Submaximal Oxygen Deficit During Incremental Treadmill Exercise in Elite Youth Female Handball Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Design and Procedures
(kg) − 151)/10.5.
(kg) − 151)/10.5.
2.3. Statistics
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matthys, S.P.J.; Vaeyens, R.; Coelho-e-Silva, M.J.; Lenoir, M.; Philippaerts, R. The contribution of growth and maturation in the functional capacity and skill performance of male adolescent handball players. Int. J. Sports Med. 2012, 33, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.; Vaeyens, R.; Matthys, S.; Multael, M.; Lefevre, J.; Lenoir, M.; Philippaerts, R. Anthropometric and performance measures for the development of a talent detection and identification model in youth handball. J. Sports Sci. 2009, 27, 257–266. [Google Scholar] [CrossRef]
- Hill, A.V.; Lupton, H. Muscular Exercise, Lactic Acid, and the Supply and Utilization of Oxygen. QJM Int. J. Med. 1923, os-16, 135–171. [Google Scholar] [CrossRef]
- Krogh, A.; Lindhard, J. The changes in respiration at the transition from work to rest. J. Physiol. 1920, 53, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Demarle, A.P.; Slawinski, J.J.; Laffite, L.P.; Bocquet, V.G.; Koralsztein, J.P.; Billat, V.L. Decrease of O2 deficit is a potential factor in increased time to exhaustion after specific endurance training. J. Appl. Physiol. 2001, 90, 947–953. [Google Scholar] [CrossRef]
- Stöggl, T.L.; Sperlich, B. Editorial: Training Intensity, Volume and Recovery Distribution Among Elite and Recreational Endurance Athletes. Front. Physiol. 2019, 10, 592. [Google Scholar] [CrossRef]
- Beltz, N.M.; Gibson, A.L.; Janot, J.M.; Kravitz, L.; Mermier, C.M.; Dalleck, L.C. Graded Exercise Testing Protocols for the Determination of VO2max: Historical Perspectives, Progress, and Future Considerations. J. Sports Med. 2016, 2016, 3968393. [Google Scholar] [CrossRef]
- Whipp, B.J.; Wasserman, K. Oxygen uptake kinetics for various intensities of constant-load work. J. Appl. Physiol. 1972, 33, 351–356. [Google Scholar] [CrossRef]
- Wiecha, S.; Kasiak, P.S.; Szwed, P.; Kowalski, T.; Cieśliński, I.; Postuła, M.; Klusiewicz, A. VO2max prediction based on submaximal cardiorespiratory relationships and body composition in male runners and cyclists: A population study. eLife 2023, 12, e86291. [Google Scholar] [CrossRef]
- Bearden, S.E.; Moffatt, R.J. ⩒ O2 kinetics and the O2 deficit in heavy exercise. J. Appl. Physiol. 2000, 88, 1407–1412. [Google Scholar] [CrossRef]
- Stirling, J.; Zakynthinaki, M.; Saltin, B. A model of oxygen uptake kinetics in response to exercise: Including a means of calculating oxygen demand/deficit/debt. Bull. Math. Biol. 2005, 67, 989–1015. [Google Scholar] [CrossRef]
- Xu, F.; Rhodes, E.C. Oxygen uptake kinetics during exercise. Sports Med. 1999, 27, 313–327. [Google Scholar] [CrossRef]
