IL-2 Receptor Expression in Renal Cell Carcinoma Cells: IL-2 Influences Cell Survival and Induces Cell Death
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Polymerase Chain Reaction and Agarose Gel Electrophoresis Assay
2.3. Western Blotting
2.4. Flow Cytometry Assay
2.5. Cell Proliferation Assay
2.6. Cell Viability Assay
2.7. Cell Cytotoxicity Assay
2.8. Statistical Analysis
3. Results
3.1. IL-2Rα, IL-2Rβ, and IL-2Rγ Expression in A-498, ACHN, Caki-1, and Caki-2 Cell Lines
3.2. IL-2 Receptor-Mediated Response Following IL-2 Exposure of A-498, ACHN, Caki-1, and Caki-2 Cell Lines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RCC | Renal cell carcinoma |
ccRCC | Clear cell renal cell carcinoma |
pRCC | Papillary renal cell carcinoma |
HD IL-2 therapy | High-dose IL-2 therapy |
IL-2R | Interleukin-2 receptor |
IL-2Rα | Interleukin-2 receptor alpha (CD25) |
IL-2Rβ | Interleukin-2 receptor beta (CD122) |
IL-2Rγ | Interleukin-2 receptor gamma (CD132, γc) |
rhIL-2 | Recombinant human interleukin-2 |
IL-2 | Interleukin-2 |
PBMCs | Peripheral Blood Mononuclear Cells |
BrdU | Bromodeoxyuridine |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
LDH | Lactate dehydrogenase |
SEM | Standard error of the mean |
References
- Xu, Q.; Zhang, T.; Xia, T.; Jin, B.; Chen, H.; Yang, X. Epidemiological Trends of Kidney Cancer Along with Attributable Risk Factors in China from 1990 to 2019 and Its Projections Until 2030: An Analysis of the Global Burden of Disease Study 2019. Clin. Epidemiol. 2023, 15, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Bahadoram, S.; Davoodi, M.; Hassanzadeh, S.; Bahadoram, M.; Barahman, M.; Mafakher, L. Renal cell carcinoma: An overview of the epidemiology, diagnosis, and treatment. G. Ital. Nefrol. Organo Uff. Della Soc. Ital. Nefrol. 2022, 39, 2022. [Google Scholar]
- Grigolo, S.; Filgueira, L. Immunotherapy of Clear-Cell Renal-Cell Carcinoma. Cancers 2024, 16, 2092. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Perspective Chapter: An Update on Renal Cell Carcinoma; IntechOpen: London, UK, 2023. [Google Scholar]
- Muglia, V.F.; Prando, A. Renal cell carcinoma: Histological classification and correlation with imaging findings. Radiol. Bras. 2015, 48, 166–174. [Google Scholar] [CrossRef]
- Pandey, J.; Syed, W. Renal Cancer; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Gray, R.E.; Harris, G.T. Renal Cell Carcinoma: Diagnosis and Management. Am. Fam. Physician 2019, 99, 179–184, Erratum in Am. Fam. Physician 2019, 99, 732. [Google Scholar]
- Campbell, S.C.; Clark, P.E.; Chang, S.S.; Karam, J.A.; Souter, L.; Uzzo, R.G. Renal Mass and Localized Renal Cancer: Evaluation, Management, and Follow-Up: AUA Guideline: Part I. J. Urol. 2021, 206, 199–208. [Google Scholar] [CrossRef]
- Das, C.; Aggarwal, A.; Singh, P.; Nayak, B.; Yadav, T.; Lal, A.; Gorsi, U.; Batra, A.; Shamim, S.; Duara, B.; et al. Imaging Recommendations for Diagnosis, Staging, and Management of Renal Tumors. Indian J. Med. Paediatr. Oncol. 2023, 44, 084–092. [Google Scholar] [CrossRef]
