Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = aerosol mass spectrometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2650 KiB  
Article
Calibration and Detection of Phosphine Using a Corrosion-Resistant Ion Trap Mass Spectrometer
by Dragan Nikolić and Xu Zhang
Biophysica 2025, 5(3), 28; https://doi.org/10.3390/biophysica5030028 - 17 Jul 2025
Viewed by 211
Abstract
We present a corrosion-resistant quadrupole ion trap mass spectrometer (QIT-MS) designed for trace detection of volatiles in sulfuric acid aerosols, with a specific focus on phosphine (PH3). Here, we detail the gas calibration methodology using permeation tube technology for generating certified [...] Read more.
We present a corrosion-resistant quadrupole ion trap mass spectrometer (QIT-MS) designed for trace detection of volatiles in sulfuric acid aerosols, with a specific focus on phosphine (PH3). Here, we detail the gas calibration methodology using permeation tube technology for generating certified ppb-level PH3/H2S/CO2 mixtures, and report results from mass spectra with sufficient resolution to distinguish isotopic envelopes that validate the detection of PH3 at a concentration of 62 ppb. Fragmentation patterns for PH3 and H2S agree with NIST data, and signal-to-noise performance confirms ppb sensitivity over 2.6 h acquisition periods. We further assess spectral interferences from oxygen isotopes and propose a detection scheme based on isolated phosphorus ions (P+) to enable specific and interference-resistant identification of PH3 and other reduced phosphorus species of astrobiological interest in Venus-like environments. This work extends the capabilities of QIT-MS for trace gas analysis in chemically aggressive atmospheric conditions. Full article
(This article belongs to the Special Issue Mass Spectrometry Applications in Biology Research)
Show Figures

Figure 1

15 pages, 2303 KiB  
Article
Identification and Characterization of Atmospheric Nickel-Containing Particles in Guangzhou After the Implementation of the Clean Fuel Policy
by Zaihua Wang, Xuanxiao Chen, Cheng Wu, Hong Ju, Zhong Fu, Xin Xiong, Ting Qiu, Yuchen Lu, Junjie He, Yaxi Liu, Haining Wu, Chunlei Cheng and Mei Li
Toxics 2025, 13(5), 345; https://doi.org/10.3390/toxics13050345 - 26 Apr 2025
Viewed by 455
Abstract
Nickel, as a toxic trace element in fine particulate matter (PM2.5), has detrimental effects on both air quality and human health. Based on measurements from 2020 to 2021 using a single-particle aerosol mass spectrometer (SPAMS), this study investigates the properties of [...] Read more.
Nickel, as a toxic trace element in fine particulate matter (PM2.5), has detrimental effects on both air quality and human health. Based on measurements from 2020 to 2021 using a single-particle aerosol mass spectrometer (SPAMS), this study investigates the properties of nickel-containing particles (NCPs) in Guangzhou. The composition, sources, and temporal trends of NCPs were evaluated and the impact of the clean ship fuel policy introduced in 2020 was also examined. The key findings include: (1) Nickel particles account for 0.08% number fraction of PM2.5, which is consistent with previously reported mass fraction in PM2.5. (2) Three distinct types of NCPs were identified, including Ni-fresh, Ni-aged, and Ni-ash. Each type exhibits unique characteristics in size distribution, wind direction dependence, sources, and temporal variations. Ni-fresh particles originate from shipping emissions in the Huangpu Port area 2 km away and are the major contributors to fine nickel particles in the region. (3) Ni-aged and Ni-ash particles, which carry secondary components, tend to be larger (>500 nm) and are representative of regional or background nickel particles. (4) The implementation of the clean ship fuel policy has effectively reduced the number concentrations of NCPs and is beneficial to regional and local air quality. Full article
Show Figures

