Marine-Derived Bioactive Substances and Their Mechanisms of Action

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Pharmacology".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 5288

Special Issue Editor


E-Mail Website
Guest Editor
Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Okinawa 905-2192, Japan
Interests: oxidative stress and modulators; physiologically active substances; antioxidants; anticancer drugs
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Metabolites from marine organisms have been shown to possess a wide range of biological activities, including antioxidant, anti-inflammatory, antibacterial, anticancer, and immunomodulatory effects, and they are expected to have sustainable applications in pharmaceuticals, functional foods, and medicinal cosmetics.

We welcome the submission of high-quality review articles and research papers focused on the above topics to highlight the mechanisms of action of marine-derived bioactive substances. We welcome submissions from everyone who shares our commitment to the sustainable use of marine natural resources.

Prof. Dr. Junsei Taira
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine bioactive metabolite
  • antioxidant
  • anticancer
  • immunomodulatory action
  • cell signaling
  • mechanisms of action

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 606 KiB  
Article
A Novel Sesterterpenoid, Petrosaspongin and γ-Lactone Sesterterpenoids with Leishmanicidal Activity from Okinawan Marine Invertebrates
by Takahiro Jomori, Nanami Higa, Shogo Hokama, Trianda Ayuning Tyas, Natsuki Matsuura, Yudai Ueda, Ryo Kimura, Sei Arizono, Nicole Joy de Voogd, Yasuhiro Hayashi, Mina Yasumoto-Hirose, Junichi Tanaka and Kanami Mori-Yasumoto
Mar. Drugs 2025, 23(1), 16; https://doi.org/10.3390/md23010016 - 30 Dec 2024
Viewed by 917
Abstract
Leishmaniasis is a major public health problem, especially affecting vulnerable populations in tropical and subtropical regions. The disease is endemic in 90 countries, and with millions of people at risk, it is seen as one of the ten most neglected tropical diseases. Current [...] Read more.
Leishmaniasis is a major public health problem, especially affecting vulnerable populations in tropical and subtropical regions. The disease is endemic in 90 countries, and with millions of people at risk, it is seen as one of the ten most neglected tropical diseases. Current treatments face challenges such as high toxicity, side effects, cost, and growing drug resistance. There is an urgent need for safer, affordable treatments, especially for cutaneous leishmaniasis (CL), the most common form. Marine invertebrates have long been resources for discovering bioactive compounds such as sesterterpenoids. Using bioassay-guided fractionations against cutaneous-type leishmaniasis promastigotes, we identified a novel furanosesterterpenoid, petrosaspongin from Okinawan marine sponges and a nudibranch, along with eight known sesterterpenoids, hippospongins and manoalides. The elucidated structure of petrosaspongin features a β-substituted furane ring, a tetronic acid, and a conjugated triene. The sesterterpenoids with a γ-butenolide group exhibited leishmanicidal activity against Leishmania major promastigotes, with IC50 values ranging from 0.69 to 53 μM. The structure–activity relationship and molecular docking simulation suggest that γ-lactone is a key functional group for leishmanicidal activity. These findings contribute to the ongoing search for more effective treatments against CL. Full article
(This article belongs to the Special Issue Marine-Derived Bioactive Substances and Their Mechanisms of Action)
Show Figures

Graphical abstract

12 pages, 1638 KiB  
Article
Staurosporine as a Potential Treatment for Acanthamoeba Keratitis Using Mouse Cornea as an Ex Vivo Model
by Rubén L. Rodríguez-Expósito, Ines Sifaoui, Lizbeth Salazar-Villatoro, Carlos J. Bethencourt-Estrella, José J. Fernández, Ana R. Díaz-Marrero, Robert Sutak, Maritza Omaña-Molina, José E. Piñero and Jacob Lorenzo-Morales
Mar. Drugs 2024, 22(9), 423; https://doi.org/10.3390/md22090423 - 18 Sep 2024
Viewed by 3948
Abstract
Acanthamoeba is a ubiquitous genus of amoebae that can trigger a severe and progressive ocular disease known as Acanthamoeba Keratitis (AK). Furthermore, current treatment protocols are based on the combination of different compounds that are not fully effective. Therefore, an urgent need to [...] Read more.
Acanthamoeba is a ubiquitous genus of amoebae that can trigger a severe and progressive ocular disease known as Acanthamoeba Keratitis (AK). Furthermore, current treatment protocols are based on the combination of different compounds that are not fully effective. Therefore, an urgent need to find new compounds to treat Acanthamoeba infections is clear. In the present study, we evaluated staurosporine as a potential treatment for Acanthamoeba keratitis using mouse cornea as an ex vivo model, and a comparative proteomic analysis was conducted to elucidate a mechanism of action. The obtained results indicate that staurosporine altered the conformation of actin and tubulin in treated trophozoites of A. castellanii. In addition, proteomic analysis of treated trophozoites revealed that this molecule induced overexpression and a downregulation of proteins related to key functions for Acanthamoeba infection pathways. Additionally, the ex vivo assay used validated this model for the study of the pathogenesis and therapies of AK. Finally, staurosporine eliminated the entire amoebic population and prevented the adhesion and infection of amoebae to the epithelium of treated mouse corneas. Full article
(This article belongs to the Special Issue Marine-Derived Bioactive Substances and Their Mechanisms of Action)
Show Figures

Graphical abstract

Back to TopTop