Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = after-ripening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1558 KiB  
Article
In Vitro Germination of the Mediterranean Xerophytes Thymelaea hirsuta and Thymelaea tartonraira ssp. tartonraira as Affected by Scarification, Temperature, Photoperiod and Storage
by Aikaterini N. Martini and Maria Papafotiou
Seeds 2025, 4(3), 31; https://doi.org/10.3390/seeds4030031 - 4 Jul 2025
Viewed by 457
Abstract
With the aim of developing an efficient propagation method for the exploitation of Thymelaea hirsuta and T. artonraira ssp. tartonraira in the xeriscaping and pharmaceutical industry, the effects of the following were examined on the in vitro germination of their seeds: (i) pretreatment [...] Read more.
With the aim of developing an efficient propagation method for the exploitation of Thymelaea hirsuta and T. artonraira ssp. tartonraira in the xeriscaping and pharmaceutical industry, the effects of the following were examined on the in vitro germination of their seeds: (i) pretreatment (mechanical and chemical scarification or immersion in hot water; (ii) incubation temperature (5–30 °C); (iii) incubation light conditions (16 h photoperiod or continuous darkness); (iv) storage period at room temperature and darkness (up to 24 months). Seeds collected for two years from the same wild plants in Greece were surface-sterilized with a 15% commercial bleach solution for 15 min after the abovementioned treatments and placed for germination in Petri dishes containing a half-strength MS medium in growth chambers. The rate and final percentage of germination were recorded. For both species, scarification after immersion in concentrated H2SO4, preferably for 20 min, was necessary for seed germination, which indicates coat dormancy. Higher germination percentages were observed at temperatures of 10–20 °C, under continuous darkness for T. hirsuta (79–100%) and regardless of photoperiod for T. tartonraira (73–90%). Long storage reduced germination of only T. tartonraira (54–68% at optimum temperatures, 23 months after harvest), while T. hirsuta seeds stored for 5 months germinated at significantly lower percentages (40% maximum) compared to seeds stored for 9–24 months, revealing a dry after-ripening process. Seeds of both species harvested at different years showed stable behavior in terms of germination. For both species, an effective seed propagation protocol suitable for their exploitation as ornamental and landscape plants was developed. Full article
Show Figures

Figure 1

16 pages, 2345 KiB  
Article
More than Just a Shell: Indehiscent Fruits Drive Drought-Tolerant Germination in Invasive Lepidium Species
by Said Mohammed and Klaus Mummenhoff
Plants 2025, 14(10), 1517; https://doi.org/10.3390/plants14101517 - 19 May 2025
Viewed by 799
Abstract
This study aims to assess the drought stress tolerance of germinating seeds of the invasive indehiscent fruit-producing Lepidium species, specifically Lepidium appelianum, Lepidium draba, and the invasive dehiscent fruit-producing L. campestre. Drought stress tolerance experiments were conducted using various concentrations [...] Read more.
This study aims to assess the drought stress tolerance of germinating seeds of the invasive indehiscent fruit-producing Lepidium species, specifically Lepidium appelianum, Lepidium draba, and the invasive dehiscent fruit-producing L. campestre. Drought stress tolerance experiments were conducted using various concentrations of polyethylene glycol (PEG) following standard protocols. The results revealed that seeds/fruits of L. appelianum and L. draba exhibited significantly higher drought stress tolerance compared to seeds of L. campestre. Fresh seeds and fruits of L. appelianum were capable of germinating under various drought stress treatments, while fresh and after-ripened seeds and fruits of L. draba germinated in every condition except for −0.8 MPa. Conversely, L. campestre fresh seeds did not germinate under the most severe drought stress conditions (−0.6 and −0.8 MPa). It is crucial to note that fresh fruits of L. draba displayed pericarp-mediated chemical dormancy, while fresh seeds of L. campestre demonstrated physiological dormancy. However, fresh seeds and fruits of L. appelianum did not exhibit any dormancy. This study suggests that germinating seeds and fruits of L. appelianum demonstrate the strongest tolerance to drought stress, while L. draba exhibits moderate tolerance. On the contrary, L. campestre seeds display the least tolerance to drought stress. The differences in drought stress tolerance among the studied Lepidium species reflect the climatic facets in their native distribution areas. Given the potential high invasiveness associated with the drought stress tolerance of L. appelianum and L. draba, it is imperative to develop special control strategies to manage these invasive species in the face of future climate change. Full article
(This article belongs to the Special Issue Plant Invasions across Scales)
Show Figures