Figure 1

31 pages, 5369 KiB  
Article
Evaluation of the Effects of Body Forces and Diffusion Mechanisms on Droplet Separation in a Two-Phase Annular–Mist Flow
by Oktawia Dolna
Appl. Sci. 2024, 14(23), 10793; https://doi.org/10.3390/app142310793 - 21 Nov 2024
Viewed by 751
Abstract
For decades, studies have been conducted on the efficiency of gas purification processes with wet scrubbers, including the Venturi scrubbers, and this is the most commonly addressed issue in the field literature. The Venturi scrubber consists of a Venturi nozzle and a cyclone. [...] Read more.
For decades, studies have been conducted on the efficiency of gas purification processes with wet scrubbers, including the Venturi scrubbers, and this is the most commonly addressed issue in the field literature. The Venturi scrubber consists of a Venturi nozzle and a cyclone. The article addresses the empirical and analytical studies on the annular–mist flow regime that exists in the throat of the Venturi nozzle with a square cross-section. The uniform distribution of droplets over the cross-section area of the Venturi’s throat strongly correlates with the efficiency of the gas cleaning process using Venturi scrubbers. Due to the above, studies on the physics of the phenomena that affect the quantity of small droplets present in the core of the flow are highly justified. The influence of body forces and diffusive mechanisms impacting the number of droplets in the core flow were investigated to tackle the problem in question. Consequently, the fractions of droplets susceptible to turbulent or inertial–turbulent diffusion mechanisms can now be predicted using the outcomes of the research carried out. The droplets were divided into three fractions that differed by their sizes as follows: airborne droplets I confirm thar italic can be removed in all cases. (dd 10 µm), medium-sized droplets (dd 20 µm), and largest droplets (dd = (50–150) µm). The estimation of diffusion coefficients εd,M,εd,ref and stopping distances sM,sref of all fractions of droplets was carried out with the inclusion εd,M,sM and exclusion εd,ref,sref of the Magnus lift force M in equations of both the droplet’s stopping distance and its diffusion coefficient. The outcomes revealed that the inclusion of the M force translates significantly to the growth in values of εd,M,sM compared to εd,ref,sref. Hence, it was concluded that the M force impacts the increase in the speed of the diffusion of the droplets with dd 16.45 µm, which is favorable. Hence, the inertial–turbulent diffusion of larger droplets and the turbulent diffusion of medium ones seem to be supported by the M force. The local velocity gradient, which varied within the region of the flow’s hydraulic stabilization also impacted the mass content of droplets with diameter dd 10 µm in the core of the flow. As the flow development progressed, the number of droplets measured at n = 5 Hz varied nonlinearly up to the point where the boundary layer thickness reached the channel radius. The quantity of small droplets in the main flow was significantly influenced by turbulence intensity (Tu). The desired high number of small droplets in the core of the flow (mist flow) was estimated empirically, and it was achieved when gas flows at high speed and has a mean value of Tu. The former benefits the efficiency of gas purification. Investigations on the effects of body forces of inertia of the continuous phase on the separation of droplets with diameters of a few microns and sub-microns from the flow were performed by employing two channel elbows, namely e4 and e1. The curved channels were subsequently mounted at the end of the straight channel (SCh2). The curvature angle (α) of the e4 and e1 equaled 90 °C and 30 °C, respectively. The number of droplets existing in the mist flow was higher in value, as desired, when the e4 was used, unlike e1. Two-dimensional flow fields of the mist have been obtained using the Particle Imaging Velocimetry (PIV) technique and analyzed further. Topas LAP 332 Aerosol Spectrometer was used for the determination of droplet (dd 40 µm) size distribution (DSD) and particle concentrations, while the Droplet Size Analyzer D Kamika Instruments (DSA) was exploited to ascertain DSD of droplets with diameter dd>40 µm. Full article
Show Figures

