcomponents for adults with moderate-to-severe TBI compared with healthy controls, which would not be apparent from evaluating the total time taken alone. Full article
Show Figures

Figure 1

11 pages, 2066 KiB  
Article
Force Profile Characteristics of Gravitational and Pneumatic Resistances in Pull and Push Exercises
by Manuel Barba-Ruiz, Juan Ramón Heredia-Elvar, Adrián Martín-Castellanos, Javier Iglesias-García and Francisco Hermosilla-Perona
Sports 2025, 13(8), 239; https://doi.org/10.3390/sports13080239 - 22 Jul 2025
Viewed by 237
Abstract
Introduction: Strength training, essential for health and performance, often uses free weights for greater stabilization demands and pulleys for easier load adjustment and progression. Methods: The aim of the study was to analyze the differences in force application using gravitational and pneumatic resistances. [...] Read more.
Introduction: Strength training, essential for health and performance, often uses free weights for greater stabilization demands and pulleys for easier load adjustment and progression. Methods: The aim of the study was to analyze the differences in force application using gravitational and pneumatic resistances. Twenty experienced subjects participated in the study (age: 21.9 ± 3.8 years; body mass: 76.3 ± 9.4 kg; height: 177.4 ± 7.5 cm), performing four exercises with each type of resistance: bench press, lat pulldown, chest fly, and single-arm row. The participants performed 8 repetitions per exercise. Peak and mean force were measured with a 100 Hz load cell (SUIFF S2 Pro) during the concentric phase of the lifts. Differences between resistance types were analyzed using one-way ANOVA and paired t-tests. Results: Peak force was higher with gravitational resistance across all exercises (p < 0.001; d = 2.1–4.7). Average force with gravitational resistance was also higher in the bench press and lat pulldown (p < 0.05; d = 0.7–1.4), but not in the chest fly or single-arm row. Conclusions: Gravitational resistance may better enhance peak strength, while pneumatic resistance supports consistent force and neuromuscular control. These results allow us to select the resistance type based on specific mechanical characteristics. Full article
(This article belongs to the Special Issue Biomechanics and Sports Performances (2nd Edition))
Show Figures

Figure 1

10 pages, 721 KiB  
Article
Pharmacokinetic Analysis of the Bioavailability of AQUATURM®, a Water-Soluble Curcumin Formulation, in Comparison to a Conventional Curcumin Tablet, in Human Subjects
by Lillian Jabur, Rishi Pandey, Meena Mikhael, Garry Niedermayer, Erika Gyengesi, David Mahns and Gerald Münch
Pharmaceuticals 2025, 18(7), 1073; https://doi.org/10.3390/ph18071073 - 21 Jul 2025
Viewed by 333
Abstract
Background/Objectives: Curcumin, the principal bioactive component of Curcuma longa, is known for its anti-inflammatory, antioxidant, and neuroprotective properties. Despite its therapeutic potential, curcumin exhibits poor oral bioavailability due to low solubility, rapid metabolism, and limited gastrointestinal absorption. Various delivery systems have been developed [...] Read more.
Background/Objectives: Curcumin, the principal bioactive component of Curcuma longa, is known for its anti-inflammatory, antioxidant, and neuroprotective properties. Despite its therapeutic potential, curcumin exhibits poor oral bioavailability due to low solubility, rapid metabolism, and limited gastrointestinal absorption. Various delivery systems have been developed to overcome these limitations. This study aimed to evaluate and compare the pharmacokinetic profile of AQUATURM®, a novel, water-soluble curcumin formulation, with that of a widely available commercial curcumin supplement. Methods: A randomized, double-blind, two-period crossover study was conducted in 12 healthy adult participants (6 male, 6 female; aged 20–45 years). Each participant received a single oral dose of either AQUATURM® or the comparator product, followed by a 7-day washout period before receiving the alternate treatment. Blood samples were collected at multiple time points over a 12-h period post-dosing. Plasma curcumin concentrations were quantified using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). Results: AQUATURM® achieved a significantly higher systemic exposure compared to the comparator, with a more than 7-fold increase in area under the curve (AUC0–12h) and higher peak plasma concentrations (Cmax). AQUATURM® also maintained detectable curcumin levels for the full 12-h observation period, whereas levels from the comparator fell below quantification limits in most participants after 4 h. Conclusions: AQUATURM® significantly enhances curcumin bioavailability in humans compared to a standard curcumin formulation. These pharmacokinetic improvements support its potential for greater clinical efficacy and warrant further evaluation in therapeutic setting Full article
Show Figures

Graphical abstract

18 pages, 1996 KiB  
Article
Lifetime Behavior of Turn Insulation in Rotating Machines Under Repetitive Pulsed Stress
by Ousama Zidane, Rainer Haller, Pavel Trnka and Hans Bärnklau
Energies 2025, 18(14), 3826; https://doi.org/10.3390/en18143826 - 18 Jul 2025
Viewed by 282
Abstract
Insulation materials are critical for the reliability and performance of electrical power systems, particularly in high-voltage rotating machines. While failures can arise from thermal, mechanical, or electrical stress, they predominantly manifest as electrical breakdowns. Prior research has primarily concentrated on aging in straight [...] Read more.
Insulation materials are critical for the reliability and performance of electrical power systems, particularly in high-voltage rotating machines. While failures can arise from thermal, mechanical, or electrical stress, they predominantly manifest as electrical breakdowns. Prior research has primarily concentrated on aging in straight winding sections, despite evidence indicating that failures frequently occur in the bending regions of turn insulation. This study explores the influence of high-frequency pulsed electrical stress on the lifetime behavior of Type II insulation systems used in high-voltage rotating machines. Practical samples, designed with geometric configurations and technology akin to that in rotating machines, were tested under conditions characterized by voltage slew rates (dv/dt) exceeding 10 kV/μs, with variations in frequency and waveform shape. The findings reveal that the rate of electrical aging remains consistent across differing pulse widths, risetimes, and polarities, displaying a similar lifetime exponent. Nonetheless, insulation durability is markedly more compromised under pulsed conditions. At the identical times-to-failure, the sinusoidal waveform necessitated nearly twice the applied peak voltage as the bipolar pulse waveform. This finding clearly suggests that pulsed excitation exacerbates insulation degradation more effectively due to the sharp rise times and high (dv/dt) rates imposing substantial electrical stress on dielectric materials. Full article
Show Figures

