After-Ripening Is Associated with Changes in the Sensitivity of Avena fatua L. Caryopses to Abscisic Acid, as Well as Changes in the Abscisic Acid and Bioactive Gibberellins Contents in Embryos
Abstract
1. Introduction
2. Materials and Methods
2.1. Caryopse and Floret Germination After Dry Storage of Florets
2.2. Treatment with ABA, PAC, GA3, and KAR1
2.3. Determination of Germinated Caryopses
2.4. Determination of ABA and GAs Contents
2.5. Statistical Treatment
3. Results
3.1. Effects of Floret Dry Storage at 10–40 °C for Various Periods on Germination of Caryopses at 20, 25, and 30 °C
3.2. Effects of Floret Dry Storage at 20–35 °C for Various Periods on Germination of Florets at 20 °C
3.3. Effects of ABA on Caryopsis Germination at 20° C Following Floret Dry Storage at 35 °C for Various Periods
3.4. Effects of PAC on Caryopsis Germination at 20 °C Following Floret Dry Storage at 35 °C for Various Periods
3.5. Effects of GA3 on Caryopsis Germination at 20 °C in the Absence or in the Presence of ABA Following Floret Dry Storage at 25 °C for 16 Weeks
3.6. Effect of KAR1 on Caryopsis Germination at 20 °C in the Absence or the Presence of ABA Following Floret Dry Storage at 25 °C for 16 Weeks
3.7. ABA and GAs Contents and ABA/GAs Ratios in Embryos from Dormant and Non-Dormant Dry Caryopses
3.8. ABA and GAs Contents and ABA/GAs Ratios in Embryos from Dormant and Non-Dormant 18 h Germinating Caryopses
3.9. Effects of ABA on ABA and GAs Contents and ABA/GAs Ratio in Embryos from Caryopses Germinating for 18 h, Obtained from Florets Previously Dry-Stored at 35 °C for 16 Weeks
4. Discussion
4.1. Responses of Caryopses and Florets to Floret After-Ripening
4.2. Caryopsis Response to ABA and PAC Following Floret After-Ripening
4.3. Relationship Between Exogenous ABA and GA3 or KAR1 in Relation to Germination of Non-Dormant Caryopses
4.4. ABA and GAs Contents in Embryos of Dry Caryopses in Relation to After-Ripening
4.5. ABA and GAs Contents in Embryos of Germinating Caryopses in Relation to After-Ripening
4.6. ABA and GAs Contents in Embryos of Germinating Non-Dormant Caryopses in Relation to Exogenous ABA
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Germination. In Seeds: Physiology of Development, Germination and Dormancy; Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H., Eds.; Springer: New York, NY, USA, 2013; pp. 133–181. [Google Scholar]
- Baskin, C.C.; Baskin, J.M. Breaking seed dormancy during dry storage: A useful tool or major problem for successful restoration via direct seeding? Plants 2020, 9, 636. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Fernandez, R.; Rodríguez-Gacio, M.C.; Matilla, A.J. Progress in research on dry after-ripening. Seed Sci. Res. 2011, 21, 69–80. [Google Scholar] [CrossRef]
- Rodríguez, M.V.; Barrero, J.M.; Corbineau, F.; Gubler, F.; Benech-Arnold, R.L. Dormancy in cereals (not too much, not so little): About the mechanisms behind this trait. Seed Sci. Res. 2015, 25, 99–119. [Google Scholar] [CrossRef]
- Simpson, G.M. Seed Dormancy in Grasses; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Kępczyński, J. Induction of dormancy release in agricultural weed seeds by plant-derived smoke and smoke-derived Karrikin1 (KAR1). A relationship with plant hormones. In Strigolactones, Karrikins and Alkamides in Plants; Mukherjee, S., Aftab, T., Eds.; Publisher Taylor & Francis: Boca Raton, FL, USA, 2023; pp. 225–240. [Google Scholar]
