Design and Simulation of Aerosol Inlet System for Particulate Matter with a Wide Size Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inlet Design and Simulation
2.2. Sample Tests
3. Results and Discussion
3.1. Pre-Focusing Inlet Port
3.2. Virtual Impact Sampling Cone and Relaxation Chamber
3.3. Seven-Stage Aerodynamic Lens
3.4. Assembly A-Lens Simulation
3.5. Experiment Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clemen, H.-C.; Schneider, J.; Klimach, T.; Helleis, F.; Köllner, F.; Hünig, A.; Rubach, F.; Mertes, S.; Wex, H.; Stratmann, F.; et al. Optimizing the detection, ablation, and ion extraction efficiency of a single-particle laser ablation mass spectrometer for application in environments with low aerosol particle concentrations. Atmos. Meas. Tech. 2020, 13, 5923–5953. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Dong, J.; Li, M.; Gao, W.; Nian, H.; Fu, Z.; Zhang, G.; Bi, X.; Cheng, P.; et al. Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles. Int. J. Mass Spectrom. 2011, 303, 118–124. [Google Scholar] [CrossRef]
- Pratt, K.A.; Mayer, J.E.; Holecek, J.C.; Moffet, R.C.; Sanchez, R.O.; Rebotier, T.P.; Furutani, H.; Gonin, M.; Fuhrer, K.; Su, Y.; et al. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. Anal. Chem. 2009, 81, 1792–1800. [Google Scholar] [CrossRef]
- Liu, P.; Ziemann, P.J.; Kittelson, D.B.; McMurry, P.H. Generating Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. Aerosol Sci. Technol. 1995, 22, 314–324. [Google Scholar] [CrossRef]
- Liu, P.; Ziemann, P.J.; Kittelson, D.B.; McMurry, P.H. Generating Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. Aerosol Sci. Technol. 1995, 22, 293–313. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D.M.; Cziczo, D.J.; Froyd, K.D.; Hudson, P.K.; Matthew, B.M.; Middlebrook, A.M.; Peltier, R.E.; Sullivan, A.; Thomson, D.S.; Weber, R.J. Single-particle mass spectrometry of tropospheric aerosol particles. J. Geophys. Res. Atmos. 2006, 111, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gemayel, R.; Hellebust, S.; Temime-Roussel, B.; Hayeck, N.; Van Elteren, J.T.; Wortham, H.; Gligorovski, S. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS). Atmos. Meas. Tech. 2016, 9, 1947–1959. [Google Scholar] [CrossRef] [Green Version]
- Zelenyuk, A.; Imre, D.; Wilson, J.; Zhang, Z.; Wang, J.; Mueller, K. Airborne single particle mass spectrometers (SPLAT II & miniSPLAT) and new software for data visualization and analysis in a geo-spatial context. J. Am. Soc. Mass Spectrom. 2015, 26, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Hinz, K.-P.; Kaufmann, R.; Spengler, B. Laser-Induced Mass Analysis of Single Particles in the Airborne State. Anal. Chem. 2002, 66, 2071–2076. [Google Scholar] [CrossRef]
- Prather, K.A.; Nordmeyer, T.; Salt, K. Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry. Anal. Chem. 1994, 66, 1403–1407. [Google Scholar] [CrossRef]
- Steele, P.T.; Tobias, H.J.; Fergenson, D.P.; Pitesky, M.E.; Horn, J.M.; Czerwieniec, G.A.; Russell, S.C.; Lebrilla, C.B.; Gard, E.E.; Frank, M. Laser power dependence of mass spectral signatures from individual bacterial spores in bioaerosol mass spectrometry. Anal. Chem. 2003, 75, 5480–5487. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.; Gard, E.E.; Tobias, H.J.; Adams, K.L.; Bogan, M.J.; Coffee, K.R.; Farquar, G.R.; Fergenson, D.P.; Martin, S.I.; Pitesky, M.; et al. Single-Particle Aerosol Mass Spectrometry (SPAMS) for High-Throughput and Rapid Analysis of Biological Aerosols and Single Cells. In Rapid Characterization of Microorganisms by Mass Spectrometry; ACS Symposium Series; American Chemical Society: New York, NY, USA, 2011; pp. 161–196. [Google Scholar]
- Williams, L.R.; Gonzalez, L.A.; Peck, J.; Trimborn, D.; McInnis, J.; Farrar, M.R.; Moore, K.D.; Jayne, J.T.; Robinson, W.A.; Lewis, D.K.; et al. Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer. Atmos. Meas. Tech. 2013, 6, 3271–3280. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Smith, K.A.; Worsnop, D.R.; Jimenez, J.; Jayne, J.T.; Kolb, C.E. A Numerical Characterization of Particle Beam Collimation by an Aerodynamic Lens-Nozzle System: Part I. An Individual Lens or Nozzle. Aerosol Sci. Technol. 2002, 36, 617–631. [Google Scholar] [CrossRef]
- Zhang, X.; Smith, K.A.; Worsnop, D.R.; Jimenez, J.L.; Jayne, J.T.; Kolb, C.E.; Morris, J.; Davidovits, P. Numerical Characterization of Particle Beam Collimation: Part II Integrated Aerodynamic-Lens–Nozzle System. Aerosol Sci. Technol. 2004, 38, 619–638. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-S.; Cho, S.-W.; Lee, D. Development and experimental evaluation of aerodynamic lens as an aerosol inlet of single particle mass spectrometry. J. Aerosol Sci. 2008, 39, 287–304. [Google Scholar] [CrossRef]
