Hydrogels in Heritage Conservation: A Comparative Evaluation on Composite Objects
Abstract
1. Introduction
2. Results and Discussion
2.1. Cleaning Efficacy
2.1.1. Energy-Dispersive X-Ray Spectroscopy (EDS)
2.1.2. Colorimetry
2.2. Presence of Residues
2.3. Cleaning Impact on Substrates
2.4. Managing Redistribution at the Cleaning Zone Perimeter
2.5. Evaluation of Gel Formulations
3. Conclusions
4. Materials and Methods
4.1. Mock-Up Preparation
4.2. Cleaning Methodology
4.3. Cleaning Efficacy
4.3.1. Energy-Dispersive X-Ray Spectroscopy (EDS)
4.3.2. Colorimetry
4.4. Presence of Residues
Scanning Electron Microscopy (SEM)
4.5. Cleaning Impact on Substrates
Attenuated Total Reflection–Fourier Transform Infrared Spectroscopy (ATR-FTIR)
4.6. Managing Redistribution at the Cleaning Zone Perimeter
Stereomicroscopy
4.7. Evaluation of Gel Formulations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Huggins, F.E.; Feng, Z.; Huffman, G.P. Ferrihydrite: Surface Structure and its Effects on Phase Transformation. Clays Clay Miner. 1994, 42, 737–746. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses, 2nd ed.; Wiley-VCH: Heppenheim, Germany, 2003; pp. 139–147. ISBN 3527302743. [Google Scholar]
- Scott, D.A.; Eggert, G. Iron and Steel in Art: Corrosion, Colorants, Conservation; Archetype publications: London, UK, 2009; pp. 35–105. ISBN 9781904982050. [Google Scholar]
- Dai, N.; Zhang, J.; Chen, Q.; Yi, B.; Cao, F.; Zhang, J. Effect of the Direct Current Electric Field on the Initial Corrosion of Steel in Simulated Industrial Atmospheric Environment. Corros. Sci. 2015, 99, 295–303. [Google Scholar] [CrossRef]
- Emery, J.A.; Schroeder, H.A. Iron-Catalyzed Oxidation of Wood Carbohydrates. Wood Sci. Technol. 1974, 8, 123–137. [Google Scholar] [CrossRef]
- Baker, A.J. Corrosion of Metal in Wood Products. In Durability of Building Materials and Components. ASTM STP 691; Sereda, P.J., Litvan, G.G., Eds.; American Society for Testing and Materials: West Conshohocken, PA, USA, 1980; pp. 981–993. ISBN 978-0-8031-4768-3. [Google Scholar]
- Burgess, H. The Use of Chelating Agents in Conservation Treatments. Pap. Conserv. 1991, 15, 36–44. [Google Scholar] [CrossRef]
- Phenix, A.; Burnstock, A. The Removal of Surface Dirt on Paintings with Chelating Agents. Conservator 1992, 16, 28–38. [Google Scholar] [CrossRef]
- Timár-Balázsy, Á.; Mátéfy, G.; Csányi, S. Effect of Stains and Stain Removal on Historical Textiles. In Proceedings of the 10th Triennial Meeting of ICOM Committee for Conservation, Washington, DC, USA, 22–27 August 1993; Bridgland, J., Ed.; ICOM-CC: Paris, France, 1993; pp. 330–335. [Google Scholar]
- Gent, M.; Rees, J. A Conservation Treatment to Remove Residual Iron from Platinum Prints. Pap. Conserv. 1994, 18, 90–95. [Google Scholar] [CrossRef]
- Rivers, S.; Umney, N. Conservation of Furniture; Butterworths-Heinemann: Oxford, UK, 2003; pp. 74–547. ISBN 0750609583. [Google Scholar]
- Almkvist, G.; Dal, L.; Persson, I. Extraction of Iron Compounds from VASA Wood. In Proceedings of the 9th ICOM-CC Group on Wet Organic Archaeological Materials Conference, Copenhagen, Denmark, 7–11 June 2004; Hoffmann, P., Spriggs, J.A., Strætkvern, K., Gregory, D., Eds.; ICOM: Bremerhaven, Germany, 2005; pp. 202–210. [Google Scholar]
- Fors, Y. Sulfur-Related Conservation Concerns for Marine Archaeologial Wood: The Origin, Speciation and Distribution of Accumulated Sulfur with Some Remedies for the Vasa. Ph.D. Thesis, Department of Physical, Inorganic and Structural Chemistry, Stockholm University, Stockholm, Sweden, 2008. [Google Scholar]
- Macchia, A.; Ruffolo, S.A.; Rivaroli, L.; La Russa, M.F. The Treatment of Iron-Stained Marble: Toward a “Green” Solution. Int. J. Conserv. Sci. 2016, 7, 323–332. [Google Scholar]