- Osborne, G.; Wolfe, L.A.; Burggraf, G.W.; Norman, R. Relationships between cardiac dimensions, anthropometric characteristics and maximal aerobic power (VO2max) in young men. Int. J. Sports Med. 1992, 13, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Gligoroska, J.P.; Manchevska, S.; Efremova, L.; Todorovska, L.; Nikolic, S. Body composition and maximal oxygen consumption in adult soccer players in the Republic of Macedonia. J. Health Sci. 2015, 5, 3. [Google Scholar] [CrossRef]
- Marangoz, I.; Var, S.M. The Relationship among Somatotype Structures, Body Compositions and Estimated Oxygen Capacities of Elite Male Handball Players. Asian J. Educ. Train. 2018, 4, 216–219. [Google Scholar] [CrossRef]
- Campos, E.Z.; Bastos, F.N.; Papoti, M.; Freitas Junior, I.F.; Gobatto, C.A.; Balikian, P., Jr. The effects of physical fitness and body composition on oxygen consumption and heart rate recovery after high-intensity exercise. Int. J. Sports Med. 2012, 33, 621–626. [Google Scholar] [CrossRef]
- Liyanage, G.; Jayamanne, B.D.W. Prediction of spirometry parameters using chest circumference in Sri Lankan boys aged 8–16 years. J. Health Soc. Sci. 2017, 2, 273–278. [Google Scholar] [CrossRef]
- Shekar, D.A. A study to assess the co-relation between chest circumference and maximum voluntary ventilation in healthy adults. Indian J. Basic Appl. Med. Res. 2017, 6, 265–270. [Google Scholar]
- Gabnai, S.G.; Kósa, L.; Tóth, E.; Schulteisz, N.; Gangl, J.; Othman, M.; Ihász, F. Physiological adaptations to specific endurance training in professional female handball players. Physiol. Int. 2018, 105, 266–275. [Google Scholar] [CrossRef]
- Helgerud, J.; Engen, L.C.; Wisloff, U.; Hoff, J. Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc. 2001, 33, 1925–1931. [Google Scholar] [CrossRef]
- Chamari, K.; Hachana, Y.; Kaouech, F.; Jeddi, R.; Moussa-Chamari, I.; Wisløff, U. Endurance training and testing with the ball in young elite soccer players. Br. J. Sports Med. 2005, 39, 24–28. [Google Scholar] [CrossRef]
- Astrand, P.O.; Ryhming, I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J. Appl. Physiol. 1954, 7, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Rowland, T.W.; Rambusch, J.M.; Staab, J.S.; Unnithan, V.B.; Siconolfi, S.F. Accuracy of physical working capacity (PWC170) in estimating aerobic fitness in children. J. Sports Med. Phys. Fit. 1993, 33, 184–188. [Google Scholar]
- Boreham, C.A.; Paliczka, V.J.; Nichols, A.K. A comparison of the PWC170 and 20-MST tests of aerobic fitness in adolescent schoolchildren. J. Sports Med. Phys. Fit. 1990, 30, 19–23. [Google Scholar]
- Laskey, M.A. Dual-energy X-ray absorptiometry and body composition. Nutrition 1996, 12, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shen, W.; Gallagher, D.; Jones, A., Jr.; Wang, Z.; Wang, J.; Heshka, S.; Heymsfield, S.B. Total-body skeletal muscle mass: Estimation by dual-energy X-ray absorptiometry in children and adolescents. Am. J. Clin. Nutr. 2006, 84, 1014–1020. [Google Scholar] [CrossRef]
- Cardiopulmonary Exercise Testing in Children and Adolescents, Human Kinetics. Available online: https://us.humankinetics.com/products/cardiopulmonary-exercise-testing-in-children-and-adolescents (accessed on 8 May 2025).
