Differences in Secondary Organic Aerosol Formation from α-Pinene Photooxidation in a Chamber with Purified Air and Ambient Air as Matrices: Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments
2.2. Instrumentation
3. Results and Discussion
3.1. Evolutions of Gas-Phase Species during Photooxidation
3.2. SOA Formation during Photooxidation
3.3. SOA Compositions Measured by HR-ToF-AMS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.M.; Doherty, R.M.; O’Connor, F.M.; Mann, G.W. The impact of biogenic, anthropogenic, and biomass burning volatile organic compound emissions on regional and seasonal variations in secondary organic aerosol. Atmos. Chem. Phys. 2018, 18, 7393–7422. [Google Scholar] [CrossRef]
- Cao, J.; Situ, S.; Hao, Y.; Xie, S.; Li, L. Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China. Atmos. Chem. Phys. 2022, 22, 2351–2364. [Google Scholar] [CrossRef]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, Y.Q.; He, Q.F.; Yu, Q.Q.; Shen, R.Q.; Zhang, Y.; Zhang, Z.; Lyu, S.J.; Hu, Q.H.; Wang, Y.S.; et al. Spatial and seasonal variations of secondary organic aerosol from terpenoids over China. J. Geophys. Res. Atmos. 2016, 121, 14-661–14-678. [Google Scholar] [CrossRef]
- Zhang, H.; Yee, L.D.; Lee, B.H.; Curtis, M.P.; Worton, D.R.; Isaacman-VanWertz, G.; Offenberg, J.H.; Lewandowski, M.; Kleindienst, T.E.; Beaver, M.R.; et al. Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proc. Natl. Acad. Sci. USA 2018, 115, 2038–2043. [Google Scholar] [CrossRef]
- Pai, S.J.; Heald, C.L.; Pierce, J.R.; Farina, S.C.; Marais, E.A.; Jimenez, J.L.; Campuzano-Jost, P.; Nault, B.A.; Middlebrook, A.M.; Coe, H.; et al. An evaluation of global organic aerosol schemes using airborne observations. Atmos. Chem. Phys. 2020, 20, 2637–2665. [Google Scholar] [CrossRef]
- Zheng, Y.; Horowitz, L.W.; Menzel, R.; Paynter, D.J.; Naik, V.; Li, J.; Mao, J. Anthropogenic amplification of biogenic secondary organic aerosol production. Atmos. Chem. Phys. 2023, 23, 8993–9007. [Google Scholar] [CrossRef]
- Sindelarova, K.; Markova, J.; Simpson, D.; Huszar, P.; Karlicky, J.; Darras, S.; Granier, C. High-resolution biogenic global emission inventory for the time period 2000-2019 for air quality modelling. Earth Syst. Sci. Data 2022, 14, 251–270. [Google Scholar] [CrossRef]
- Saha, P.K.; Grieshop, A.P. Exploring divergent volatility properties from yield and thermodenuder measurements of secondary organic aerosol from α-pinene ozonolysis. Environ. Sci. Technol. 2016, 50, 5740–5749. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, K.; Jensen, L.N.; Quéléver, L.L.J.; Christiansen, S.; Rosati, B.; Elm, J.; Teiwes, R.; Pedersen, H.B.; Glasius, M.; Ehn, M.; et al. The Aarhus chamber campaign on highly oxygenated organic molecules and aerosols (ACCHA): Particle formation, organic acids, and dimer esters from α-pinene ozonolysis at different temperatures. Atmos. Chem. Phys. 2020, 20, 12549–12567. [Google Scholar] [CrossRef]
- Chu, C.-W.; Zhai, J.; Han, Y.; Ye, J.; Zaveri, R.A.; Martin, S.T.; Hung, H.-M. New particle formation and growth dynamics for α-pinene ozonolysis in a smog chamber and Implications for ambient environments. ACS Earth Space Chem. 2022, 6, 2826–2835. [Google Scholar] [CrossRef]
- Day, D.A.; Fry, J.L.; Kang, H.G.; Krechmer, J.E.; Ayres, B.R.; Keehan, N.I.; Thompson, S.L.; Hu, W.; Campuzano-Jost, P.; Schroder, J.C.; et al. Secondary organic aerosol mass yields from NO3 oxidation of α-pinene and Δ-carene: Effect of RO2 radical fate. J. Phys. Chem. A 2022, 126, 7309–7330. [Google Scholar] [CrossRef]
- DeVault, M.P.; Ziola, A.C.; Ziemann, P.J. Chemistry of secondary organic aerosol formation from reactions of monoterpenes with OH radicals in the presence of NOx. J. Phys. Chem. A 2022, 126, 7719–7736. [Google Scholar] [CrossRef]