- Thorn, A. Treatment of Heavily Iron-Stained Limestone and Marble Sculpture. In Proceedings of the 14th Triennial ICOM-CC Meeting, Hague, The Netherlands, 12–16 September 2005; Verger, I., Ed.; James and James/Earthscan: London, UK, 2005; pp. 888–894. [Google Scholar]
- Angelova, L.V.; Matarrese, C.; Fratini, E.; Weiss, R.G.; Dei, L.; Carretti, E. Chelating Agents in Aqueous, Partially-Hydrolyzed, Poly(Vinyl Acetate) Dispersions Crosslinked with Borax. Physicochemical Characterization and an Application. Colloids Surf. A 2018, 556, 61–71. [Google Scholar] [CrossRef]
- Balliana, E.; Ricci, G.; Pesce, C.; Zendri, E. Assessing the Value of Green Conservation for Cultural Heritage: Positive and Critical Aspects of Already Available Methodologies. Int. J. Conserv. Sci. 2016, 7, 185–202. [Google Scholar]
- Neilands, J.B. Siderophores: Structure and Function of Microbial Iron Transport Compounds. J. Biol. Chem. 1995, 270, 26723–26726. [Google Scholar] [CrossRef] [PubMed]
- Rapti, S.; Boyatzis, S.C.; Rivers, S.; Pournou, A. Siderophores and Their Applications in Wood, Textile, and Paper Conservation. In Microorganisms in the Deterioration and Preservation of Cultural Heritage; Joseph, E., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 301–339. [Google Scholar]
- Strlič, M.; Kolar, J.; Pihlar, B. Some Preventive Cellulose Antioxidants Studied by an Aromatic Hydroxylation Assay. Polym. Degrad. Stab. 2001, 73, 535–539. [Google Scholar] [CrossRef]
- Hider, R.C.; Kong, X. Chemistry and Biology of Siderophores. Nat. Prod. Rep. 2010, 27, 637–657. [Google Scholar] [CrossRef]
- Bellotti, D.; Remelli, M. Deferoxamine B: A Natural, Excellent and Versatile Metal Chelator. Molecules 2021, 26, 3255. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.; Bulska, E. Towards a New Conservation Method for Ancient Manuscripts by Inactivation of Iron via Complexation and Extraction. Anal. Bioanal. Chem. 2003, 375, 1148–1153. [Google Scholar] [CrossRef]
- Bulska, E.; Wagner, B. Investigation of a Novel Conservation Procedure for Historical Documents. In Cultural Heritage Conservation and Environmental Impact Assessment by Non-Destructive Testing and Micro-Analysis; Grieken, R.V., Janssens, K., Eds.; Taylor & Francis-A.A Balkema: London, UK, 2005; pp. 101–116. ISBN 9058096815. [Google Scholar]
- Albelda-Berenguer, M.; Monachon, M.; Joseph, E. Siderophores: From Natural Roles to Potential Applications. In Advances in Applied Microbiology; Gadd, G.M., Sariaslani, S., Eds.; Academic Press Inc.: London, UK, 2019; Volume 106, pp. 211–218. ISBN 9780128169759. [Google Scholar]
- Monachon, M.; Albelda-Berenguer, M.; Joseph, E. Bio-based Treatment for the Extraction of Problematic Iron Sulphides from Waterlogged Archaeological Wood. In Proceedings of the Book of Abstracts of the 14th ICOM-CC Group on Wet Organic Archaeological Materials Conference, Portsmouth, UK, 20–24 May 2019; pp. 46–47. [Google Scholar]
- Monachon, M.; Pelé-Meziani, C.; Ganesan, S.; de Weck, S.; Moll-Dau, F.; Schramm, J.; Schmidt-Ott, K.; Joseph, E. Assessing the Versatility of Bioextraction to Preserve Waterlogged Wood. Forests 2023, 14, 1656. [Google Scholar] [CrossRef]
- Cuvillier, L.; Passaretti, A.; Guilminot, E.; Joseph, E. Testing of the Siderophore Deferoxamine Amended in Hydrogels for the Cleaning of Iron Corrosion. Eur. Phys. J. Plus 2023, 138, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Passaretti, A.; Cuvillier, L.; Guilminot, E.; Sciutto, G.; Joseph, E. Biocleaning of Historical Metal Artworks: Innovative Green Gels Amended with Microbial Derivatives. Front. Mater. 2023, 10, 1277972. [Google Scholar] [CrossRef]