- Ross, K.; Jones, R.J. Immune checkpoint inhibitors in renal cell carcinoma. Clin. Sci. 2017, 131, 2627–2642. [Google Scholar] [CrossRef]
- Bekku, K.; Kawada, T.; Sekito, T.; Yoshinaga, K.; Maruyama, Y.; Yamanoi, T.; Tominaga, Y.; Sadahira, T.; Katayama, S.; Iwata, T.; et al. The Diagnosis and Treatment Approach for Oligo-Recurrent and Oligo-Progressive Renal Cell Carcinoma. Cancers 2023, 15, 5873. [Google Scholar] [CrossRef]
- Tannir, N.M.; Pal, S.K.; Atkins, M.B. Second-Line Treatment Landscape for Renal Cell Carcinoma: A Comprehensive Review. Oncologist 2018, 23, 540–555. [Google Scholar] [CrossRef]
- Rosenberg, S.A. IL-2: The first effective immunotherapy for human cancer. J. Immunol. 2014, 192, 5451–5458. [Google Scholar] [CrossRef]
- Wrangle, J.M.; Patterson, A.; Johnson, C.B.; Neitzke, D.J.; Mehrotra, S.; Denlinger, C.E.; Paulos, C.M.; Li, Z.; Cole, D.J.; Rubinstein, M.P. IL-2 and Beyond in Cancer Immunotherapy. J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res. 2018, 38, 45–68. [Google Scholar] [CrossRef]
- Holcomb, E.A.; Zou, W. A forced marriage of IL-2 and PD-1 antibody nurtures tumor-infiltrating T cells. J. Clin. Investig. 2022, 132, e156628. [Google Scholar] [CrossRef]
- Sahin, D.; Arenas-Ramirez, N.; Rath, M.; Karakus, U.; Hümbelin, M.; van Gogh, M.; Borsig, L.; Boyman, O. An IL-2-grafted antibody immunotherapy with potent efficacy against metastatic cancer. Nat. Commun. 2020, 11, 6440. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; McDermott, D.F.; Hammers, H.; Bro, W.; Bukowski, R.M.; Faba, B.; Faba, J.; Figlin, R.A.; Hutson, T.; Jonasch, E.; et al. Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of renal cell carcinoma. J. Immunother. Cancer 2016, 4, 81. [Google Scholar] [CrossRef]
- Jiang, T.; Zhou, C.; Ren, S. Role of IL-2 in cancer immunotherapy. Oncoimmunology 2016, 5, e1163462. [Google Scholar] [CrossRef] [PubMed]
- Brodaczewska, K.K.; Szczylik, C.; Fiedorowicz, M.; Porta, C.; Czarnecka, A.M. Choosing the right cell line for renal cell cancer research. Mol. Cancer 2016, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- Meazza, R.; Marciano, S.; Sforzini, S.; Orengo, A.M.; Coppolecchia, M.; Musiani, P.; Ardizzoni, A.; Santi, L.; Azzarone, B.; Ferrini, S. Analysis of IL-2 receptor expression and of the biological effects of IL-2 gene transfection in small-cell lung cancer. Br. J. Cancer 1996, 74, 788–795. [Google Scholar] [CrossRef]
- Apanovich, N.; Peters, M.; Apanovich, P.; Mansorunov, D.; Markova, A.; Matveev, V.; Karpukhin, A. The Genes-Candidates for Prognostic Markers of Metastasis by Expression Level in Clear Cell Renal Cell Cancer. Diagnostics 2020, 10, 30. [Google Scholar] [CrossRef]
- Zea, A.H.; Stewart, T.; Ascani, J.; Tate, D.J.; Finkel-Jimenez, B.; Wilk, A.; Reiss, K.; Smoyer, W.E.; Aviles, D.H. Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome? PLoS ONE 2016, 11, e0157907. [Google Scholar] [CrossRef]
- Raeber, M.E.; Rosalia, R.A.; Schmid, D.; Karakus, U.; Boyman, O. Interleukin-2 signals converge in a lymphoid-dendritic cell pathway that promotes anticancer immunity. Sci. Transl. Med. 2020, 12, eaba5464. [Google Scholar] [CrossRef]