- Chu, B.; Liu, T.; Zhang, X.; Liu, Y.; Ma, Q.; Ma, J.; He, H.; Wang, X.; Li, J.; Hao, J. Secondary aerosol formation and oxidation capacity in photooxidation in the presence of Al2O3 seed particles and SO2. Sci. China Chem. 2015, 58, 1426–1434. [Google Scholar] [CrossRef]
- Simon, M.; Dada, L.; Heinritzi, M.; Scholz, W.; Stolzenburg, D.; Fischer, L.; Wagner, A.C.; Kürten, A.; Rörup, B.; He, X.-C.; et al. Molecular understanding of new-particle formation from α-pinene between −50 and +25 °C. Atmos. Chem. Phys. 2020, 20, 9183–9207. [Google Scholar] [CrossRef]
- Bryant, D.J.; Dixon, W.J.; Hopkins, J.R.; Dunmore, R.E.; Pereira, K.L.; Shaw, M.; Squires, F.A.; Bannan, T.J.; Mehra, A.; Worrall, S.D.; et al. Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing. Atmos. Chem. Phys. 2020, 20, 7531–7552. [Google Scholar] [CrossRef]
- Wildt, J.; Mentel, T.F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; et al. Suppression of new particle formation from monoterpene oxidation by NOx. Atmos. Chem. Phys. 2014, 14, 2789–2804. [Google Scholar] [CrossRef]
- Zhao, D.; Schmitt, S.H.; Wang, M.; Acir, I.-H.; Tillmann, R.; Tan, Z.; Novelli, A.; Fuchs, H.; Pullinen, I.; Wegener, R.; et al. Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene. Atmos. Chem. Phys. 2018, 18, 1611–1628. [Google Scholar] [CrossRef]
- Kleindienst, T.E.; Edney, E.O.; Lewandowski, M.; Offenberg, J.H.; Jaoui, M. Secondary organic carbon and aerosol yields from the irradiations of isoprene and α-pinene in the presence of NOx and SO2. Environ. Sci. Technol. 2006, 40, 3807–3812. [Google Scholar] [CrossRef] [PubMed]
- Friedman, B.; Brophy, P.; Brune, W.H.; Farmer, D.K. Anthropogenic sulfur perturbations on biogenic oxidation: SO2 additions impact gas-phase OH oxidation products of alpha- and beta-pinene. Environ. Sci. Technol. 2016, 50, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Ng, N.L.; Kroll, J.H.; Keywood, M.D.; Bahreini, R.; Varutbangkul, V.; Flagan, R.C.; Seinfeld, J.H.; Lee, A.; Goldstein, A.H. Contribution of first-versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons. Environ. Sci. Technol. 2006, 40, 2283–2297. [Google Scholar] [CrossRef]
- Eddingsaas, N.C.; Loza, C.L.; Yee, L.D.; Chan, M.; Schilling, K.A.; Chhabra, P.S.; Seinfeld, J.H.; Wennberg, P.O. α-pinene photooxidation under controlled chemical conditions—Part 2: SOA yield and composition in low- and high-NOx environments. Atmos. Chem. Phys. 2012, 12, 7413–7427. [Google Scholar] [CrossRef]
- Kirkby, J.; Duplissy, J.; Sengupta, K.; Frege, C.; Gordon, H.; Williamson, C.; Heinritzi, M.; Simon, M.; Yan, C.; Almeida, J.; et al. Ion-induced nucleation of pure biogenic particles. Nature 2016, 533, 521–526. [Google Scholar] [CrossRef]
- Deng, W.; Liu, T.; Zhang, Y.; Situ, S.; Hu, Q.; He, Q.; Zhang, Z.; Lü, S.; Bi, X.; Wang, X.; et al. Secondary organic aerosol formation from photo-oxidation of toluene with NOx and SO2: Chamber simulation with purified air versus urban ambient air as matrix. Atmos. Environ. 2017, 150, 67–76. [Google Scholar] [CrossRef]
- Wang, X.; Liu, T.; Bernard, F.; Ding, X.; Wen, S.; Zhang, Y.; Zhang, Z.; He, Q.; Lü, S.; Chen, J.; et al. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. Atmos. Meas. Tech. 2014, 7, 301–313. [Google Scholar] [CrossRef]
- Barmet, P.; Dommen, J.; DeCarlo, P.F.; Tritscher, T.; Praplan, A.P.; Platt, S.M.; Prévôt, A.S.H.; Donahue, N.M.; Baltensperger, U. OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber. Atmos. Meas. Tech. 2012, 5, 647–656. [Google Scholar] [CrossRef]
- Weitkamp, E.A.; Sage, A.M.; Pierce, J.R.; Donahue, N.M.; Robinson, A.L. Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. Environ. Sci. Technol. 2007, 41, 6969–6975. [Google Scholar] [CrossRef]
- Xavier, C.; Rusanen, A.; Zhou, P.; Dean, C.; Pichelstorfer, L.; Roldin, P.; Boy, M. Aerosol mass yields of selected biogenic volatile organic compounds—A theoretical study with nearly explicit gas-phase chemistry. Atmos. Chem. Phys. 2019, 19, 13741–13758. [Google Scholar] [CrossRef]