- Rapti, S.; Boyatzis, S.C.; Rivers, S.; Velios, A.; Pournou, A. Removing Iron Stains from Wood and Textile Objects: Assessing Gelled Siderophores as Novel Green Chelators. In Proceedings of the Preprints of Gels in Conservation Conference, London, UK, 16–18 October 2017; Angelova, L., Ormsby, B., Townsend, J., Wolbers, R., Eds.; Archetype Publications: London, UK, 2017; pp. 343–348. [Google Scholar]
- Rapti, S.; Boyatzis, S.; Rivers, S.; Velios, A.; Pournou, A. Desferrioxamine B: Investigating the Efficacy of Hydrogels and Ethanol Gels for Removing Akaganeite and Maghemite from Dry Wooden Substrates. Forests 2023, 14, 247. [Google Scholar] [CrossRef]
- MacLeod, I.D.; Mardikian, P.; Richards, V.L. Observations on the extractions of iron and chloride from composite materials. In Proceedings of the 5th ICOM-CC Group on Wet Organic Archaeological Materials Conference, Portland, ME, USA, 16–20 August 1993; Hoffmann, P., Daley, T., Grant, T., Eds.; ICOM: Bremerhaven, Germany, 1993; pp. 199–212. [Google Scholar]
- CAC (Canadian Association for Conservation); CAPS (Canadian Association of Professionals Conservators). Code of Ethics and Guidance for Practice of the Canadian Association for Conservation of Cultural Property and of the Canadian Association of Professional Conservators, 3rd ed.; Canadian Association for Conservation of Cultural Property; Canadian Association of Professional Conservators: Ottawa, ON, Canada, 2000; pp. 1–17. ISBN 0969134762. [Google Scholar]
- Angelova, L.V.; Ormsby, B.; Richardson, E. Diffusion of Water from a Range of Conservation Treatment Gels into Paint Films Studied by Unilateral NMR. Part I: Acrylic Emulsion Paint. Microchem. J. 2016, 124, 311–320. [Google Scholar] [CrossRef]
- Bertasa, M.; Poli, T.; Riedo, C.; Di Tullio, V.; Capitani, D.; Proietti, N.; Canevali, C.; Sansonetti, A.; Scalarone, D. A Study of Non-Bounded/Bounded Water and Water Mobility in Different Agar Gels. Microchem. J. 2018, 139, 306–314. [Google Scholar] [CrossRef]
- Bertasa, M.; Canevali, C.; Sansonetti, A.; Lazzari, M.; Malandrino, M.; Simonutti, R.; Scalarone, D. An in-Depth Study on the Agar Gel Effectiveness for Built Heritage Cleaning. J. Cult. Herit. 2021, 47, 12–20. [Google Scholar] [CrossRef]
- Bonelli, N.; Poggi, G.; Chelazzi, D.; Giorgi, R.; Baglioni, P. Poly(Vinyl Alcohol)/Poly(Vinyl Pyrrolidone) Hydrogels for the Cleaning of Art. J. Colloid Interface Sci. 2019, 536, 339–348. [Google Scholar] [CrossRef]
- Sansonetti, A.; Riminesi, C.; Mironiouk, S.; Proietti, N.; Di Tullio, V.; Nisticò, R.; Sacchi, B.; Canevali, C. Gel Cleaning in Heritage: Comparison of the Water Release among Gels and Traditional Pads. Gels 2024, 10, 708. [Google Scholar] [CrossRef]
- Giordano, A.; Cremonesi, P. New Methods of Applying Rigid Agar Gels: From Tiny to Large-Scale Surface Areas. Stud. Conserv. 2021, 66, 437–448. [Google Scholar] [CrossRef]
- Wolbers, R. Cleaning Painting Surfaces: Aqueous Methods; Archetype: London, UK, 2000; ISBN 1873132360. [Google Scholar]
- Baglioni, P.; Chelazzi, D.; Giorgi, R. Innovative Nanomaterials: Principles, Availability and Scopes. In Nanotechnologies in the Conservation of Cultural Heritage; Springer: Dordrecht, The Netherlands, 2015; pp. 1–14. [Google Scholar]
- Baglioni, P.; Baglioni, M.; Bonelli, N.; Chelazzi, D.; Giorgi, R. Smart Soft Nanomaterials for Cleaning. In Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage; Elsevier: Amsterdam, The Netherlands, 2019; pp. 171–204. [Google Scholar] [CrossRef]
- Campani, E.; Casoli, A.; Cremonesi, P.; Saccani, M.; Signorini, E. Use of Agarose and Agar for Preparing Rigid Gels; Translation by Diane Kunzdman; Quaderni de-Cesmar7, Il Prato: Firenze, Italy, 2007; pp. 1–51. [Google Scholar]