Figure 1

19 pages, 2390 KiB  
Article
Examination of the Influence of Alternative Fuels on Particulate Matter Properties Emitted from a Non-Proprietary Combustor
by Liam D. Smith, Joseph Harper, Eliot Durand, Andrew Crayford, Mark Johnson, Hugh Coe and Paul I. Williams
Atmosphere 2024, 15(3), 308; https://doi.org/10.3390/atmos15030308 - 29 Feb 2024
Viewed by 1657
Abstract
The aviation sector, like most other sectors, is moving towards becoming net zero. In the medium to long term, this will mean an increase in the use of sustainable aviation fuels. Research exists on the impact of fuel composition on non-volatile particulate matter [...] Read more.
The aviation sector, like most other sectors, is moving towards becoming net zero. In the medium to long term, this will mean an increase in the use of sustainable aviation fuels. Research exists on the impact of fuel composition on non-volatile particulate matter (nvPM) emissions. However, there is more sparsity when considering the impact on volatile particulate matter (vPM) emissions. Here, nine different fuels were tested using an open-source design combustor rig. An aerosol mass spectrometer (AMS) was used to examine the mass-loading and composition of vPM, with a simple linear regression algorithm used to compare relative mass spectrum similarity. The diaromatic, cycloalkane and aromatic contents of the fuels were observed to correlate with the measured total number concentration and nvPM mass concentrations, resulting in an inverse correlation with increasing hydrogen content. The impacts of fuel properties on other physical properties within the combustion process and how they might impact the particulate matter (PM) are considered for future research. Unlike previous studies, fuel had a very limited impact on the organic aerosol’s composition at the combustor exit measurement location. Using a novel combination of Positive Matrix Factorization (PMF) and high-resolution AMS analysis, new insight has been provided into the organic composition. Both the alkane organic aerosol (AlkOA) and quenched organic aerosol (QOA) factors contained CnH2n+1, CnH2n−1 and CnH2n ion series, implying alkanes and alkenes in both, and approximately 12% oxygenated species in the QOA factor. These results highlight the emerging differences in the vPM compositional data observed between combustor rigs and full engines. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

20 pages, 3767 KiB  
Article
Investigation of the Influence of Data Collection and Analysis Procedures on Aerosol Filtration Model Development
by Gentry Berry, Alta Knizley, Ivan Beckman and Heejin Cho
Atmosphere 2024, 15(3), 273; https://doi.org/10.3390/atmos15030273 - 24 Feb 2024
Viewed by 1146
Abstract
Fibrous air filters are common devices used to remove airborne particles. Their performance is typically measured through their resistance to airflow and captured particle mass. Models describing the evolution of filter performance have been heavily researched; however, the need for improvement remains. Experimental [...] Read more.
Fibrous air filters are common devices used to remove airborne particles. Their performance is typically measured through their resistance to airflow and captured particle mass. Models describing the evolution of filter performance have been heavily researched; however, the need for improvement remains. Experimental work is irreplaceable in the development of high-fidelity models, yet the estimation of necessary variables is not trivial and may be influenced by selected measurement instruments and analysis methodologies. Therefore, the purpose of this work is to propose a framework to investigate the response of common aerosol measurement instruments, their corresponding analysis methodologies, and the application of their data. A Scanning Mobility Particle Sizer (SMPS) and Laser Aerosol Spectrometer (LAS) were selected for consideration, and their recorded data were compared against baseline measurements. The results of the experiments indicated that the SMPS and LAS yielded a ratio of estimated mass concentrations to the baseline mass concentrations of approximately 1.175 and 0.749, respectively. Regarding the SMPS, it was suggested that the measurable size range, application of a coverage factor, dynamic shape factor, and association between the curve fits and histograms were influential in the final estimates. For the LAS, the application of a curve fit, its association to the histograms, and the selection of the sampling periods were influential. Considering the results, the impact of these factors may not be considered negligible and may skew reproducibility between studies and fossilize confounding factors. Therefore, the proposed methodologies are useful in addressing potential errors in data collection and analysis. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