Figure 1

21 pages, 4380 KiB  
Article
Germination Under Temperature Stress Facilitates Invasion in Indehiscent Lepidium Species
by Said Mohammed and Klaus Mummenhoff
Agriculture 2025, 15(10), 1078; https://doi.org/10.3390/agriculture15101078 - 16 May 2025
Cited by 1 | Viewed by 2552
Abstract
This study investigates the germination ecology of three Lepidium species, including the invasive, indehiscent-fruited Lepidium appelianum and Lepidium draba, and the invasive, dehiscent-fruited Lepidium campestre. The ability of Lepidium species to germinate under a wide range of temperature conditions is significant [...] Read more.
This study investigates the germination ecology of three Lepidium species, including the invasive, indehiscent-fruited Lepidium appelianum and Lepidium draba, and the invasive, dehiscent-fruited Lepidium campestre. The ability of Lepidium species to germinate under a wide range of temperature conditions is significant for understanding their potential invasiveness and establishment in novel and extreme environments. This study aims to clarify the germination behavior of L. appelianum, L. draba, and L. campestre, thereby enhancing our understanding of their invasive potential and ecological implications in the context of a changing climate. The base (Tb), optimum (To), and maximum temperatures for 50% germination (Tc(50)) were determined across a broad thermal gradient following standard protocols. Freshly harvested seeds and fruits of L. appelianum are non-dormant. In contrast, L. draba exhibit pericarp-mediated chemical dormancy, while L. campestre demonstrates physiological dormancy, which is released through after-ripening. The results indicate that L. appelianum and L. draba seeds and fruits germinate at a base temperature (Tb) of 1 °C and 4 °C, respectively. On the other hand, L. campestre seeds germinate at a Tb of 5.8 °C. The optimum temperature (To) for the germination of seeds and fruits in L. appelianum and L. draba ranges from 23 °C to 25 °C, while the To for L. campestre seed germination is 16 °C to 18 °C. Additionally, the maximum temperature for 50% germination (Tc(50)) for L. appelianum fruits is 39.8 °C, for L. draba it is 34.4 °C, and L. campestre reports a (Tc(50)) ranging from 27.4 °C to 33.3 °C for freshly harvested and after-ripened seeds, respectively. These results demonstrated that L. appelianum and L. draba can germinate across a broad temperature range, from very cold to very hot, unlike L. campestre. These findings suggest that the unique reproductive strategy of indehiscent fruits, coupled with a wide thermal germination niche, may contribute to the invasive success of L. appelianum and L. draba. Given the projected climate warming, the results highlight the potential for increased invasiveness of these species and suggest the need for targeted management strategies. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