- Cremonesi, P. Rigid Gels and Enzyme Cleaning. In New Insights into the Cleaning of Paintings, Proceedings of the Cleaning International Conference, Valencia, Spain, 26–28 May 2010; Mecklenburg, M.F., Charola, A.E., Koestler, R.J., Eds.; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2013; pp. 179–183. [Google Scholar]
- Mazzuca, C.; Micheli, L.; Carbone, M.; Basoli, F.; Cervelli, E.; Iannuccelli, S.; Sotgiu, S.; Palleschi, A. Gellan Hydrogel as a Powerful Tool in Paper Cleaning Process: A Detailed Study. J. Colloid Interface Sci. 2014, 416, 205–211. [Google Scholar] [CrossRef]
- Angelova, L.V.; Berrie, B.H.; De Ghetaldi, K.; Kerr, A.; Weiss, R.G. Partially Hydrolyzed Poly(Vinyl Acetate)-Borax based Gel-like Materials for Conservation of Art: Characterization and Applications. Stud. Conserv. 2015, 60, 227–244. [Google Scholar] [CrossRef]
- Canevali, C.; Fasoli, M.; Bertasa, M.; Botteon, A.; Colombo, A.; Di Tullio, V.; Capitani, D.; Proietti, N.; Scalarone, D.; Sansonetti, A. A Multi-Analytical Approach for the Study of Copper Stain Removal by Agar Gels. Microchem. J. 2016, 129, 249–258. [Google Scholar] [CrossRef]
- Cremonesi, P.; Casoli, A. Thermo-reversible Rigid Agar Hydrogels: Their Properties and Action in Cleaning. In Proceedings of the Preprints of Gels in Conservation Conference, London, UK, 16–18 October 2017; Angelova, L., Ormsby, B., Townsend, J., Wolbers, R., Eds.; Archetype Publications: London, UK, 2017; pp. 19–28. [Google Scholar]
- Al-Emam, E.; Soenen, H.; Caen, J.; Janssens, K. Characterization of Polyvinyl Alcohol-Borax/Agarose (PVA-B/AG) Double Network Hydrogel Utilized for the Cleaning of Works of Art. Herit. Sci. 2020, 8, 106. [Google Scholar] [CrossRef]
- Giuliani, L.; Genova, C.; Stagno, V.; Paoletti, L.; Matulac, A.L.; Ciccola, A.; Di Fazio, M.; Capuani, S.; Favero, G. Multi-Technique Assessment of Chelators-Loaded PVA-Borax Gel-like Systems Performance in Cleaning of Stone Contaminated with Copper Corrosion Products. Gels 2024, 10, 455. [Google Scholar] [CrossRef] [PubMed]
- Domingues, J.A.L.; Bonelli, N.; Giorgi, R.; Fratini, E.; Gorel, F.; Baglioni, P. Innovative Hydrogels Based on Semi-Interpenetrating p(HEMA)/PVP Networks for the Cleaning of Water-Sensitive Cultural Heritage Artifacts. Langmuir 2013, 29, 2746–2755. [Google Scholar] [CrossRef] [PubMed]
- Fratini, E.; Carretti, E. Cleaning IV: Gels and Polymeric Dispersions. In Nanoscience for the Conservation of Works of Art; Baglioni, P., Chelazzi, D., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2013; pp. 252–279. [Google Scholar] [CrossRef]
- Chelazzi, D.; Baglioni, P. From Nanoparticles to Gels: A Breakthrough in Art Conservation Science. Langmuir 2023, 39, 10744–10755. [Google Scholar] [CrossRef]
- Leroux, M. Soft Matter: Gel Development for Conservation Treatment Gellan Gum and Nanorestore Gel. Book Pap. Group Annu. 2016, 35, 43–47. [Google Scholar]
- Luciani, P.; Tasso, V.; Coccolo, F.; De Blasi, S.; Piccirillo, A.; Nervo, M.; Cardinali, M. Traditional and Innovative Methods to Remove Non-Original Varnish Finishes from Historic Wax Finishes on Eighteenth-Century Marquetry. In Proceedings of the Fourteenth International Symposium on Wood and Furniture Conservation: Old and New Approaches to Furniture Conservation, Amsterdam, The Netherlands, 23–24 November 2018; Vasques, D.M., Ed.; Stichting Ebenist: Amsterdam, The Netherlands, 2019; pp. 34–45. [Google Scholar]
- Serafini, I.; Ciccola, A. Nanotechnologies and Nanomaterials: An Overview for Cultural Heritage. In Nanotechnologies and Nanomaterials for Diagnostic, Conservation and Restoration of Cultural Heritage. Advanced Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 325–380. [Google Scholar] [CrossRef]