14 pages, 3865 KiB  
Article
Differences in Secondary Organic Aerosol Formation from α-Pinene Photooxidation in a Chamber with Purified Air and Ambient Air as Matrices: Preliminary Results
by Xinyi Li, Zhuoyue Ren, Xiangyu Zhang, Xiaodie Pang, Wei Song, Yanli Zhang and Xinming Wang
Atmosphere 2024, 15(2), 204; https://doi.org/10.3390/atmos15020204 - 6 Feb 2024
Cited by 2 | Viewed by 1877
Abstract
α-Pinene is a biogenic volatile organic compound (BVOC) that significantly contributes to secondary organic aerosols (SOA) in the atmosphere due to its high emission rate, reactivity, and SOA yield. However, the SOA yield measured in chamber studies from α-pinene photooxidation is limited in [...] Read more.
α-Pinene is a biogenic volatile organic compound (BVOC) that significantly contributes to secondary organic aerosols (SOA) in the atmosphere due to its high emission rate, reactivity, and SOA yield. However, the SOA yield measured in chamber studies from α-pinene photooxidation is limited in a purified air matrix. Assessing SOA formation from α-pinene photooxidation in real urban ambient air based on studies conducted in purified air matrices may be subject to uncertainties. In this study, α-pinene photooxidation and SOA yield were investigated in a smog chamber in the presence of NO and SO2 under purified air and ambient air matrices. With the accumulation of ozone (O3) during the photooxidation, an increasing part of α-pinene was consumed by O3 and finally nearly half of the α-pinene was oxidized by O3, facilitating the production of highly oxidized organic molecules and thereby SOA formation. Although the ambient air we introduced as matrix air was largely clean, with initial organic aerosol mass concentrations of ~1.5 μg m−3, the α-pinene SOA yield in the ambient air matrix was 42.3 ± 5.3%, still higher than that of 32.4 ± 0.4% in the purified air matrix. The chemical characterization of SOA by the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) revealed that CxHy accounted for 53.7 ± 1.1% of the total signal in the ambient air matrix experiments, higher than 48.1 ± 0.3% in the purified air, while CxHyO and CxHyO>1 together constituted 45.0 ± 0.9% in the ambient air matrix, lower than 50.1 ± 1.0% in the purified air. The O:C ratio in the ambient air matrix experiments was 0.41 ± 0.01, lower than 0.46 ± 0.01 in the purified air. The higher SOA yield of α-pinene in the ambient air matrix compared to that in the purified air matrix was partly due to the presence of initial aerosols in the ambient air, which facilitated the low volatile organic compounds produced from photochemical oxidation to enter the aerosol phase through gas-particle partitioning. The in-situ aerosol acidity calculated by the ISORROPIA-II model in the ambient air matrix experiments was approximately six times higher than that in purified air, and the higher SOA yield in the ambient air matrix experiments might also be attributed to acid-catalyzed SOA formation. Full article
(This article belongs to the Special Issue Haze and Related Aerosol Air Pollution in Remote and Urban Areas)
Show Figures

Figure 1

12 pages, 1415 KiB  
Article
A Non-Matrix-Matched Calibration Method for In Situ Major and Trace Element Analysis of Scheelite by Nanosecond LA-ICP-MS
by Xijuan Tan, Honghao Tian, Lin Lu, Dongyang Xiong and Ting Liang
Molecules 2024, 29(1), 51; https://doi.org/10.3390/molecules29010051 - 20 Dec 2023
Cited by 1 | Viewed by 1508
Abstract
In this work, a reliable and robust in situ non-matrix-matched calibration method is proposed for element composition determination in scheelite samples. With external calibration against the silicate glass standard reference material NIST SRM 610, the concentrations of both major elements (Ca and W) [...] Read more.
In this work, a reliable and robust in situ non-matrix-matched calibration method is proposed for element composition determination in scheelite samples. With external calibration against the silicate glass standard reference material NIST SRM 610, the concentrations of both major elements (Ca and W) and trace elements (Si, Fe, Mo, Y, rare earth elements, etc.) in scheelite are determined using an ArF 193 nm excimer nanosecond laser ablation-inductively coupled plasma mass spectrometer (LA-ICP-MS). Here, the ablation was performed by hole drilling under a helium (He) environment using a laser spot size of 35 μm and a laser repetition of 5 Hz, and the aerosols were then transported to a quadrupole ICP-MS by a mixture of He and make-up gas argon (Ar) with a total gas flow rate of 1.6 L/min. Results showed that there was no apparent matrix effect between the NIST SRM 610 and scheelite by this proposed method. With internal standardization against W, the obtained concentrations of CaO and WO3 were found to yield an average matrix CaO/WO3 mass fraction ratio of 0.245 (2σ = 0.003, n = 19), which agreed well with the value of 0.243 (2σ = 0.002, n = 15) from electron probe microanalysis (EPMA). Furthermore, the accuracy of trace element analyses with this proposed non-matrix-matched calibration in situ method was evaluated by comparing the concentration results with those from bulk analysis by solution nebulizer ICP-MS (SN-ICP-MS). It was found that the quantification results from LA-ICP-MS and SN-ICP-MS were comparable, in particular showing a relative concentration bias of the total ∑REE+Y contents of less than 2%. This confirmed that scheelites can be accurately analyzed in situ by LA-ICP-MS without matrix-matched calibration standards. By using this developed in situ method, the element compositions in a series of scheelite samples from different W-associated deposits in China were successfully quantified, promising further genetic process investigation and associated geologic activities of the polymetallic resources. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