- Béres, B.; Györe, I.; Petridis, L.; Utczás, K.; Kalabiska, I.; Pálinkás, G.; Szabó, T. Relationship between biological age, body dimensions and cardiorespiratory performance in young soccer players. Acta Gymnica 2021, 51, e2021. [Google Scholar] [CrossRef]
- Bushman, B.A. Metabolic Calculations in Action: Part 1. ACSMs Health Fit. J. 2020, 24, 6. [Google Scholar] [CrossRef]
- Bassett, D.R.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Bon, M.; Pori, P.; Sibila, M. Position-Related Differences in Selected Morphological Body Characteristics of Top-Level Female Handball Players. Coll. Antropol. 2015, 39, 631–639. [Google Scholar]
- Pizza, F.X.; Naglieri, T.A.; Holtz, R.W.; Mitchell, J.B.; Starling, R.D.; Phillips, M.D.; Cavender, D.L.; Braun, W.A. Maximal Accumulated Oxygen Deficit of Resistance-Trained Men. Can. J. Appl. Physiol. 1996, 21, 391–402. [Google Scholar] [CrossRef]
- Trexler, E.T.; Hirsch, K.R.; Campbell, B.I.; Smith-Ryan, A.E. Physiological Changes Following Competition in Male and Female Physique Athletes: A. Pilot Study. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, R.; Schmied, C.; Niederseer, D.; Guazzi, M. Cardiopulmonary Exercise Test Parameters in Athletic Population: A. Review. J. Clin. Med. 2021, 10, 5073. [Google Scholar] [CrossRef] [PubMed]
- Mølmen, K.S.; Almquist, N.W.; Skattebo, Ø. Effects of Exercise Training on Mitochondrial and Capillary Growth in Human Skeletal Muscle: A Systematic Review and Meta-Regression. Sports Med. 2025, 55, 115–144. [Google Scholar] [CrossRef] [PubMed]
- Whipp, B.J.; Wasserman, K. Effect of anaerobiosis on the kinetics of O2 uptake during exercise. Fed. Proc. 1986, 45, 2942–2947. [Google Scholar]
- Powers, S.K.; Dodd, S.; Beadle, R.E. Oxygen uptake kinetics in trained athletes differing in VO2max. Eur. J. Appl. Physiol. 1985, 54, 306–308. [Google Scholar] [CrossRef]
- Bouchard, C.; Sarzynski, M.A.; Rice, T.K.; Kraus, W.E.; Church, T.S.; Sung, Y.J.; Rao, D.C.; Rankinen, T. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J. Appl. Physiol. 2011, 110, 1160–1170. [Google Scholar] [CrossRef]
- Raghuveer, G.; Hartz, J.; Lubans, D.R.; Takken, T.; Wiltz, J.L.; Mietus-Snyder, M.; Perak, A.M.; Baker-Smith, C.; Pietris, N.; Edwards, N.M. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e101–e118. [Google Scholar] [CrossRef]
- Raleigh, J.P.; Giles, M.D.; Scribbans, T.D.; Edgett, B.A.; Sawula, L.J.; Bonafiglia, J.T.; Graham, R.B.; Gurd, B.J. The impact of work-matched interval training on ⩒O2peak and ⩒O2 kinetics: Diminishing returns with increasing intensity. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2016, 41, 706–713. [Google Scholar] [CrossRef]
- Barnes, K.R.; Kilding, A.E. Running economy: Measurement, norms, and determining factors. Sports Med. Open 2015, 1, 8. [Google Scholar] [CrossRef]