14 pages, 2219 KiB  
Article
Determining the Dormancy Type of the Endangered Linum mulleri by Testing 7000 Seeds
by Ludovica Dessì, Marco Porceddu, Lina Podda, Alba Cuena Lombraña and Gianluigi Bacchetta
Plants 2025, 14(7), 984; https://doi.org/10.3390/plants14070984 - 21 Mar 2025
Viewed by 660
Abstract
Linum mulleri is an endemic taxon of southwestern Sardinia (Italy), categorised as Endangered (EN) on the IUCN Red List and included in Annexes II and IV of the Habitats Directive (92/43/EEC) as priority species for conservation. This study investigated the germination ecophysiology of [...] Read more.
Linum mulleri is an endemic taxon of southwestern Sardinia (Italy), categorised as Endangered (EN) on the IUCN Red List and included in Annexes II and IV of the Habitats Directive (92/43/EEC) as priority species for conservation. This study investigated the germination ecophysiology of L. mulleri and the possible presence of dormancy by using 7000 seeds, providing useful information for conservation strategies. The germination response of fresh seeds was evaluated under different temperatures, photoperiods, pre-treatments [cold stratification (C); warm stratification (W); W+C; C+W+C; dry after-ripening (DAR)], and different gibberellic acid (GA3) concentrations. L. mulleri germinated under controlled conditions, particularly at 15 and 20 °C, while germination percentages (GP) never exceeded 5% at 5 and 30 °C. C and C+W+C induced secondary dormancy, delaying germination, whereas W, DAR, and GA3 stimulate it. Light and dark incubation showed no significant differences in regards to GP. W, DAR, and 250 mg/L GA3 effectively overcame physiological dormancy (PD), expanding the germination temperature range to below 10 and above 25 °C. These responses suggested type 3 non-deep PD, as germination temperatures extended from a moderate range to both low and high temperatures. Analyzing 7000 seeds provided crucial information regarding dormancy and germination strategies, supporting both ex situ and in situ conservation efforts. Full article
(This article belongs to the Special Issue Plant Conservation Science and Practice)
Show Figures

Figure 1

15 pages, 2093 KiB  
Article
After-Ripening Is Associated with Changes in the Sensitivity of Avena fatua L. Caryopses to Abscisic Acid, as Well as Changes in the Abscisic Acid and Bioactive Gibberellins Contents in Embryos
by Jan Kępczyński, Agata Wójcik and Michał Dziurka
Plants 2025, 14(3), 463; https://doi.org/10.3390/plants14030463 - 5 Feb 2025
Viewed by 659
Abstract
The information on the involvement of hormones in the release of dormancy in grass caryopses is still insufficient. The main aim of the present study was to deepen our understanding of the mechanism dormancy release in Avena fatua L. caryopses by after-ripening in [...] Read more.
The information on the involvement of hormones in the release of dormancy in grass caryopses is still insufficient. The main aim of the present study was to deepen our understanding of the mechanism dormancy release in Avena fatua L. caryopses by after-ripening in relation to abscisic acid (ABA) and gibberellins (GAs). The after-ripening of florets during dry storage resulted in dormancy removal in caryopses, allowing their germination at 20 to 30 °C. Sensitivity to ABA and paclobutrazol (PAC), a GAs biosynthesis inhibitor, decreased as the after-ripening period was extended. After-ripening increased the ABA content in the embryos of dry caryopses and decreased the total content of bioactive GAs, except for GA1, the content of which increased. Accordingly, the ABA/GAs ratio was increased, and the ABA/GA1 ratio was lowered due to after-ripening. After-ripening led to a decrease in the ABA content and increased the bioactive GAs contents, including GA1 and GA6, regarded as the most important for germination, in the embryos within 18 h of caryopses germination. The results obtained indicate that the embryos of dormant caryopses contained sufficient levels of bioactive GA1 and GA6 at early stages of germination, but their germination was prevented due to having too high an ABA concentration. It seems that the agents most important in dormancy removal through after-ripening include a reduction in the ABA content and sensitivity, as well as an increase in the bioactive GAs, particularly GA1 and GA6, in the embryos of germinating caryopses, which brings about a reduction in the ABA/GAs, ABA/GA1, and ABA/GA6 ratios, thus enabling germination. Full article
Show Figures