14 pages, 1416 KiB  
Article
Chemical Characterization of Rural Organic Aerosol in the North China Plain Using Ultrahigh-Resolution Mass Spectrometry
by Yun Zhang, Xu Gao, Xingang Hou, Mingyuan Liu, Jiajun Han and Hongyan Zhang
Atmosphere 2023, 14(11), 1636; https://doi.org/10.3390/atmos14111636 - 31 Oct 2023
Cited by 3 | Viewed by 2219
Abstract
Atmospheric organic aerosol (OA) affects air quality and human health. However, compared with urban areas, the chemical composition and temporal distribution of OA in rural regions are still not well understood. In this study, one-year atmospheric particles with an aerodynamic equivalent diameter of [...] Read more.
Atmospheric organic aerosol (OA) affects air quality and human health. However, compared with urban areas, the chemical composition and temporal distribution of OA in rural regions are still not well understood. In this study, one-year atmospheric particles with an aerodynamic equivalent diameter of ≤2.5 μm (PM2.5) were collected at a rural site in Quzhou County, the North China Plain (NCP), from August 2020 to July 2021. OA in PM2.5 samples were analyzed with an ultrahigh-performance liquid chromatograph (UHPLC) coupled to an ultrahigh-resolution Orbitrap mass spectrometer in negative mode (ESI−). The results show that the chemical composition and properties of OA varied in different seasons. According to the hierarchical cluster analysis, the molecular formulas of winter OA were close to those in spring, whereas the chemical composition of OA in summer and autumn was similar. The O/C ratio of summer OA was the highest at 1.21, followed by that in autumn (0.92) and spring (0.87), while the winter OA had the lowest O/C ratio of 0.64. It indicates that, compared to the other three seasons, OA underwent more intense oxidation processes in the summer. Moreover, winter OA contained more aromatic compounds with a relative peak abundance fraction of 40%, which may be related to anthropogenic sources (e.g., coal burning) in the winter in the NCP. In addition, biomass burning is considered an important source of OA in the rural region of Quzhou County, the NCP, in all seasons. Full article
(This article belongs to the Special Issue Toxicity and Health Effects of Fine Particulate Matter)
Show Figures

Figure 1

22 pages, 1909 KiB  
Article
Making Every Single Puff Count—Simple and Sensitive E-Cigarette Aerosol Sampling for GCxIMS and GC-MS Analysis
by Alexander L. R. M. Augustini, Christopher Borg, Stefanie Sielemann and Ursula Telgheder
Molecules 2023, 28(18), 6574; https://doi.org/10.3390/molecules28186574 - 12 Sep 2023
Cited by 5 | Viewed by 2046
Abstract
The analysis of the aerosol from tobaccoless electronic cigarettes (e-cigarettes) is an important part of understanding their impact on human health, yet sampling aerosol from e-cigarettes is still considered a challenge. It lacks a standard method for research and quality control and there [...] Read more.
The analysis of the aerosol from tobaccoless electronic cigarettes (e-cigarettes) is an important part of understanding their impact on human health, yet sampling aerosol from e-cigarettes is still considered a challenge. It lacks a standard method for research and quality control and there are a variety of methods. However, few are simple and inexpensive, and none have been suggested for the use with gas chromatography coupled ion mobility spectrometry (GCxIMS). This work presents and evaluates such a setup made from standard lab equipment to quickly collect a quantitative sample from the aerosol of a single puff (5 s totaling 125 mL). The aerosol condensates directly in the cooled headspace (HS) vial, which is analyzed in the HS-GCxIMS or mass spectrometer (HS-GC-MS). The combined use of GC-MS and GCxIMS allows the simple and sensitive identification of unknown substances in complex mixtures and the identification of degradation products in the aerosols. A calibration of 26 flavor compounds (0.2–20 µg/g) was created using single puffs of a spiked, flavorless commercial refill solution and 2-alkanones as internal standards. This sensitive but easily reproducible setup enables a wide range of further investigations, even for labs that were previously unable to afford it. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