- Hoppeler, H.; Howald, H.; Conley, K.; Lindstedt, S.L.; Claassen, H.; Vock, P.; Weibel, E.R. Endurance training in humans: Aerobic capacity and structure of skeletal muscle. J. Appl. Physiol. 1985, 59, 320–327. [Google Scholar] [CrossRef]
- Rüst, C.A.; Knechtle, B.; Knechtle, P.; Rosemann, T. Comparison of anthropometric and training characteristics between recreational male marathoners and 24-hour ultramarathoners. Open Access J. Sports Med. 2012, 2012, 121–129. [Google Scholar] [CrossRef]
- Illi, S.K.; Held, U.; Frank, I.; Spengler, C.M. Effect of respiratory muscle training on exercise performance in healthy individuals: A systematic review and meta-analysis. Sports Med. 2012, 42, 707–724. [Google Scholar] [CrossRef]
Stage | Time in Stage (min:s) | Time in Exercise (min:s) | Speed (km/h) | Grade (%) | METs | HR (bpm) |
---|---|---|---|---|---|---|
Resting | 2:01 | 0:00 | 0.0 | 0.0 | 1 | 96 |
Stage1 | 1:00 | 1:00 | 6.0 | 0.0 | 3.8 | 114 |
Stage2 | 1:00 | 2:00 | 6.0 | 2.5 | 5.1 | 121 |
Stage3 | 1:00 | 3:00 | 7.5 | 3.0 | 8.6 | 146 |
Stage4 | 1:00 | 4:00 | 8.3 | 3.0 | 10 | 155 |
Stage5 | 1:00 | 5:00 | 10.0 | 3.0 | 11.8 | 170 |
Stage6 | 1:00 | 6:00 | 10.0 | 5.0 | 12.6 | 176 |
Stage7 | 1:00 | 7:00 | 10.0 | 7.0 | 13.5 | 182 |
Stage8 | 1:00 | 8:00 | 10.0 | 9.0 | 14.3 | 188 |
Stage9 | 0:32 | 8:32 | 10.0 | 11.0 | 15.2 | 189 |
Recovery | 5:03 | 0:00 | 0.0 | 0.0 | 1 | 101 |
Mean | Median | SE of Mean | SD | Min | Max | |
---|---|---|---|---|---|---|
Body Composition | ||||||
Body height (cm) | 172.48 | 172.00 | 0.86 | 5.56 | 161.00 | 186.00 |
Body mass (kg) | 65.14 | 64.40 | 1.39 | 9.01 | 48.00 | 88.80 |
Skeletal muscle mass (kg) | 23.77 | 24.08 | 0.49 | 3.18 | 18.46 | 32.22 |
Fat content (kg) | 17.76 | 17.36 | 0.69 | 4.49 | 9.40 | 28.46 |
Mineral content(kg) | 2.68 | 2.67 | 0.05 | 0.30 | 2.12 | 3.50 |
Absolut Z-score | 2.29 | 2.4 | 0.15 | 0.95 | 0.3 | 4.1 |
Gas exchange values | ||||||
VE peak (L/min) | 93.89 | 91.23 | 1.82 | 11.76 | 76.14 | 121.24 |
BF peak (breath/min) | 49.66 | 49.7 | 1.15 | 7.46 | 35.8 | 67.2 |
VT peak (L) | 2.05 | 2.01 | 0.06 | 0.37 | 1.4 | 3.12 |
VO2 peak (L/min) | 3.13 | 3.04 | 0.06 | 0.37 | 2.52 | 3.85 |
VCO2 peak (L/min) | 3.35 | 3.26 | 0.06 | 0.38 | 2.73 | 4.06 |
O2pulse peak (mL) | 16.44 | 16.14 | 0.43 | 2.78 | 12.61 | 28.97 |
HR peak (beat/min) | 192.81 | 193 | 1.22 | 7.90 | 177 | 210 |
In-range quasi-aerobe zone | ||||||
VE 170 (L/min) | 58.21 | 56.49 | 1.85 | 12.00 | 39.55 | 95.3 |
VO2 170 (L/min) | 2.29 | 2.17 | 0.06 | 0.38 | 1.70 | 3.28 |
VCO2 170 (L/min) | 2.08 | 2.00 | 0.06 | 0.37 | 1.52 | 3.20 |
Physical performance | ||||||
Power max (watt) | 285.40 | 277.48 | 5.29 | 34.30 | 227.55 | 367.09 |
Power 170 (watt) | 167.14 | 158.11 | 5.51 | 35.73 | 118.96 | 272.06 |
Time max (sec) | 512.71 | 511 | 7.15 | 46.35 | 417.00 | 660 |
Estimated oxygen deficit | ||||||