- de Lima Fragelli, B.D.; Camillo, L.; de Almeida Rodolpho, J.M.; de Godoy, K.F.; de Castro, C.A.; Brassolatti, P.; da Silva, A.J.; Borra, R.C.; de Freitas Anibal, F. Antitumor Effect of IL-2 and TRAIL Proteins Expressed by Recombinant Salmonella in Murine Bladder Cancer Cells. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2021, 55, 460–476. [Google Scholar] [CrossRef]
- Kahan, S.M.; Bakshi, R.K.; Ingram, J.T.; Hendrickson, R.C.; Lefkowitz, E.J.; Crossman, D.K.; Harrington, L.E.; Weaver, C.T.; Zajac, A.J. Intrinsic IL-2 production by effector CD8 T cells affects IL-2 signaling and promotes fate decisions, stemness, and protection. Sci. Immunol. 2022, 7, eabl6322. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Hoya, A.; Ortiz-Garrido, I.; Salazar-Valencia, I.; Romero-Hernández, C.; Valle-Mendiola, A.; Weiss-Steider, B.; Soto-Cruz, I. Cervical Cancer Cells Use the CD95 and IL-2 Pathways to Promote Their Proliferation and Survival. Biomolecules 2024, 14, 1543. [Google Scholar] [CrossRef] [PubMed]
- Crowley, L.C.; Scott, A.P.; Marfell, B.J.; Boughaba, J.A.; Chojnowski, G.; Waterhouse, N.J. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harb. Protoc. 2016, 7, pdb-prot087163. [Google Scholar] [CrossRef] [PubMed]
- Vitale, G.; Lupoli, G.; Guarrasi, R.; Colao, A.; Dicitore, A.; Gaudenzi, G.; Misso, G.; Castellano, M.; Addeo, R.; Facchini, G.; et al. Interleukin-2 and lanreotide in the treatment of medullary thyroid cancer: In vitro and in vivo studies. J. Clin. Endocrinol. Metab. 2013, 98, E1567–E1574. [Google Scholar] [CrossRef]
- Shen, B.; Chen, H.B.; Zhou, H.G.; Wu, M.H. Celastrol induces caspase-dependent apoptosis of hepatocellular carcinoma cells by suppression of mammalian target of rapamycin. J. Tradit. Chin. Med. 2021, 41, 381–389. [Google Scholar]
- Ji, K.; Lin, K.; Wang, Y.; Du, L.; Xu, C.; He, N.; Wang, J.; Liu, Y.; Liu, Q. TAZ inhibition promotes IL-2-induced apoptosis of hepatocellular carcinoma cells by activating the JNK/F-actin/mitochondrial fission pathway. Cancer Cell Int. 2018, 18, 117. [Google Scholar] [CrossRef]
- Hernandez, J.D.; Hsieh, E.W.Y. A great disturbance in the force: IL-2 receptor defects disrupt immune homeostasis. Curr. Opin. Pediatr. 2022, 34, 580–588. [Google Scholar] [CrossRef]
- Giron-Michel, J.; Azzi, S.; Khawam, K.; Mortier, E.; Caignard, A.; Devocelle, A.; Ferrini, S.; Croce, M.; François, H.; Lecru, L.; et al. Interleukin-15 plays a central role in human kidney physiology and cancer through the γc signaling pathway. PLoS ONE 2012, 7, e31624. [Google Scholar] [CrossRef]
- Rochman, Y.; Spolski, R.; Leonard, W.J. New insights into the regulation of T cells by gamma(c) family cytokines. Nat. Rev. Immunol. 2009, 9, 480–490. [Google Scholar] [CrossRef]
- Muhammad, S.; Fan, T.; Hai, Y.; Gao, Y.; He, J. Reigniting hope in cancer treatment: The promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol. Cancer 2023, 22, 121. [Google Scholar] [CrossRef]