18 pages, 3286 KiB  
Article
Investigating the Sensitivity of Low-Cost Sensors in Measuring Particle Number Concentrations across Diverse Atmospheric Conditions in Greece and Spain
by Georgios Kosmopoulos, Vasileios Salamalikis, Stefan Wilbert, Luis F. Zarzalejo, Natalie Hanrieder, Stylianos Karatzas and Andreas Kazantzidis
Sensors 2023, 23(14), 6541; https://doi.org/10.3390/s23146541 - 20 Jul 2023
Cited by 6 | Viewed by 2419
Abstract
Low-cost sensors (LCSs) for particulate matter (PM) concentrations have attracted the interest of researchers, supplementing their efforts to quantify PM in higher spatiotemporal resolution. The precision of PM mass concentration measurements from PMS 5003 sensors has been widely documented, though limited information is [...] Read more.
Low-cost sensors (LCSs) for particulate matter (PM) concentrations have attracted the interest of researchers, supplementing their efforts to quantify PM in higher spatiotemporal resolution. The precision of PM mass concentration measurements from PMS 5003 sensors has been widely documented, though limited information is available regarding their size selectivity and number concentration measurement accuracy. In this work, PMS 5003 sensors, along with a Federal Referral Methods (FRM) sampler (Grimm spectrometer), were deployed across three sites with different atmospheric profiles, an urban (Germanou) and a background (UPat) site in Patras (Greece), and a semi-arid site in Almería (Spain, PSA). The LCSs particle number concentration measurements were investigated for different size bins. Findings for particles with diameter between 0.3 and 10 μm suggest that particle size significantly affected the LCSs’ response. The LCSs could accurately detect number concentrations for particles smaller than 1 μm in the urban (R2 = 0.9) and background sites (R2 = 0.92), while a modest correlation was found with the reference instrument in the semi-arid area (R2 = 0.69). However, their performance was rather poor (R2 < 0.31) for coarser aerosol fractions at all sites. Moreover, during periods when coarse particles were dominant, i.e., dust events, PMS 5003 sensors were unable to report accurate number distributions (R2 values < 0.47) and systematically underestimated particle number concentrations. The results indicate that several questions arise concerning the sensors’ capabilities to estimate PM2.5 and PM10 concentrations, since their size distribution did not agree with the reference instruments. Full article
(This article belongs to the Special Issue Remote Sensing Techniques for Atmospheric Pollutants Applications)
Show Figures

Figure 1

15 pages, 4230 KiB  
Article
Bioaerosol Identification by Wide Particle Size Range Single Particle Mass Spectrometry
by Xuan Li, Lei Li, Zeming Zhuo, Guohua Zhang, Xubing Du, Xue Li, Zhengxu Huang, Zhen Zhou and Zhi Cheng
Atmosphere 2023, 14(6), 1017; https://doi.org/10.3390/atmos14061017 - 13 Jun 2023
Cited by 2 | Viewed by 2706
Abstract
The properties of bioaerosols are complex and diverse, and have a direct impact on the environment, climate, and human health. The effective identification of bioaerosols in the atmosphere is very significant with regard to accurately obtaining the atmospheric chemical characteristics of bioaerosols. To [...] Read more.
The properties of bioaerosols are complex and diverse, and have a direct impact on the environment, climate, and human health. The effective identification of bioaerosols in the atmosphere is very significant with regard to accurately obtaining the atmospheric chemical characteristics of bioaerosols. To improve the detection of large particle bioaerosol and non-bioaerosol interference in the process of bioaerosol recognition, this study detected a variety of bioaerosols and abiotic aerosols based on a single particle aerosol mass spectrometer (SPAMS). Furthermore, the bioaerosol particle identification and classification algorithm based on Zawadowicz the ratio of phosphate to organic nitrogen is optimized to distinguish bioaerosols from abiotic aerosols. The influence of ionized laser energy on classification methods is thoroughly explored here. The results show that 15 kinds of pure fungal aerosols were detected by SPAMS based on a wide size range sampling system, and that fungal aerosols with a particle size of up to 10 μm can be detected. Through the mass spectra peak ratio method of PO3/PO2 and CNO/CN, when discriminating abiotic aerosols such as disruptive biomass combustion particles, automobile exhaust, and dust from pure bacterial aerosols, the discrimination degree is up to 97.7%. The optimized ratio detection method of phosphate to organic nitrogen has strong specificity, which can serve as the discriminant basis for identifying bioaerosols in SPAMS analytical processes. Full article
(This article belongs to the Special Issue Atmospheric Bioaerosols: Detection, Characterization and Modelling)
Show Figures