- Steele, P.; McJimpsey, E.; Coffee, K.; Fergenson, D.; Riot, V.; Tobias, H.; Woods, B.; Gard, E.; Frank, M. Characterization of Ambient Aerosols at the San Francisco International Airport Using Bioaerosol Mass Spectrometry; SPIE: Kissimmee, FL, USA, 2006; Volume 6218. [Google Scholar]
- Martin, A.N.; Farquar, G.R.; Frank, M.; Gard, E.E.; Fergenson, D.P. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants. Anal. Chem. 2007, 79, 6368–6375. [Google Scholar] [CrossRef]
- Cahill, J.F.; Darlington, T.K.; Wang, X.; Mayer, J.; Spencer, M.T.; Holecek, J.C.; Reed, B.E.; Prather, K.A. Development of a High-Pressure Aerodynamic Lens for Focusing Large Particles (4–10 μm) into the Aerosol Time-of-Flight Mass Spectrometer. Aerosol Sci. Technol. 2014, 48, 948–956. [Google Scholar] [CrossRef]
- Cahill, J.F.; Darlington, T.K.; Fitzgerald, C.; Schoepp, N.G.; Beld, J.; Burkart, M.D.; Prather, K.A. Online analysis of single cyanobacteria and algae cells under nitrogen-limited conditions using aerosol time-of-flight mass spectrometry. Anal. Chem. 2015, 87, 8039–8046. [Google Scholar] [CrossRef]
- Zawadowicz, M.A.; Froyd, K.D.; Murphy, D.M.; Cziczo, D.J. Improved identification of primary biological aerosol particles using single-particle mass spectrometry. Atmos. Chem. Phys. 2017, 17, 7193–7212. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Kruis, F.E.; McMurry, P.H. Aerodynamic Focusing of Nanoparticles: I. Guidelines for Designing Aerodynamic Lenses for Nanoparticles. Aerosol Sci. Technol. 2005, 39, 611–623. [Google Scholar] [CrossRef]
- Wang, X.; McMurry, P.H. An experimental study of nanoparticle focusing with aerodynamic lenses. Int. J. Mass Spectrom. 2006, 258, 30–36. [Google Scholar] [CrossRef]
- Wang, X.; McMurry, P.H. A Design Tool for Aerodynamic Lens Systems. Aerosol Sci. Technol. 2006, 40, 320–334. [Google Scholar] [CrossRef]
- Schreiner, J.; Schild, U.; Voigt, C.; Mauersberger, K. Focusing of Aerosols into a Particle Beam at Pressures from 10 to 150 Torr. Aerosol Sci. Technol. 1999, 31, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Berninger, R.W.; Booker, S.V.; Talamo, R.C. Serum prealbumin levels in alpha 1-antitrypsin deficiency (PiZ). Metabolism 1982, 31, 299–302. [Google Scholar] [CrossRef]
- Gard, E.; Riot, V.; Coffee, K.; Woods, B.; Tobias, H.; Birch, J.; Weisgraber, T. Pressure-Flow Reducer for Aerosol Focusing Devices. U.S. Patent 7,361,891, 22 April 2008. [Google Scholar]
- Lee, K.-S.; Hwang, T.-H.; Kim, S.-H.; Kim, S.H.; Lee, D. Numerical Simulations on Aerodynamic Focusing of Particles in a Wide Size Range of 30 nm–10 μm. Aerosol Sci. Technol. 2013, 47, 1001–1008. [Google Scholar] [CrossRef]
- Hwang, T.-H.; Kim, S.-H.; Kim, S.H.; Lee, D. Reducing particle loss in a critical orifice and an aerodynamic lens for focusing aerosol particles in a wide size range of 30 nm–10 μm. J. Mech. Sci. Technol. 2015, 29, 317–323. [Google Scholar] [CrossRef]
- Das, R.; Phares, D.J. Expansion of an ultrafine aerosol through a thin-plate orifice. J. Aerosol Sci. 2004, 35, 1091–1103. [Google Scholar] [CrossRef]
- Liu, P.S.K.; Deng, R.; Smith, K.A.; Williams, L.R.; Jayne, J.T.; Canagaratna, M.R.; Moore, K.; Onasch, T.B.; Worsnop, D.R.; Deshler, T. Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer. Aerosol Sci. Technol. 2007, 41, 721–733. [Google Scholar] [CrossRef]
- Abouali, O.; Nikbakht, A.; Ahmadi, G.; Saadabadi, S. Three-Dimensional Simulation of Brownian Motion of Nano-Particles in Aerodynamic Lenses. Aerosol Sci. Technol. 2009, 43, 205–215. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Zhuo, Z.; Li, X.; Li, X.; Li, M.; Yang, J.; Zhou, Z.; Gao, W.; Huang, Z.; Li, L. Design and Simulation of Aerosol Inlet System for Particulate Matter with a Wide Size Range. Atmosphere 2023, 14, 664. https://doi.org/10.3390/atmos14040664
Du X, Zhuo Z, Li X, Li X, Li M, Yang J, Zhou Z, Gao W, Huang Z, Li L. Design and Simulation of Aerosol Inlet System for Particulate Matter with a Wide Size Range. Atmosphere. 2023; 14(4):664. https://doi.org/10.3390/atmos14040664
Chicago/Turabian StyleDu, Xubing, Zeming Zhuo, Xue Li, Xuan Li, Mei Li, Junlin Yang, Zhen Zhou, Wei Gao, Zhengxu Huang, and Lei Li. 2023. "Design and Simulation of Aerosol Inlet System for Particulate Matter with a Wide Size Range" Atmosphere 14, no. 4: 664. https://doi.org/10.3390/atmos14040664
APA StyleDu, X., Zhuo, Z., Li, X., Li, X., Li, M., Yang, J., Zhou, Z., Gao, W., Huang, Z., & Li, L. (2023). Design and Simulation of Aerosol Inlet System for Particulate Matter with a Wide Size Range. Atmosphere, 14(4), 664. https://doi.org/10.3390/atmos14040664