Deficit sum of stage 1–6 (L) | 2.32 | 2.32 | 0.17 | 1.08 | 0.69 | 4.63 |
Deficit sum/weight (L/kg) | 35.49 | 34.32 | 2.40 | 15.60 | 9.84 | 65.73 |
Variables | Time Max | O2 Deficit | VO2 Peak | |||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Body height | −0.456 | 0.002 | 0.108 | 0.498 | −0.466 | 0.002 |
Body mass | −0.565 | <0.001 | 0.329 | 0.033 | −0.518 | <0.001 |
VO2 peak | 0.220 | 0.264 | 0.225 | 0.152 | - | - |
Skeletal muscle mass | −0.527 | <0.001 | 0.340 | 0.028 | −0.561 | <0.001 |
Bone mass | −0.389 | 0.011 | 0.425 | 0.005 | −0.326 | 0.035 |
Z-score (BMD) | −0.368 | 0.017 | 0.448 | 0.003 | −0.224 | 0.154 |
Fat mass | −0.571 | <0.001 | 0.292 | 0.089 | −0.449 | 0.035 |
Power peak | 0.003 | 0.983 | 0.361 | 0.019 | −0.180 | 0.255 |
HR peak | 0.082 | 0.605 | 0.384 | 0.012 | 0.034 | 0.829 |
VE peak | 0.001 | 0.995 | 0.082 | 0.606 | 0.049 | 0.758 |
BF peak | 0.147 | 0.354 | −0.299 | 0.055 | 0.193 | 0.220 |
VT peak | −0.213 | 0.176 | 0.361 | 0.017 | −0.214 | 0.173 |
VCO2 peak | −0.035 | 0.826 | 0.265 | 0.090 | 0.054 | 0.722 |
O2pulse peak | −0.107 | 0.499 | 0.075 | 0.636 | 0.101 | 0.525 |
Power 170 | −0.042 | 0.786 | 0.083 | 0.601 | −0.143 | 0.302 |
VE 170 | −0.261 | 0.096 | −0.102 | 0.519 | −0.157 | 0.321 |
VCO2 170 | −0.234 | 0.135 | −0.042 | 0.794 | −0.162 | 0.306 |
VO2 170 | −0.293 | 0.060 | 0.030 | 0.852 | −0.099 | 0.533 |
Components | ||||
---|---|---|---|---|
Variables | PC1 | PC2 | PC3 | PC4 |
VO2 peak (L/min) | 0.873 | −0.018 | 0.279 | 0.092 |
Body mass (kg) | 0.925 | 0.194 | −0.145 | 0.226 |
Skeletal muscle mass (kg) | 0.829 | 0.187 | −0.179 | 0.197 |
Fat mass (kg) | 0.848 | 0.202 | −0.118 | 0.326 |
Power peak (watt) | 0.874 | 0.028 | 0.308 | −0.034 |
VE peak (L/min) | 0.770 | −0.322 | 0.320 | 0.010 |
VCO2 peak (L/min) | 0.846 | 0.002 | 0.336 | −0.084 |
O2pulse peak (mL) | 0.825 | −0.280 | 0.214 | −0.019 |
Power 170 (watt) | 0.749 | −0.516 | −0.054 | −0.206 |
VCO2170 (L/min) | 0.775 | −0.481 | −0.217 | −0.159 |
VO2 170 (L/min) | 0.869 | −0.367 | −0.151 | −0.050 |
Bone mass (kg) | 0.860 | 0.290 | 0.032 | −0.002 |
BMD z-score | 0.618 | 0.485 | 0.216 | 0.161 |
Deficit sum (L) | 0.306 | 0.607 | 0.216 | −0.111 |
HR peak (beat/min) | −0.203 | 0.785 | 0.379 | 0.164 |
Time max (sec) | 0.362 | −0.297 | 0.696 | −0.441 |
Body heigh (cm)t | 0.467 | 0.098 | −0.578 | −0.040 |
BF peak (breath/min) | −0.163 | −0.589 | 0.301 | 0.674 |
VT peak (L) | 0.598 | 0.361 | −0.126 | −0.601 |
eigenvalue | 9.685 | 2.808 | 1.738 | 1.359 |
variance | 51.0% | 14.8% | 9.1% | 7.2% |
KMO and Bartlett’s test | p < 0.001 |
QCL_5 Cluster Number of Case | N | Mean | Std. Deviation | Std. Error Mean | p t-Test | Cohen’s d | |
---|---|---|---|---|---|---|---|
Body mass (kg) | 1 | 23 | 69.665 | 8.1329 | 1.6958 | <0.001 | −1.3220 |
2 | 19 | 59.663 | 6.8082 | 1.5619 | |||