Figure 1

13 pages, 4954 KiB  
Article
Complex Seed Dormancy in Parrotia subaequalis: Identification, Breaking Mechanisms, and Conservation Strategies for an Endangered Species in China
by Yanfang Yang, Laikai Luo, Ling Zhu, Ying Cheng, Meng Yuan, Xiangdong Ruan and Kai Zhao
Plants 2025, 14(3), 452; https://doi.org/10.3390/plants14030452 - 4 Feb 2025
Cited by 1 | Viewed by 783
Abstract
Parrotia subaequalis, an endangered plant unique to China, is highly valued for its significant ecological and ornamental value. The specific type of seed dormancy in this species has not been clearly reported, which limits its natural regeneration and artificial propagation, posing a [...] Read more.
Parrotia subaequalis, an endangered plant unique to China, is highly valued for its significant ecological and ornamental value. The specific type of seed dormancy in this species has not been clearly reported, which limits its natural regeneration and artificial propagation, posing a challenge to its conservation and sustainable use. To address this, we conducted a comprehensive analysis of the seed dormancy mechanism of P. subaequalis and explored various methods to break dormancy, including cold and warm stratification, after-ripening, seed coat removal, and hormone soaking. Our analysis of the seeds’ physical properties, water absorption patterns, seed coat structure, embryo development, and endogenous inhibitors revealed that P. subaequalis seeds exhibit complex characteristics of physical and non-deep physiological dormancy. Experimental results showed that soaking the seeds in gibberellin (GA3) followed by seed coat removal effectively promoted germination. The optimal GA3 concentration for germination was 800 mg·L−1. Additionally, cold and warm stratification and after-ripening treatments significantly increased the germination percentage. These findings provide important technical support for dormancy release and seedling growth, which is crucial for the artificial propagation and population recovery of P. subaequalis. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

15 pages, 3244 KiB  
Article
Diaspore Dimorphism, Awn Hygroscopicity and Adaptive Significance in a Winter Annual Bromus tectorum (Poaceae)
by Jiayue Yan, Qian Li and Bo Zhang
Plants 2024, 13(21), 3093; https://doi.org/10.3390/plants13213093 - 3 Nov 2024
Viewed by 1047
Abstract
Bromus tectorum, a winter annual plant, produces dimorphic diaspores: complex diaspores with multi-awns and simple diaspores with one awn. However, there is no information available about the role of awns and the germination characteristics of dimorphic diaspores. Dispersal germination and awns hygroscopicity [...] Read more.
Bromus tectorum, a winter annual plant, produces dimorphic diaspores: complex diaspores with multi-awns and simple diaspores with one awn. However, there is no information available about the role of awns and the germination characteristics of dimorphic diaspores. Dispersal germination and awns hygroscopicity of the dimorphic diaspores were assessed. The complex diaspore with multi-awns can easily be dispersed long distances from the mother plant by mammals. The simple diaspores with one awn are tightly attached to the mother plant. Caryopses from the two types of diaspores exhibited non-deep physiological dormancy at maturity, which can be released by dry storage and GA3 treatment. The awns have hygroscopic activity and can move in response to changes in moisture, moving the complex diaspore (the seed) into the soil. The seedling emergence from complex diaspores was significantly higher than those from simple diaspores at all burial depths. Germination of caryopses on the soil surface was poor. The optimal planting depth for both types of diaspores’ emergence is 1–2 cm. The distinct characteristics of dimorphic diaspores and the beneficial influence of hygroscopic awns on dispersal, germination, and seedling establishment have significant ecological implications for B. tectorum’s successful reproduction in unpredictable cold deserts. Full article
Show Figures