- Kępczyński, J. Induction of agricultural weed seed germination by smoke and smoke-derived karrikin (KAR1), with a particular reference to Avena fatua L. Acta Physiol. Plant. 2018, 40, 87. [Google Scholar] [CrossRef]
- Kępczyński, J.; Wójcik, A.; Dziurka, M. NO-mediated dormancy release of Avena fatua caryopses is associated with decrease in abscisic acid sensitivity, content and ABA/GAs ratios. Planta 2023, 257, 101. [Google Scholar] [CrossRef]
- Kępczyński, J.; Dziurka, M.; Wójcik, A. KAR1-induced dormancy release in Avena fatua caryopses involves reduction of caryopsis sensitivity to ABA and ABA/GAs ratio in coleorhiza and radicle. Planta 2024, 259, 126. [Google Scholar] [CrossRef] [PubMed]
- Kępczyński, J.; Van Staden, J. Interaction of karrikinolide and ethylene in controlling germination of dormant Avena fatua L. caryopses. Plant Growth Regul. 2012, 67, 185–190. [Google Scholar] [CrossRef]
- Ruduś, I.; Cembrowska, D.; Jaworska, A.; Kępczyński, J. Involvement of ethylene biosynthesis and perception during germination of dormant Avena fatua L. caryopses induced by KAR1 or GA3. Planta 2019, 249, 719–738. [Google Scholar] [CrossRef] [PubMed]
- Ruduś, I.; Kępczyński, J. Exogenous putrescine increases the responsiveness of thermodormant Avena fatua L.caryopses to karrikinolide and gibberellic acid. Acta Physiol. Plant. 2017, 39, 49. [Google Scholar] [CrossRef]
- Kępczyński, J.; Wójcik, A.; Dziurka, M. Avena fatua caryopsis dormancy release is associated with changes in KAR1 and ABA sensitivity as well as with ABA reduction in coleorhiza and radicle. Planta 2021, 253, 52. [Google Scholar] [CrossRef]
- Schonbeck, M.W.; Egley, G.H. Redroot pigweed (Amaranthus retroflexus) seed germination responses to after-ripening, temperature, ethylene and some other environmental factors. Weed Sci. 1980, 28, 543–548. [Google Scholar] [CrossRef]
- Kępczyński, J.; Sznigir, P. Participation of GA3, ethylene, NO and HCN in germination of L. seeds with various dormancy levels. Acta Physiol. Plant. 2014, 36, 1463–1472. [Google Scholar] [CrossRef]
- Foley, M.E. Temperature and water status of seed after-ripening in wile oat (Avena fatua). Weed Sci. 1994, 42, 200–2004. [Google Scholar] [CrossRef]
- Holloway, T.; Steinbrecher, T.; Perez, M.; Seville, A.; Stock, D.; Nakabashi, K.; Leubner-Metzger, G. Coleorhiza-enforced seed dormancy: A novel mechanism to control germination in grasses. New Phytol. 2020, 229, 2179–2191. [Google Scholar] [CrossRef] [PubMed]
- Barrero, J.M.; Talbot, M.J.; White, R.G.; Jacobsen, J.V.; Gubler, F. Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol. 2009, 150, 1006–1021. [Google Scholar] [CrossRef]
- Tuttle, K.M.; Martinez, S.A.; Schramm, E.C.; Takebayashi, Y.; Seo, M.; Steber, C.M. Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, Triticum aestivum (L.). Seed Sci. Res. 2015, 25, 179–193. [Google Scholar] [CrossRef]
- Rodríguez, M.V.; Bodrone, M.P.; Castellari, M.P.; Batilla, D. Effect of storage temperature on dormancy release of sunflower (Helianthus annuus) achenes. Seed Sci. Res. 2018, 28, 101–111. [Google Scholar] [CrossRef]