Body height (cm) | 1 | 23 | 174.3 | 5.406 | 1.127 | 0.017 | −0.7716 |
2 | 19 | 170.26 | 5.02 | 1.152 | |||
Skeletal muscle mass (kg) | 1 | 23 | 25.2679 | 2.890406 | 0.60269 | <0.001 | −1.2077 |
2 | 19 | 21.95587 | 2.549884 | 0.58498 | |||
Fat mass (kg) | 1 | 23 | 20014.39 | 4168.203 | 869.13 | <0.001 | −1.3220 |
2 | 19 | 15026.21 | 3225.097 | 739.888 | |||
Bone mass (kg) | 1 | 23 | 2767.7 | 314.469 | 65.571 | 0.034 | −0.6810 |
2 | 19 | 2569.89 | 258.081 | 59.208 | |||
Time max (sec) | 1 | 23 | 483.09 | 31.311 | 6.529 | <0.001 | 1.9870 |
2 | 19 | 548.58 | 34.867 | 7.999 | |||
VO2 peak rel (L/min/kg) | 1 | 23 | 45.69936 | 2.867183 | 0.59785 | <0.001 | 1.7551 |
2 | 19 | 51.43335 | 3.697539 | 0.84827 | |||
Power peak (watt) | 1 | 23 | 4.183721 | 0.245287 | 0.05115 | <0.001 | 1.9047 |
2 | 19 | 4.674177 | 0.271671 | 0.06233 | |||
HR peak (beat/min) | 1 | 23 | 190.09 | 7.621 | 1.589 | 0.012 | 0.8152 |
2 | 19 | 196.11 | 7.086 | 1.626 | |||
Power 170 (watt) | 1 | 23 | 178.7716 | 40.65081 | 8.47628 | 0.018 | −0.7629 |
2 | 19 | 153.0498 | 22.49804 | 5.16141 | |||
VE 170 (L/min) | 1 | 23 | 63.2804 | 12.83398 | 2.67607 | 0.002 | −1.0457 |
2 | 19 | 52.07173 | 7.349767 | 1.68615 | |||
VCO2 170 (L/min) | 1 | 23 | 2227.189 | 393.5583 | 82.0626 | 0.004 | −0.9544 |
2 | 19 | 1903.858 | 256.366 | 58.8144 | |||
Time max (sec) | 1 | 23 | 472.78 | 44.184 | 9.213 | 0.002 | 1.0354 |
2 | 18 | 513 | 31.096 | 7.329 | |||
Deficit rel (L/kg) | 1 | 23 | 32.5625 | 14.33114 | 2.98825 | 0.0184 | 0.8028 |
2 | 19 | 39.03 | 16.71429 | 3.83452 | |||
VO2 rel (L/min/kg) | 1 | 23 | 45.6994 | 2.86718 | 0.59785 | <0.001 | 1.7551 |
2 | 19 | 51.4333 | 3.69754 | 0.84827 | |||
VCO2 rel (L/min/kg) | 1 | 23 | 48.3992 | 3.07209 | 0.64057 | <0.001 | 2.2055 |
2 | 19 | 55.9041 | 3.76785 | 0.8644 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Béres, B.; Györe, I.; Zsákai, A.; Dobronyi, T.; Bakonyi, P.; Szabó, T. Submaximal Oxygen Deficit During Incremental Treadmill Exercise in Elite Youth Female Handball Players. Sports 2025, 13, 252. https://doi.org/10.3390/sports13080252
Béres B, Györe I, Zsákai A, Dobronyi T, Bakonyi P, Szabó T. Submaximal Oxygen Deficit During Incremental Treadmill Exercise in Elite Youth Female Handball Players. Sports. 2025; 13(8):252. https://doi.org/10.3390/sports13080252
Chicago/Turabian StyleBéres, Bettina, István Györe, Annamária Zsákai, Tamas Dobronyi, Peter Bakonyi, and Tamás Szabó. 2025. "Submaximal Oxygen Deficit During Incremental Treadmill Exercise in Elite Youth Female Handball Players" Sports 13, no. 8: 252. https://doi.org/10.3390/sports13080252
APA StyleBéres, B., Györe, I., Zsákai, A., Dobronyi, T., Bakonyi, P., & Szabó, T. (2025). Submaximal Oxygen Deficit During Incremental Treadmill Exercise in Elite Youth Female Handball Players. Sports, 13(8), 252. https://doi.org/10.3390/sports13080252