Figure 1

14 pages, 1185 KiB  
Article
After-Ripening and Stratification Improve the Germination of the Cakile maritima Scop. (Brassicaceae) from the Apulia Region, Italy
by Giulia Conversa, Lucia Botticella and Antonio Elia
Agronomy 2024, 14(9), 2127; https://doi.org/10.3390/agronomy14092127 - 19 Sep 2024
Viewed by 1071
Abstract
Understanding seed germination is crucial for refining the propagation techniques of Cakile maritima, a wild halophyte species with significant potential for biosaline agriculture. However, research on seed germination within intact fruits of this species is limited. Four trials were conducted to study [...] Read more.
Understanding seed germination is crucial for refining the propagation techniques of Cakile maritima, a wild halophyte species with significant potential for biosaline agriculture. However, research on seed germination within intact fruits of this species is limited. Four trials were conducted to study the seed germination of a population from the Apulia region. The focus was on seeds that had undergone after-ripening for 3 years (20AR3) or 2 years (20AR2) (both collected in 2020), or 1 year (22AR1) (collected in 2022), and freshly harvested seeds in 2022 (22AR0) and 2023 (23AR0). The seeds were either incubated as naked or moist-stratified within intact fruits. A portion of 2022 AR0 siliques was submerged in saline water before stratification. The naked seeds collected in 2022 and 2020 (22AR0 and 20AR2) did not germinate, whereas a portion of the 23AR0 (67%), 20AR3, and 22AR1 (45%, irrespective of after-ripening) lots quickly (T50 = 3.5 days) germinated, underlining a lower dormancy level for seeds harvested or dry stored in 2023. Seed germination in the intact fruits was lower than the naked seeds, confirming the role of the pericarp in inducing seed dormancy. Stratification of the shelled seeds was much more effective in improving the germination time (140 days) and levels in the 23AR0 (81%), 20AR3, and 22AR1 (66%, irrespective of after-ripening) lots than in the 22AR0 (34%) and 20AR2 (61%) ones, which required 240 days to germinate. The saline solution imbibition of fruit seems only to delay the occurrence of the maximum emergence. The physiological seed dormancy of this C. maritima population has been proven, which may be variable in depth according to the year of fruit collection, ranging from intermediate to non-deep. Full article
Show Figures

Figure 1

10 pages, 3359 KiB  
Article
Seed Morpho-Anatomy, Dormancy and Germination Requirements in Three Schizanthus Species (Solanaceae) with Ornamental Potential
by Joaquín Moreno, Miguel Gómez and Samuel Contreras
Horticulturae 2024, 10(8), 867; https://doi.org/10.3390/horticulturae10080867 - 16 Aug 2024
Viewed by 1317
Abstract
Schizanthus carlomunozii, S. hookeri, and S. porrigens are herbaceous species native to Chile and Argentina and have high ornamental potential. Their propagation through seeds is challenging due to low and uneven germination percentages. This study aimed to determine the morpho-anatomical characteristics, [...] Read more.
Schizanthus carlomunozii, S. hookeri, and S. porrigens are herbaceous species native to Chile and Argentina and have high ornamental potential. Their propagation through seeds is challenging due to low and uneven germination percentages. This study aimed to determine the morpho-anatomical characteristics, dormancy, and germination requirements of the seeds of these three species. The seeds from all three species have a flattened and reniform shape with a foveolate testa. However, the seeds of S. hookeri are distinguished by their larger size, more pronounced C-shape, seed coat with more marked prominences, and symmetrically arranged areoles. Histological analysis and imbibition tests with methylene blue revealed that the seeds have well-developed embryos and permeable seed coats, ruling out physical and morphological dormancy. Germination tests under various conditions showed that the seeds of the three species exhibit physiological dormancy. Imbibition in gibberellic acid (200 ppm) proved to be an effective treatment to promote germination. When evaluated in S. hookeri seeds, cold stratification and after-ripening also improved germination. The optimal temperatures for seed germination were calculated to be 26 °C for S. carlomunozii, 19 °C for S. hookeri, and 23 °C for S. porrigens. Full article
(This article belongs to the Collection Seed Dormancy and Germination of Horticultural Plants)
Show Figures