Figure 1

15 pages, 3772 KiB  
Article
Long-Term Observation of Mixing States and Sources of Vanadium-Containing Single Particles from 2020 to 2021 in Guangzhou, China
by Xin Xiong, Zaihua Wang, Chunlei Cheng, Mei Li, Lijun Yun, Sulin Liu, Liyuan Mao and Zhen Zhou
Toxics 2023, 11(4), 339; https://doi.org/10.3390/toxics11040339 - 31 Mar 2023
Cited by 3 | Viewed by 2026
Abstract
The distribution of vanadium (V) in aerosols is commonly used to track ship exhaust emissions, yet the atmospheric abundance of V has been greatly reduced due to the implementation of a clean fuel policy. Recent research mainly discussed the chemical compositions of ship-related [...] Read more.
The distribution of vanadium (V) in aerosols is commonly used to track ship exhaust emissions, yet the atmospheric abundance of V has been greatly reduced due to the implementation of a clean fuel policy. Recent research mainly discussed the chemical compositions of ship-related particles during specific events, yet few studies focus on the long-term changes of V in the atmosphere. In this study, a single-particle aerosol mass spectrometer was used to measure V-containing particles from 2020 to 2021 in Huangpu Port in Guangzhou, China. The long-term trend of the particle counts of V-containing particles declined annually, but the relative abundance of V-containing particles in the total single particles increased in summer due to the influence of ship emissions. Positive matrix factorization revealed that in June and July 2020, 35.7% of the V-containing particles were from ship emissions, followed by dust and industrial emissions. Furthermore, more than 80% of the V-containing particles were found mixing with sulfate and 60% of the V-containing particles were found mixing with nitrate, suggesting that the majority of the V-containing particles were secondary particles processed during the transport of ship emissions to urban areas. Compared with the small changes in the relative abundance of sulfate in the V-containing particles, the relative abundance of nitrate exhibited clear seasonal variations, with a high abundance in winter. This may have been due to the increased production of nitrate from high concentrations of precursors and a suitable chemical environment. For the first time, the long-term trends of V-containing particles in two years are investigated to demonstrate changes in their mixing states and sources after the clean fuel policy, and to suggest the cautious application of V as an indicator of ship emissions. Full article
Show Figures

Figure 1

12 pages, 1834 KiB  
Article
Design and Simulation of Aerosol Inlet System for Particulate Matter with a Wide Size Range
by Xubing Du, Zeming Zhuo, Xue Li, Xuan Li, Mei Li, Junlin Yang, Zhen Zhou, Wei Gao, Zhengxu Huang and Lei Li
Atmosphere 2023, 14(4), 664; https://doi.org/10.3390/atmos14040664 - 31 Mar 2023
Cited by 4 | Viewed by 2457
Abstract
A novel aerodynamic lens-based inlet system was developed for a wide particle size range, and it could extend the size range of transmitted particulate matter (PM) to 50 nm–10 μm. The lens system adopted a seven-stage aerodynamic focusing orifice to extend the range [...] Read more.
A novel aerodynamic lens-based inlet system was developed for a wide particle size range, and it could extend the size range of transmitted particulate matter (PM) to 50 nm–10 μm. The lens system adopted a seven-stage aerodynamic focusing orifice to extend the range of transmitted PM, and a relaxation system with a virtual impact function was introduced at the front of the aerodynamic lens. Through the innovative design, the system could concentrate the input samples as well as effectively enhance the focusing effect on large PM. Furthermore, an additional aerodynamic pre-focusing inlet system was innovatively added to the front of the sampling orifice of the traditional aerodynamic lens, and it could pre-focus large PM into the axis region before it entered the small orifice and then solve the previous problem with loss of large PM. Fluid simulations indicated that the inlet system could achieve 100% effective transmission and focusing for PM in the range of 0.18–10 μm. The characterization and verification results obtained from the improved single-particle aerosol mass spectrometer (SPAMS) were remarkably consistent with the theoretical values. The practical tests indicated that bioaerosol particles up to 10 μm could be detected. Compared with the observation for the same type of lens, the focusing performance of this novel lens system has better advantages in particle size range and transmission efficiency and therefore, it has broad application prospects in bioaerosol research, single-cell analysis, etc. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