- Gubler, F.; Hughes, T.; Waterhouse, P.; Jacobsen, J. Regulation of dormancy in barley by blue light and after-ripening: Effects on abscisic acid and gibberellin metabolism. Plant Physiol. 2008, 147, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Desta, B.; Amare, G. Paclobutrazol as a plant growth regulator. Chem. Biol. Technol. Agric. 2021, 8, 1. [Google Scholar] [CrossRef]
- Daws, M.I.; Davies, J.; Pritchard, H.W.; Brown, N.A.C.; Van Staden, J. Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regul. 2007, 51, 73–82. [Google Scholar] [CrossRef]
- Stevens, J.C.; Merritt, D.J.; Flematti, G.R.; Ghisalberti, E.L.; Dixon, K.W. Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. Plant Soil 2007, 298, 113–124. [Google Scholar] [CrossRef]
- Nelson, D.C.; Riseborough, J.A.; Flematti, G.R.; Stevens, J.; Ghisalberti, E.L.; Dixon, K.W.; Smith, S.M. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol. 2009, 149, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Urbanova, T.; Leubner-Metzger, G. Gibberellins and seed germination. Ann. Plant Rev. 2016, 49, 253–284. [Google Scholar]
- Nelson, K.; Kanno, Y.; Sepo, M.; Steber, C.M. Seed dormancy loss from dry after-ripening is associated with increasing gibberellin hormone levels in Arabidopsis thaliana. Front. Plant Sci. 2023, 14, 1145414. [Google Scholar]
- Poljakoff-Mayber, A.; Popilevski, I.; Belausov, E.; Ben-Tal, Y. Ivolvement of phytohormones in germination of dormant and non-dormant oat (Avena sativa L.). Plant Growth Regul. 2002, 37, 7–16. [Google Scholar] [CrossRef]
- Yamaguchi, S. Gibberellins metabolism and its regulation. Ann. Rev. Biol. 2008, 59, 225–251. [Google Scholar] [CrossRef] [PubMed]
- Kashiwakura, Y.-I.; Jikumaru, Y.; Kobayashi, D.; Takebayashi, Y.; Nambara, E.; Seo, M.; Kamiya, Y.; Kushiro, T.; Kawakami, N. Highly sprouting-tolerant wheat grain exhibits extreme dormancy and cold imbibition-resistant accumulation of abscisic acid. Plant Cell Physiol. 2016, 57, 715–732. [Google Scholar] [CrossRef] [PubMed]
- Tuan, P.A.; Kumar, R.; Rehal, P.K.; Toora, P.K.; Ayele, B.T. Molecular mechanism underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Front. Plant Sci. 2018, 9, 668. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Ponnaiah, M.; Thanikathansubramanian, K.; Corbineau, F.; Bailly, C.; Nambara, E.; Meimoun, P.; El-Maarouf-Bouteau, H. Re-localization of hormone effectors is associated by temperature and after-ripening in sunflower seeds. Sci. Rep. 2019, 9, 4861. [Google Scholar] [CrossRef]
- Jacobsen, J.V.; Pearce, D.W.; Poole, A.T.; Pharis, R.P.; Mander, L.N. Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiol. Plant. 2002, 115, 428–441. [Google Scholar] [CrossRef] [PubMed]
- Barrero, J.M.; Jacobsen, J.V.; Talbot, M.J.; White, R.G.; Swain, S.M.; Garvin, D.F.; Gubler, F. Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon. New Phytol. 2012, 93, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Oracz, K.; Voegele, A.; Tarkowska, D.; Jacquemoud, D.; Turecková, V.; Urbanová, T.; Strnad, M.; Sliwinska, E.; Leubner-Metzger, G. Myrigalone A inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture. Plant Cell Physiol. 2012, 53, 81–95. [Google Scholar] [CrossRef]
- Railton, I.D.; Wareing, P.F. Effects of abscisic on the levels of endogenous gibberellin-like substances in Solanum andigena. Planta 1973, 112, 65–69. [Google Scholar] [CrossRef]