Figure 1

13 pages, 1898 KiB  
Article
Assessing Falling Number Stability Increases the Genomic Prediction Ability of Pre-Harvest Sprouting Resistance in Common Winter Wheat
by Theresa Albrecht, Michael Oberforster, Lorenz Hartl and Volker Mohler
Genes 2024, 15(6), 794; https://doi.org/10.3390/genes15060794 - 17 Jun 2024
Viewed by 1642
Abstract
Pre-harvest sprouting (PHS) resistance is a complex trait, and many genes influencing the germination process of winter wheat have already been described. In the light of interannual climate variation, breeding for PHS resistance will remain mandatory for wheat breeders. Several tests and traits [...] Read more.
Pre-harvest sprouting (PHS) resistance is a complex trait, and many genes influencing the germination process of winter wheat have already been described. In the light of interannual climate variation, breeding for PHS resistance will remain mandatory for wheat breeders. Several tests and traits are used to assess PHS resistance, i.e., sprouting scores, germination index, and falling number (FN), but the variation of these traits is highly dependent on the weather conditions during field trials. Here, we present a method to assess falling number stability (FNS) employing an after-ripening period and the wetting of the kernels to improve trait variation and thus trait heritability. Different genome-based prediction scenarios within and across two subsequent seasons based on overall 400 breeding lines were applied to assess the predictive abilities of the different traits. Based on FNS, the genome-based prediction of the breeding values of wheat breeding material showed higher correlations across seasons (r=0.5050.548) compared to those obtained for other traits for PHS assessment (r=0.2160.501). By weighting PHS-associated quantitative trait loci (QTL) in the prediction model, the average predictive abilities for FNS increased from 0.585 to 0.648 within the season 2014/2015 and from 0.649 to 0.714 within the season 2015/2016. We found that markers in the Phs-A1 region on chromosome 4A had the highest effect on the predictive abilities for FNS, confirming the influence of this QTL in wheat breeding material, whereas the dwarfing genes Rht-B1 and Rht-D1 and the wheat–rye translocated chromosome T1RS.1BL exhibited effects, which are well-known, on FN per se exclusively. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

22 pages, 1194 KiB  
Review
Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation
by Michela Pirredda, Iris Fañanás-Pueyo, Luis Oñate-Sánchez and Sara Mira
Plants 2024, 13(1), 41; https://doi.org/10.3390/plants13010041 - 21 Dec 2023
Cited by 26 | Viewed by 6072
Abstract
Upon storage, seeds inevitably age and lose their viability over time, which determines their longevity. Longevity correlates with successful seed germination and enhancing this trait is of fundamental importance for long-term seed storage (germplasm conservation) and crop improvement. Seed longevity is governed by [...] Read more.
Upon storage, seeds inevitably age and lose their viability over time, which determines their longevity. Longevity correlates with successful seed germination and enhancing this trait is of fundamental importance for long-term seed storage (germplasm conservation) and crop improvement. Seed longevity is governed by a complex interplay between genetic factors and environmental conditions experienced during seed development and after-ripening that will shape seed physiology. Several factors have been associated with seed ageing such as oxidative stress responses, DNA repair enzymes, and composition of seed layers. Phytohormones, mainly abscisic acid, auxins, and gibberellins, have also emerged as prominent endogenous regulators of seed longevity, and their study has provided new regulators of longevity. Gaining a thorough understanding of how hormonal signalling genes and pathways are integrated with downstream mechanisms related to seed longevity is essential for formulating strategies aimed at preserving seed quality and viability. A relevant aspect related to research in seed longevity is the existence of significant differences between results depending on the seed equilibrium relative humidity conditions used to study seed ageing. Hence, this review delves into the genetic, environmental and experimental factors affecting seed ageing and longevity, with a particular focus on their hormonal regulation. We also provide gene network models underlying hormone signalling aimed to help visualize their integration into seed longevity and ageing. We believe that the format used to present the information bolsters its value as a resource to support seed longevity research for seed conservation and crop improvement. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