- Bartoletti, A.; Barker, R.; Chelazzi, D.; Bonelli, N.; Baglioni, P.; Lee, J.; Angelova, L.V.; Ormsby, B. Reviving WHAAM! A Comparative Evaluation of Cleaning Systems for the Conservation Treatment of Roy Lichtenstein’s Iconic Painting. Herit. Sci. 2020, 8, 9. [Google Scholar] [CrossRef]
- Germinario, G.; Ciccola, A.; Serafini, I.; Ruggiero, L.; Sbroscia, M.; Vincenti, F.; Fasolato, C.; Curini, R.; Ioele, M.; Postorino, P.; et al. Gel Substrates and Ammonia-EDTA Extraction Solution: A New Non-Destructive Combined Approach for the Identification of Anthraquinone Dyes from Wool Textiles. Microchem. J. 2020, 155, 104780. [Google Scholar] [CrossRef]
- Bartholdy, J.; Larsen, P.K.; Brajer, I. Hydrogels as Poultice Material for Disalination—A Preliminary Study. In Proceedings of the SWBSS 2021 Fifth International Conference on Salt Weathering of Buildings and Stone Sculptures, Delft, The Netherlands, 22–24 September 2021; Lubelli, B., Kamat, A., Quist, W., Eds.; pp. 215–224. Available online: https://books.bk.tudelft.nl/press/catalog/book/791 (accessed on 2 February 2024).
- Giraud, T.; Gomez, A.; Lemoine, S.; Pelé-Meziani, C.; Raimon, A.; Guilminot, E. Use of Gels for the Cleaning of Archaeological Metals. Case Study of Silver-Plated Copper Alloy Coins. J. Cult. Herit. 2021, 52, 73–83. [Google Scholar] [CrossRef]
- Stoveland, L.P.; Frøysaker, T.; Stols-Witlox, M.; Grøntoft, T.; Steindal, C.C.; Madden, O.; Ormsby, B. Evaluation of Novel Cleaning Systems on Mock-Ups of Unvarnished Oil Paint and Chalk-Glue Ground within the Munch Aula Paintings Project. Herit. Sci. 2021, 9, 144. [Google Scholar] [CrossRef]
- Bosi, A.; Ciccola, A.; Serafini, I.; Peruzzi, G.; Nigro, V.; Postorino, P.; Curini, R.; Favero, G. Gel Microextraction from Hydrophilic Paint Layers: A Comparison between Agar-Gel and Nanorestore Gel® HWR for Spectroscopic Identification of Madder. Microchem. J. 2023, 187, 108447. [Google Scholar] [CrossRef]
- Crawshaw, A.; Felter, M. Possible use of chelates of calcium to remove iron from bone, ivory, teeth and antler. In Proceedings of the 11th ICOM-CC Group on Wet Organic Archaeological Materials Conference, Greenville, CA, USA, 24–28 May 2010; Williams, E., Straetkvern, K., Eds.; ICOM: Bremerhaven, Germany, 2012; pp. 463–472. [Google Scholar]
- Domínguez-Vera, J.M. Iron(III) Complexation of Desferrioxamine B Encapsulated in Apoferritin. J. Inorg. Biochem. 2004, 98, 469–472. [Google Scholar] [CrossRef]
- Roig, P.B.; Regidor Ros, J.L.; Estellés, R.M. Biocleaning of Nitrate Alterations on Wall Paintings by Pseudomonas Stutzeri. Int. Biodeterior. Biodegrad. 2013, 84, 266–274. [Google Scholar] [CrossRef]
- Diamond, O.; Barkovic, M.; Cross, M.; Ormsby, B. The Role of Agar Gel in Treating Water Stains on Acrylic Paintings: Case Study of Composition, 1963 by Justin Knowles. J. Am. Inst. Conserv. 2019, 58, 144–157. [Google Scholar] [CrossRef]
- Doménech-Carbó, M.T.; Silva, M.F.; Aura-Castro, E.l.; Doménech-Carbó, A.; Fuster-López, L.; Gimeno-Adelantado, J.V.; Kröner, S.U.; Martínez-Bazán, M.L.; Más-Barberá, X.; Mecklenburg, M.F.; et al. Multitechnique Approach to evaluate cleaning treatments for acrylic and polyvinyl acetate paints. In New Insights into the Cleaning of Paintings: Proceedings from the Cleaning International Conference, 2010; Mecklenburg, M.F., Charola, A.E., Koestler, R.J., Eds.; Universidad Politecnica de Valencia and Museum Conservation Institute; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2013; pp. 125–134. [Google Scholar]
- Casoli, A.; Di Diego, Z.; Isca, C. Cleaning Painted Surfaces: Evaluation of Leaching Phenomenon Induced by Solvents Applied for the Removal of Gel Residues. Environ. Sci. Pollut. Res. 2014, 21, 13252–13263. [Google Scholar] [CrossRef] [PubMed]