Figure 1

12 pages, 2851 KiB  
Article
Comparative Analysis of Mechanical Variables in Different Exercises Performed with a Rotational Inertial Device in Professional Soccer Players: A Pilot Study
by Álvaro Murillo-Ortiz, Luis Manuel Martínez-Aranda, Moisés Falces-Prieto, Samuel López-Mariscal, Francisco Javier Iglesias-García and Javier Raya-González
J. Funct. Morphol. Kinesiol. 2025, 10(3), 279; https://doi.org/10.3390/jfmk10030279 - 18 Jul 2025
Viewed by 311
Abstract
Background: Soccer performance is largely dependent on high-intensity, unilateral actions such as sprints, jumps, and changes of direction. These demands can lead to strength and power differences between limbs, highlighting the importance of individualised assessment in professional players. Rotational inertial devices offer a [...] Read more.
Background: Soccer performance is largely dependent on high-intensity, unilateral actions such as sprints, jumps, and changes of direction. These demands can lead to strength and power differences between limbs, highlighting the importance of individualised assessment in professional players. Rotational inertial devices offer a valuable method to evaluate and train these mechanical variables separately for each leg. The aim of this study was twofold: (a) to characterise the mechanical variables derived from several lower-body strength exercises performed on rotational inertial devices, all targeting the same muscle group; and (b) to compare the mechanical variables between the dominant and non-dominant leg for each exercise. Methods: Twenty-six male professional soccer players (age = 26.3 ± 5.1 years; height = 182.3 ± 0.6 cm; weight = 75.9 ± 5.9 kg; body mass index = 22.8 ± 1.1 kg/m2; fat mass percentage = 9.1 ± 0.6%; fat-free mass = 68.8 ± 5.3 kg), all belonging to the same professional Belgian team, voluntarily participated in this study. The players completed a single assessment session consisting of six unilateral exercises (i.e., quadriceps hip, hamstring knee, adductor, quadriceps knee, hamstring hip, and abductor). For each exercise, they performed two sets of eight repetitions with each leg (i.e., dominant and non-dominant) in a randomised order. Results: The quadriceps hip exercise resulted in higher mechanical values compared to the quadriceps knee exercise in both limbs (p < 0.004). Similarly, the hamstring hip exercise produced greater values across all variables and limbs (p < 0.004), except for peak force, where the hamstring knee exercise exhibited higher values (p < 0.004). The adductor exercise showed higher peak force values for the dominant limb (p < 0.004). The between-limb comparison revealed differences only in the abductor exercise (p < 0.004). Conclusions: These findings suggest the necessity of prioritising movement selection based on targeted outcomes, although it should be considered that the differences between limb differences are very limited. Full article
(This article belongs to the Special Issue Sports-Specific Conditioning: Techniques and Applications)
Show Figures

Figure 1

17 pages, 5663 KiB  
Article
Ultra-Stable, Conductive, and Porous P-Phenylenediamine-Aldehyde-Ferrocene Micro/Nano Polymer Spheres for High-Performance Supercapacitors with Positive Electrodes
by Xin Wang, Qingning Li, Zhiruo Bian, Da Wang, Cong Liu, Zhaoxu Yu, Xuewen Li and Qijun Li
Polymers 2025, 17(14), 1964; https://doi.org/10.3390/polym17141964 - 17 Jul 2025
Viewed by 291
Abstract
Supercapacitors, with their remarkable attributes such as including a high power density, an extended cycle life, and inherent safety, have emerged as a major research area for electrochemical energy storage. In this paper, phenylenediamine and glyoxal were used as raw material to prepare [...] Read more.
Supercapacitors, with their remarkable attributes such as including a high power density, an extended cycle life, and inherent safety, have emerged as a major research area for electrochemical energy storage. In this paper, phenylenediamine and glyoxal were used as raw material to prepare p-phenylenediamine glyoxal (PGo) with one single step. p-phenylenediamine glyoxal-ferrocene (PGo-Fcx, x = 1, 0.3, 0.2, 0.1) composites were synthesized based on a poly-Schiff base. FTIR and XRD results indicated that ferrocene doping preserves the intrinsic PGo framework while inducing grain refinement, as evidenced by the narrowing of the XRD diffraction peaks. SEM observations further revealed distinct morphological evolution. CV (cyclic voltammetry), EIS (electrochemical impedance spectroscopy), and GCD (galvanostatic charge–discharge) were conducted on PGo-Fcx in order to examine its electrochemical performance. The PGo-Fc0.3 in PGo-Fcx electrode material had a specific capacitance of 59.6 F/g at a current density of 0.5 A/g and 36 F/g at a current density of 10 A/g. Notably, even after undergoing 5000 charging–discharging cycles at 10 A/g, the material retained 76.2% of its specific capacitance compared to the initial cycle. Therefore, taking conductive polymers and metal oxide materials for modification can improve the stability and electrochemical performance of supercapacitors. Full article
(This article belongs to the Special Issue Design and Characterization of Polymer-Based Electrode Materials)
Show Figures

Figure 1

Back to TopTop