- Kim, Y.H.; Choi, K.I.; Khan, A.L.; Waqas, M.; Lee, I.J. Exogenous application of abscisic acid regulates endogenous gibberellins homeostasis and enhances of oriental melon (Cucumis melo var. L.) against low temperature. Sci. Hort. 2016, 207, 41–47. [Google Scholar] [CrossRef]
Florets Dry Storage (After-Ripening) | Germination | ||
---|---|---|---|
Temperature, °C | Time, Weeks | Florets/Caryopses | Temperature, °C |
a. 10, 15, 20, 25, 35, 40 | 2, 4, 8, 12, 16 | Caryopses | 20, 25, 30 (H2 O) |
b. 20, 25, 30, 35 | 8, 16 | Florets | 20 (H2 O) |
c. 35 | 2, 4, 8, 12, 16 | Caryopses | 20 (H2 O, ABA or PAC) |
Gibberellins | Dormant | Non-Dormant | ||
---|---|---|---|---|
Time, h | ||||
0 | 18 | 0 | 18 | |
GA20 | 81.5 ± 24 b | 166.0 ± 36 c | 15.6 ± 4 a | 253.6 ± 18 d |
GA1 | 519.8 ± 97 a | 1356.0 ± 43 c | 880.0 ± 21 b | 1279.0 ± 116 c |
GA8 | 59.8 ± 11 c | 159.4 ± 11 d | 26.7 ± 3 b | 7.0 ± 0.5 a |
GA5 | 156.2 ± 14 b | 358.7 ± 56 c | 52.0 ± 5 a | 300.0 ± 20 c |
GA3 | 83.4 ± 10 a | 220.8 ± 54 c | 114.7 ± 23 ab | 163.0 ± 21 bc |
GA6 | 790.1 ± 125 b | 749.8 ± 77 b | 117.7 ± 24 a | 772.7 ± 68 b |
GA9 | 196.9 ± 27 b | 388.6 ± 18 d | 86.0 ± 20 | 313.0 ± 21 c |
GA4 | 416.7 ± 46 c | 162.2 ± 45 b | 49.0 ± 5 a | 124.7 ± 20 b |
GA7 | 19.9 ± 3 a | 38.7 ± 4 b | 20.0 ± 5 a | 39.3 ± 2 b |
Treatment | ABA | GAs | ABA/GA1 | ABA/GAs |
---|---|---|---|---|
nmol/g−1 DW | ||||
0 | 2.02 ± 0.15 a | 1.99 ± 0.06 a | 3.89 | 1.02 |
H2O | 2.43 ± 0.11 b | 2.88 0.07 b | 1.84 | 0.84 |
Treatment | ABA | GAs | ABA/GA1 | ABA/GAs |
---|---|---|---|---|
nmol/g−1 DW | ||||
0 | 2.40 ± 0.18 b | 1.23 ± 0.04 a | 2.72 ± 0.2 | 1.95 |
H2O | 1.21 ± 0.01 a | 2.70 ± 0.14 b | 0.96 ± 0.1 | 0.45 |
ABA | 82.50 ± 3.14 | 3.53 ± 0.23 c | 61.0 ± 8.7 | 23.37 |
Germination Time, h | GA1, pmol/g−1 DW | ABA/GA1 |
---|---|---|
6 | 564.3 ± 96.8 a | 4.3 |
24 | 1536.1 ± 88.2 c | 1.5 |
30 | 1928.8 ± 48.4 d | 1.1 |
36 | 1230.0 ± 137.2 b | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kępczyński, J.; Wójcik, A.; Dziurka, M. After-Ripening Is Associated with Changes in the Sensitivity of Avena fatua L. Caryopses to Abscisic Acid, as Well as Changes in the Abscisic Acid and Bioactive Gibberellins Contents in Embryos. Plants 2025, 14, 463. https://doi.org/10.3390/plants14030463
Kępczyński J, Wójcik A, Dziurka M. After-Ripening Is Associated with Changes in the Sensitivity of Avena fatua L. Caryopses to Abscisic Acid, as Well as Changes in the Abscisic Acid and Bioactive Gibberellins Contents in Embryos. Plants. 2025; 14(3):463. https://doi.org/10.3390/plants14030463
Chicago/Turabian StyleKępczyński, Jan, Agata Wójcik, and Michał Dziurka. 2025. "After-Ripening Is Associated with Changes in the Sensitivity of Avena fatua L. Caryopses to Abscisic Acid, as Well as Changes in the Abscisic Acid and Bioactive Gibberellins Contents in Embryos" Plants 14, no. 3: 463. https://doi.org/10.3390/plants14030463
APA StyleKępczyński, J., Wójcik, A., & Dziurka, M. (2025). After-Ripening Is Associated with Changes in the Sensitivity of Avena fatua L. Caryopses to Abscisic Acid, as Well as Changes in the Abscisic Acid and Bioactive Gibberellins Contents in Embryos. Plants, 14(3), 463. https://doi.org/10.3390/plants14030463