- Doherty, E.; Rivers, S. The Removal of Lead-and Oil-Based Overpaint from a Plaster Cast of Hermes Fastening His Sandal. In Proceedings of the Preprints of Gels in Conservation Conference, London, UK, 16–18 October 2017; Angelova, L., Ormsby, B., Townsend, J., Wolbers, R., Eds.; Archetype Publications: London, UK, 2017; pp. 126–129. [Google Scholar]
- Wolbers, R. Terminology and Properties of Selected Gels. In Proceedings of the Preprints of Gels in Conservation Conference, London, UK, 16–18 October 2017; Angelova, L., Ormsby, B., Townsend, J., Wolbers, R., Eds.; Archetype Publications: London, UK, 2017; pp. 381–394. [Google Scholar]
- Furtado, I.F.; Sydney, E.B.; Rodrigues, S.A.; Sydney, A.C.N. Xanthan Gum: Applications, Challenges, and Advantages of This Asset of Biotechnological Origin. Biotechnol. Res. Innov. 2022, 6, e202204. [Google Scholar] [CrossRef]
- Sansonetti, A.; Bertasa, M.; Canevali, C.; Rabbolini, A.; Anzani, M.; Scalarone, D. A Review in Using Agar Gels for Cleaning Art Surfaces. J. Cult. Herit. 2020, 44, 285–296. [Google Scholar] [CrossRef]
- Granholm, K.; Harju, L.; Ivaska, A. Desorption of Metal Ions from Kraft Pulps. Part 1. Chelation of Hardwood and Softwood Kraft Pulp with EDTA. BioResources 2010, 5, 206–226. [Google Scholar] [CrossRef]
- Miethke, M.; Marahiel, M.A. Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007, 71, 413–451. [Google Scholar] [CrossRef]
- Larochette, Y. Determining the Efficacy of Cyclododecane as a Barrier for a Reduction Bleaching Treatment of a Silk Embroidered Linen Napkin. In Textile Specialty Group, Proceedings of the 32nd Annual Meeting American Institute for Conservation of Historic and Artistic Works (AIC), Portland, OR, USA, 9–14 June 2004; Randolph, J., MacKay, K., Hanson, R.M., Eds.; American Institute for Conservation (AIC): Washington, DC, USA, 2004; Volume 14, pp. 1–10. [Google Scholar]
- Wang, H.; Lu, G.; Zhang, J.; Zheng, D. Multifunctional Nanocomposites for Paper Conservation. Stud. Conserv. 2013, 58, 23–29. [Google Scholar] [CrossRef]
- Micheli, L.; Mazzuca, C.; Palleschi, A.; Palleschi, G. Development of a Diagnostic and Cleaning Tool for Paper Artworks: A Case of Study. Microchem. J. 2016, 126, 32–41. [Google Scholar] [CrossRef]
- Botti, L.; Corazza, A.; Iannuccelli, S.; Placido, M.; Residori, L.; Ruggiero, D.; Sotgiu, S.; Tireni, L.; Berzioli, M.; Casoli, A.; et al. Evaluation of cleaning and chemical stabilization of paper treated with a rigid hydrogel of gellan gum by means of chemical and physical analyses. In Proceedings of the 16th Triennial conference of ICOM-CC, Lisbon, Portugal, 19–13 September 2011; ICOM: Paris, France; pp. 1–11. [Google Scholar]
- Faix, O. Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy. Holzforschung 1991, 45, 21–27. [Google Scholar] [CrossRef]
- Chang, H.-T.; Yeh, T.-F.; Chang, S.-T. Comparisons of Chemical Characteristic Variations for Photodegraded Softwood and Hardwood with/without Polyurethane Clear Coatings. Polym. Degrad. Stab. 2002, 77, 129–135. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR Studies of the Changes in Wood Chemistry Following Decay by Brown-Rot and White-Rot Fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. Examination of the Lignin Content in a Softwood and a Hardwood Decayed by a Brown-Rot Fungus with the Acetyl Bromide Method and Fourier Transform Infrared Spectroscopy. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 2340–2346. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Structural Differences between Wood Species: Evidence from Chemical Composition, FTIR Spectroscopy, and Thermogravimetric Analysis. J. Appl. Polym. Sci. 2012, 126, E337–E344. [Google Scholar] [CrossRef]