- Ali, A.K.; Nandagopal, N.; Lee, S.H. IL-15-PI3K-AKT-mTOR: A Critical Pathway in the Life Journey of Natural Killer Cells. Front. Immunol. 2015, 6, 355. [Google Scholar] [CrossRef]
Cell Line | Age | Gender | Diagnosis | Subtype |
---|---|---|---|---|
A-498 | 52-year-old | Female | Kidney cancer | ccRCC |
ACHN | 22-year-old | Male | Renal adenocarcinoma | pRCC |
Caki-1 | 49-year-old | Male | Kidney cancer | ccRCC |
Caki-2 | 69-year-old | Male | Kidney cancer | ccRCC/pRCC |
Antibody | Dilution | Company |
---|---|---|
Human CD25/IL-2Rα | 1:250 | R&D Systems, Minneapolis, MN, USA |
IL-2Rβ (C-10): sc-393093 | 1:200 | Santa Cruz Biotechnology, Heidelberg, Germany |
IL-2Rγ (A-10): sc-271060 | 1:200 | Santa Cruz Biotechnology, Heidelberg, Germany |
GAPDH | 1:5000 | Proteintech, San Diego, CA, USA |
HRP-conjugated goat anti-mouse immunoglobulin | 1:2500 | R&D Systems, Minneapolis, MN, USA |
Antibody | Dilution | Company |
---|---|---|
Cleaved PARP (Asp214) (D64E10) XP(R) Rabbit mAb | 1:1000 | Cell Signaling Technology®, Massachusetts, MA, USA |
Cleaved Caspase-3 (D175) (5A1E) Rabbit mAb | 1:1000 | Cell Signaling Technology®, Massachusetts, MA, USA |
Cleaved Caspase-9 (Asp330) (E5Z7N) Rabbit mAb | 1:1000 | Cell Signaling Technology®, Massachusetts, MA, USA |
GAPDH | 1:5000 | Proteintech, San Diego, CA, USA |
Anti-rabbit IgG, HRP-linked Antibody | 1:1000 | Cell Signaling Technology®, Massachusetts, MA, USA |
Antibody | Clone | Dilution | Company |
---|---|---|---|
CD25-APC | S43.10 | 1:50 | Miltenyi Biotec, Bergisch Gladbach, Germany |
CD122-FITC | REA293 | 1:50 | Miltenyi Biotec, Bergisch Gladbach, Germany |
CD132-PE | REA293 | 1:50 | Miltenyi Biotec, Bergisch Gladbach, Germany |
Antibody | Dilution | Company |
---|---|---|
Human CD25/IL-2Rα | 1:50 | R&D Systems, Minneapolis, MN, USA |
IL-2Rβ (C-10): sc-393093 | 1:50 | Santa Cruz Biotechnology, Heidelberg, Germany |
Alexa Fluor® 488-AffiniPure F(ab’)2 Fragment Donkey Anti-Mouse IgG (H + L) | 1:500 | Jackson Immuno Research Laboratories, West Grove, PA, USA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigolo, S.; Fellay, I.; Filgueira, L. IL-2 Receptor Expression in Renal Cell Carcinoma Cells: IL-2 Influences Cell Survival and Induces Cell Death. Curr. Issues Mol. Biol. 2025, 47, 830. https://doi.org/10.3390/cimb47100830
Grigolo S, Fellay I, Filgueira L. IL-2 Receptor Expression in Renal Cell Carcinoma Cells: IL-2 Influences Cell Survival and Induces Cell Death. Current Issues in Molecular Biology. 2025; 47(10):830. https://doi.org/10.3390/cimb47100830
Chicago/Turabian StyleGrigolo, Sophie, Isabelle Fellay, and Luis Filgueira. 2025. "IL-2 Receptor Expression in Renal Cell Carcinoma Cells: IL-2 Influences Cell Survival and Induces Cell Death" Current Issues in Molecular Biology 47, no. 10: 830. https://doi.org/10.3390/cimb47100830
APA StyleGrigolo, S., Fellay, I., & Filgueira, L. (2025). IL-2 Receptor Expression in Renal Cell Carcinoma Cells: IL-2 Influences Cell Survival and Induces Cell Death. Current Issues in Molecular Biology, 47(10), 830. https://doi.org/10.3390/cimb47100830