16 pages, 3477 KiB  
Article
A Novel Optical Instrument for Measuring Mass Concentration and Particle Size in Real Time
by Jingxiu Zhang, Zhiwei Zhang, Longfei Hou and Weihu Zhou
Sensors 2023, 23(7), 3616; https://doi.org/10.3390/s23073616 - 30 Mar 2023
Cited by 6 | Viewed by 3506
Abstract
Particle mass and particulate size are two important parameters used to characterize the aerosol. Currently, there are a few methods for measuring particle mass concentration and particle size. However, the existing methods have their own shortcomings. In this article, we describe a novel [...] Read more.
Particle mass and particulate size are two important parameters used to characterize the aerosol. Currently, there are a few methods for measuring particle mass concentration and particle size. However, the existing methods have their own shortcomings. In this article, we describe a novel laser scattering instrument that measures mass concentration and particle size in real time over a wide concentration range. This instrument combines laser scattering and time-of-flight aerodynamics in one optical device. There are two innovations in this paper: (1) Two APD detectors are used to receive scattered light. One receives forward-scattered light and the other receives side-scattered light. The advantage is that the sensitivity of the detector is increased greatly, and the ratio of forward and side scattering is used to further obtain the size and shape information of the particles. (2) In order to measure the high concentrations of aerosol, a high-speed ADC and FPGA is combined to achieve an anti-overlap algorithm objective. It has been verified by experiments that the anti-overlapping algorithm can effectively improve the applicability of the aerodynamic particle size spectrometer under high concentration conditions. Full article
Show Figures

Figure 1

19 pages, 2571 KiB  
Article
Characteristics and Oxidative Potential of Ambient PM2.5 in the Yangtze River Delta Region: Pollution Level and Source Apportionment
by Yaojia Cui, Longwei Zhu, Hui Wang, Zhuzi Zhao, Shuaishuai Ma and Zhaolian Ye
Atmosphere 2023, 14(3), 425; https://doi.org/10.3390/atmos14030425 - 21 Feb 2023
Cited by 7 | Viewed by 2463
Abstract
Fine particulate matter (PM2.5) is a major contributor to the degree of air pollution, and it is associated with a range of adverse health impacts. Moreover, the oxidative potential (OP, as a tracer of oxidative stress) of PM2.5 has been [...] Read more.
Fine particulate matter (PM2.5) is a major contributor to the degree of air pollution, and it is associated with a range of adverse health impacts. Moreover, the oxidative potential (OP, as a tracer of oxidative stress) of PM2.5 has been thought to be a possible determinant of its health impact. In this study, the OP of 136 fine aerosol filter samples collected in Changzhou in two seasons (spring and summer) were determined using a dithiothreitol (DTT) assay. Source apportionments of the PM2.5 and DTT activity were further performed. Our results showed that the daily average ± standard deviation of the DTTv (volume-normalized DTT activity) in the PM2.5 was 1.16 ± 0.58 nmol/min/m3 and 0.85 ± 0.16 nmol/min/m3 in the spring and summer, respectively, and the DTTm (mass-normalized DTT activity) was 13.56 ± 5.45 pmol/min/μg and 19.97 ± 6.54 pmol/min/μg in the spring and summer, respectively. The DTTv was higher in the spring compared to the summer while the opposite was true for the DTTm. Most of the detected components (including the organic component, element component, NH4+, Mn, Cu, Zn, etc.) exhibited a moderately positive correlation with the DTTv, but the opposite was found with the DTTm. An aerodyne high-resolution aerosol mass spectrometer (HP-AMS) was deployed to probe the chemical properties of the water-soluble organic matter (WSOA). Positive matrix factorization (PMF) coupled with multiple linear regression was used to obtain the relative source contributions to the DTT activity for the WSOA in the PM2.5. The results showed that the sensitivity sequences of the DTTv to the WSOA sources were oxygenated organic aerosol (OOA) > biomass burning OA (BBOA) > hydrocarbon-like OA (HOA) in the spring and HOA > nitrogen-enriched OA (NOA) > OOA in the summer. The PMF suggested the highest contribution from traffic emissions to the DTTv of the PM2.5 in both seasons. Our findings point to the importance of both organic components from secondary formation and transition metals to adverse health effects in this region. This study can provide an important reference for adopting appropriate public health policies regarding the detrimental outcomes of exposure to PM2.5. Full article
(This article belongs to the Special Issue Air Pollution, Air Quality and Human Health)
Show Figures

Figure 1

Back to TopTop