- Lupoi, J.S.; Singh, S.; Parthasarathi, R.; Simmons, B.A.; Henry, R.J. Recent Innovations in Analytical Methods for the Qualitative and Quantitative Assessment of Lignin. Renew. Sustain. Energy Rev. 2015, 49, 871–906. [Google Scholar] [CrossRef]
- Nelson, M.L.; O’Connor, R.T. Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Latticed Type. Part I. Spectra of Lattice Types I, II, III and of Amorphous Cellulose. J. Appl. Polym. Sci. 1964, 8, 1311–1324. [Google Scholar] [CrossRef]
- Nelson, M.L.; O’Connor, R.T. Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part II. A New Infrared Ratio for Estimation of Crystallinity in Celluloses I and II. J. Appl. Polym. Sci. 1964, 8, 1325–1341. [Google Scholar] [CrossRef]
- Gilbert, C.; Kokot, S.; Meyer, U. Application of DRIFT Spectroscopy and Chemometrics for the Comparison of Cotton Fabrics. Appl. Spectrosc. 1993, 47, 741–748. [Google Scholar] [CrossRef]
- Chen, R.; Jakes, K.A. Effect of Pressing on the Infrared Spectra of Single Cotton Fibers. Appl. Spectrosc. 2002, 56, 646–650. [Google Scholar] [CrossRef]
- Garside, P.; Wyeth, P. Identification of Cellulosic Fibres by FTIR Spectroscopy: Thread and Single Fibre Analysis by Attenuated Total Reflectance. Stud. Conserv. 2003, 48, 269–275. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Kim, H.C.; Kim, Y.H.; Chung, Y.S.; Park, W.H.; Youk, J.H. Crystalline Structure Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide by Means of X-Ray Diffraction and FTIR Spectroscopy. Carbohydr. Res. 2005, 340, 2376–2391. [Google Scholar] [CrossRef]
- Musić, S.; Krehula, S.; Popović, S. Thermal Decomposition of β-FeOOH. Mater. Lett. 2004, 58, 444–448. [Google Scholar] [CrossRef]
- Glotch, T.D.; Kraft, M.D. Thermal Transformations of Akaganéite and Lepidocrocite to Hematite: Assessment of Possible Precursors to Martian Crystalline Hematite. Phys. Chem. Miner. 2008, 35, 569–581. [Google Scholar] [CrossRef]
- Stoia, M.; Istratie, R.; Păcurariu, C. Investigation of Magnetite Nanoparticles Stability in Air by Thermal Analysis and FTIR Spectroscopy. J. Therm. Anal. Calorim. 2016, 125, 1185–1198. [Google Scholar] [CrossRef]
- Siebner-Freibach, H.; Yariv, S.; Lapides, Y.; Hadar, Y.; Chen, Y. Thermo-FTIR Spectroscopic Study of the Siderophore Ferrioxamine B: Spectral Analysis and Stereochemical Implications of Iron Chelation, PH, and Temperature. J. Agric. Food Chem. 2005, 53, 3434–3443. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, R.; Chelazzi, D.; Poggi, G.; Fratini, E.; Buemi, L.P.; Petruzzellis, M.L.; Baglioni, P. Twin-Chain Polymer Hydrogels Based on Poly(Vinyl Alcohol) as New Advanced Tool for the Cleaning of Modern and Contemporary Art. Proc. Natl. Acad. Sci. USA 2020, 117, 7011–7020. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.C. Quantitative Chemical Analysis, 8th ed.; W.H. Freeman and Company: New York, NY, USA, 2010. [Google Scholar]
- Warda, J.; Brückle, I.; Bezúr, A.; Kushel, D. Analysis of Agarose, Carbopol, and Laponite Gel Poultices in Paper Conservation. J. Am. Inst. Conserv. 2007, 46, 263–279. [Google Scholar] [CrossRef]
- Shaeffer, E.; Gardiner, J. New and Current Materials and Approaches for Localized Cleaning in Textile Conservation. In Proceedings of the Textile Specialty Group of 41st Annual Meeting of American Institute for Conservation of Historic and Artistic Works (AIC), Indianapolis, IN, USA, 29 May–1 June 2013; Holden, A., Summerour, R., Schuetz, E., Carlson, J., Petersen, G., Eds.; Textile Specialty Group of AIC: Washington, DC, USA, 2013; Volume 23, pp. 109–124. [Google Scholar]
- EN 15886; Conservation of Cultural Property-Test Methods-Colour Measurement of Surfaces. Comite Europeen de Normalisation: Brussels, Belgium, 2010.