19 pages, 1211 KiB  
Review
Environmental Regulation of Weed Seed Dormancy and Germination
by Mirwais M. Qaderi
Seeds 2023, 2(3), 259-277; https://doi.org/10.3390/seeds2030020 - 30 Jun 2023
Cited by 7 | Viewed by 8040
Abstract
Many weeds produce dormant seeds that are unable to complete germination under favourable conditions. There are two types of seed dormancy: primary dormancy (innate dormancy), in which seeds are in a dormant state upon release from the parent plant, and secondary dormancy (induced [...] Read more.
Many weeds produce dormant seeds that are unable to complete germination under favourable conditions. There are two types of seed dormancy: primary dormancy (innate dormancy), in which seeds are in a dormant state upon release from the parent plant, and secondary dormancy (induced dormancy), in which dormancy develops in seeds through some experience after release from the parent plant. Mechanisms of seed dormancy are categorized as embryo dormancy and coat-imposed dormancy. In embryo dormancy, the control of dormancy resides within the embryo itself, and in coat-imposed dormancy, it is maintained by the structures enclosing the embryo. Many factors can influence seed dormancy during development and after dispersal; they can be abiotic, biotic, or a combination of both. Most weeds deposit a large number of seeds in the seed bank, which can be one of two types—transient or persistent. In the transient type, all viable seeds in the soil germinate or die within one year, and there is no carry-over until a new crop is deposited. In the persistent type, at least some seeds survive in the soil for more than one year and there is always some carry-over until a new crop is deposited. Some dormant seeds require after-ripening—changes in dry seeds that cause or improve germination. Nondormant, viable seeds can germinate if they encounter appropriate conditions. In the face of climate change, including global warming, some weeds produce a large proportion of nondormant seeds, which germinate shortly after dispersal, and a smaller, more transient seed bank. Further studies are required to explore this phenomenon. Full article
Show Figures

Figure 1

17 pages, 26838 KiB  
Article
Spider Plant (Cleome gynandra L.): An Emerging Weed in the Sweet Corn–Brassica Cropping System
by Khaled Saifullah, Alwyn Williams and Steve Adkins
Agronomy 2023, 13(5), 1430; https://doi.org/10.3390/agronomy13051430 - 22 May 2023
Cited by 1 | Viewed by 3512
Abstract
Spider plant (Cleome gynandra L.) is an emerging noxious weed, affecting cultivated vegetables in Queensland, Australia. It is a prolific seed producer, forming large seedbanks with variable seedling emergence. A study was carried out to investigate the seed biology of spider plant, [...] Read more.
Spider plant (Cleome gynandra L.) is an emerging noxious weed, affecting cultivated vegetables in Queensland, Australia. It is a prolific seed producer, forming large seedbanks with variable seedling emergence. A study was carried out to investigate the seed biology of spider plant, focusing on its seed germination ecology, viz., influence of temperatures, illumination conditions, medium salinity, pH, substrate moisture, burial depth, and after-ripening. Freshly harvested seeds were negatively photoblastic and had combinational dormancy. Improved germination was obtained by physical scarification followed by soaking for 16 h, by dry storage for over 6 months, and by the imbibition of gibberellic acid. Maximum germination percentages of 70 to 80% were recorded under constant darkness at alternating day/night temperatures of 20/30 °C, or with 18 to 27 °C constant temperatures. Spider plant showed a broad tolerance to pH but only moderate salt and moisture stress tolerance, since only 42 and 26% germination were observed with 60 mM NaCl and at −0.40 MPa, respectively. Seeds placed on the soil surface did not germinate, however, at a burial depth of 1.0 to 1.5 cm, which resulted in ca. 80% seedling emergence. These findings will assist land managers to predict seasonal emergence and will aid in deploying management approaches to control this weed. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