- Viñas, S.M. On Objectivity. In On the Ethics of Cultural Heritage Conservation; Archetype Publications: London, UK, 2020; pp. 1–47. [Google Scholar]
Reference Maple Wood Maxima, cm−1 a | Assignments for Wood | Bond Vibrations | Reference Cotton Maxima, cm−1 b | Assignments for Cotton |
---|---|---|---|---|
3340 br | Bound water or O-H of polysaccharides | vO–H | 3334 br | Bound water or O-H of cellulose |
2920 m | Hemicelluloses | vasCH2 | 2897 m | Cellulose |
2850 m | Hemicelluloses | vsCH2 | 2855 m | Cellulose |
1735 m | Esters and acids in hemicelluloses | vC=O | ||
1644 br | Adsorbed water | vO–H/vC=O | 1630 br | Adsorbed water |
1593 m | Aromatic ring in wood lignin | vC=C aromatic skeletal vibration | ||
1505 m | Aromatic ring in wood lignin | vC=C aromatic | ||
1459 m | Lignin/carbohydrates | δCH | 1454 sh | Cellulose |
1424 m | Lignin/cellulose | δ(C–H) | 1427 m | Cellulose (crystallinity band) |
1370 m | Holocellulose | τC–H | 1370 m | Cellulose |
1324 m | Holocellulose | τ,wC–H | 1335 m/1314 m | Cellulose |
1235 s | Lignin/hemicelluloses—xylans | vC–O/ δipC–O–H | 1234 w | Cellulose |
1160 m | Holocellulose | vsC–O–C | 1160 m | Cellulose |
1106 sh | Holocellulose | vasC–O–C + vC–C | 1108 sh | Cellulose |
1053 s | Holocellulose | vC–O | 1055 s | Cellulose |
1035 s | Primary alcohol in holocellulose/guaiacyl COH in lignin | v(C–OH) | 1032 s | Primary alcohol in cellulose |
985 sh | Cellulose | δipC–C–H + δipC–C–O | 985 sh | Cellulose |
898 w | β-Glycosidic linkage in cellulose | νC–O–C | 898 w | β-Glycosidic linkage in cellulose |
877 w | α-Glycosidic linkage in hemicelluloses | νC–O–C |
Criteria | Description | Scale |
---|---|---|
Residue deposition | Quantity of gel residues after application | |
High/thorough clearance is needed | 1 | |
Moderate/clearance is needed | 2 | |
Low/clearance process is easy | 3 | |
No gel residues after application | 4 | |
Reusability | Cannot be used again | 1 |
Reusable at least 2 times | 2 | |
Reusable at least 3 times | 3 | |
Reusable at least 4 times | 4 | |
Ease of application | Time-consuming preparation/difficulty in application | 1 |
Time-consuming preparation/skills demanding | 2 | |
Quick/skills demanding/easy application | 3 | |
Ready for application/easy application | 4 | |
Cost (supply cost in EUR) | >EUR 200 | 1 |
>EUR 100 | 2 | |
<EUR 60 | 3 | |
<EUR 30 | 4 | |
Suitability for use on two- and three-dimensional objects | 2D objects only | 1 |
Slightly curved surfaces/weight is needed | 2 | |
3D objects without full contact | 3 | |
3D objects | 4 | |
Compatibility with different chelators | Not compatible | 1 |
Selectively compatible | 2 | |
Generally compatible | 3 | |
Compatible | 4 | |
Transparency and colorlessness | Not transparent/color changes not visible | 1 |
Semitransparent/difficult to distinguish color changes | 2 | |
Transparent/difficult to distinguish color changes | 3 | |
Transparent/color changes visible | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapti, S.; Boyatzis, S.; Velios, A.; Rivers, S.; Pournou, A. Hydrogels in Heritage Conservation: A Comparative Evaluation on Composite Objects. Gels 2025, 11, 828. https://doi.org/10.3390/gels11100828
Rapti S, Boyatzis S, Velios A, Rivers S, Pournou A. Hydrogels in Heritage Conservation: A Comparative Evaluation on Composite Objects. Gels. 2025; 11(10):828. https://doi.org/10.3390/gels11100828
Chicago/Turabian StyleRapti, Stavroula, Stamatis Boyatzis, Athanasios Velios, Shayne Rivers, and Anastasia Pournou. 2025. "Hydrogels in Heritage Conservation: A Comparative Evaluation on Composite Objects" Gels 11, no. 10: 828. https://doi.org/10.3390/gels11100828
APA StyleRapti, S., Boyatzis, S., Velios, A., Rivers, S., & Pournou, A. (2025). Hydrogels in Heritage Conservation: A Comparative Evaluation on Composite Objects. Gels, 11(10), 828. https://doi.org/10.3390/gels11100828