11 pages, 2228 KiB  
Article
Seed Dormancy and Germination Requirements of Torilis scabra (Apiaceae)
by Lei Zhang, Chaohan Xu, Huina Liu, Jun Tao and Keliang Zhang
Agronomy 2023, 13(5), 1250; https://doi.org/10.3390/agronomy13051250 - 27 Apr 2023
Cited by 5 | Viewed by 2230
Abstract
The timing of seed germination significantly affects the fitness and life cycle of plants. Torilis scabra is a perennial medicinal herb occurring in mixed forests but the increasing use and modification of forestlands in recent decades has led to the degeneration of its [...] Read more.
The timing of seed germination significantly affects the fitness and life cycle of plants. Torilis scabra is a perennial medicinal herb occurring in mixed forests but the increasing use and modification of forestlands in recent decades has led to the degeneration of its natural habitat. Nonetheless, the requirements for germination in T. scabra remain unclear. The present study focused on identifying conditions necessary to break T. scabra seed dormancy and describing its seed dormancy type. By periodically collecting seeds that were sown in the field, germination phenology was studied. The impact of light, temperature, and warm/cold stratification on breaking seed dormancy and promoting germination was also determined through incubating seeds in laboratory conditions. Additionally, the effect of GA3 was explored to more accurately identify the type of dormancy present. The results demonstrated that the seeds of T. scabra possessed small, undeveloped embryos with physiological dormancy at the time of maturity. In the field, embryo growth initiated in early spring and the embryo–seed length ratio increased by ~300% before the radical emerged. In the laboratory, the embryo–seed length ratio increased from 0.24 to 0.82 when seeds were subjected to cold stratification at 4 °C and then transferred to 15/25 °C. Germination was observed across a broad temperature range after cold stratification. GA3 also helped to break dormancy but after-ripening did not. Taken together, the results suggest that seeds of T. scabra have non-deep simple morphophysiological dormancy. Full article
(This article belongs to the Special Issue Research Progress in Seed Dormancy and Pre-harvest Sprouting)
Show Figures

Figure 1

12 pages, 1751 KiB  
Article
A Model for Changes in Germination Synchrony and Its Implements to Study Weed Population Dynamics: A Case Study of Brassicaceae
by Keyvan Maleki, Kourosh Maleki, Elias Soltani, Mostafa Oveisi and Jose L. Gonzalez-Andujar
Plants 2023, 12(2), 233; https://doi.org/10.3390/plants12020233 - 4 Jan 2023
Cited by 8 | Viewed by 2756
Abstract
In every agricultural system, weed seeds can be found in every cubic centimeter of soil. Weed seeds, as a valuable trait underlying the fate of weed populations, exhibit differing levels of seed dormancy, ensuring their survival under uncertain conditions. Seed dormancy is considered [...] Read more.
In every agricultural system, weed seeds can be found in every cubic centimeter of soil. Weed seeds, as a valuable trait underlying the fate of weed populations, exhibit differing levels of seed dormancy, ensuring their survival under uncertain conditions. Seed dormancy is considered as an innate mechanism that constrains germination under suitable conditions that would otherwise stimulate germination of nondormant seeds. This work provides new insight into changes in germination patterns along the dormant to nondormancy continuum in seeds with physiological dormancy. Notable findings are: (1) germination synchrony can act as a new parameter that quantitatively describes dormancy patterns and, subsequently, weed population dynamics, (2) germination synchrony is dynamic, suggesting that the more dormancy decreases, the more synchrony is obtainable, (3) after-ripening and stratification can function as a synchronizing agent that regulates germination behavior. Freshly harvested seeds of Brassica napus with type 3 of non-deep physiological dormancy showed the most synchronous germination, with a value of 3.14, while a lower level of germination asynchrony was found for newly harvested seeds of Sinapis arvensis with type 1 of non-deep physiological dormancy, with an asynchrony value of 2.25. After-ripening and stratification can act as a synchronizing factor through decreasing the asynchrony level and increasing synchrony. There is a firm relationship between seed dormancy cycling and germination synchrony patterns, ensuring their survival and reproductive strategies. By germinating in synchrony, which is accompanied by cycling mechanisms, weeds have more opportunities to persist. The synchrony model used in the present study predicts germination behavior and synchrony along the dormant to nondormancy continuum in weed seeds with physiological dormancy, suggesting a useful method for the quantification of germination strategies and weed population dynamics. Full article
(This article belongs to the Special Issue Physiological Features of Seeds: From Dormancy to Germination)
Show Figures

Figure 1

Back to TopTop