- Deng, Y.; Inomata, S.; Sato, K.; Ramasamy, S.; Morino, Y.; Enami, S.; Tanimoto, H. Temperature and acidity dependence of secondary organic aerosol formation from α-pinene ozonolysis with a compact chamber system. Atmos. Chem. Phys. 2021, 21, 5983–6003. [Google Scholar] [CrossRef]
- Zhao, J.; Häkkinen, E.; Graeffe, F.; Krechmer, J.E.; Canagaratna, M.R.; Worsnop, D.R.; Kangasluoma, J.; Ehn, M. A combined gas- and particle-phase analysis of highly oxygenated organic molecules (HOMs) from α-pinene ozonolysis. Atmos. Chem. Phys. 2023, 23, 3707–3730. [Google Scholar] [CrossRef]
- Hellén, H.; Dommen, J.; Metzger, A.; Gascho, A.; Duplissy, J.; Tritscher, T.; Prevot, A.S.H.; Baltensperger, U. Using proton transfer reaction mass spectrometry for online analysis of secondary organic aerosols. Environ. Sci. Technol. 2008, 42, 7347–7353. [Google Scholar] [CrossRef]
- Rosati, B.; Teiwes, R.; Kristensen, K.; Bossi, R.; Skov, H.; Glasius, M.; Pedersen, H.B.; Bilde, M. Factor analysis of chemical ionization experiments: Numerical simulations and an experimental case study of the ozonolysis of α-pinene using a PTR-ToF-MS. Atmos. Environ. 2019, 199, 15–31. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, P.; Shu, J.; Huang, J.; Yang, B.; Zhang, H. Characterization of crucial fragments during the nucleation and growth of secondary organic aerosol from the high-NO photo-oxidation of α-pinene. Atmos. Environ. 2019, 213, 47–54. [Google Scholar] [CrossRef]
- Geddes, S.; Nichols, B.; Todd, K.; Zahardis, J.; Petrucci, G.A. Near-infrared laser desorption/ionization aerosol mass spectrometry for measuring organic aerosol at atmospherically relevant aerosol mass loadings. Atmos. Meas. Tech. 2010, 3, 1175–1183. [Google Scholar] [CrossRef]
- Jenkin, M.E.; Young, J.C.; Rickard, A.R. The MCM v3.3.1 degradation scheme for isoprene. Atmos. Chem. Phys. 2015, 15, 11433–11459. [Google Scholar] [CrossRef]
- Lee, A.; Goldstein, A.H.; Kroll, J.H.; Ng, N.L.; Varutbangkul, V.; Flagan, R.C.; Seinfeld, J.H. Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. J. Geophys. Res. Atmos. 2006, 111, D17. [Google Scholar] [CrossRef]
- Ehn, M.; Thornton, J.A.; Kleist, E.; Sipila, M.; Junninen, H.; Pullinen, I.; Springer, M.; Rubach, F.; Tillmann, R.; Lee, B.; et al. A large source of low-volatility secondary organic aerosol. Nature 2014, 506, 476–479. [Google Scholar] [CrossRef]
- Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J.D. Dimers in α-pinene secondary organic aerosol: Effect of hydroxyl radical, ozone, relative humidity and aerosol acidity. Atmos. Chem. Phys. 2014, 14, 4201–4218. [Google Scholar] [CrossRef]
- Jia, L.; Xu, Y. The role of functional groups in the understanding of secondary organic aerosol formation mechanism from alpha-pinene. Sci. Total Environ. 2020, 738, 139831. [Google Scholar] [CrossRef]
- Ng, N.L.; Chhabra, P.S.; Chan, A.W.H.; Surratt, J.D.; Kroll, J.H.; Kwan, A.J.; McCabe, D.C.; Wennberg, P.O.; Sorooshian, A.; Murphy, S.M.; et al. Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmos. Chem. Phys. 2007, 7, 5159–5174. [Google Scholar] [CrossRef]
- Han, Y.; Stroud, C.A.; Liggio, J.; Li, S.-M. The effect of particle acidity on secondary organic aerosol formation from α-pinene photooxidation under atmospherically relevant conditions. Atmos. Chem. Phys. 2016, 16, 13929–13944. [Google Scholar] [CrossRef]
- Park, J.-H.; Babar, Z.B.; Baek, S.J.; Kim, H.S.; Lim, H.-J. Effects of NOx on the molecular composition of secondary organic aerosol formed by the ozonolysis and photooxidation of α-pinene. Atmos. Environ. 2017, 166, 263–275. [Google Scholar] [CrossRef]
- Kulmala, M.; Kontkanen, J.; Junninen, H.; Lehtipalo, K.; Manninen, H.E.; Nieminen, T.; Petaja, T.; Sipila, M.; Schobesberger, S.; Rantala, P.; et al. Direct observations of atmospheric aerosol nucleation. Science 2013, 339, 943–946. [Google Scholar] [CrossRef] [PubMed]
- Krasnomowitz, J.M.; Apsokardu, M.J.; Stangl, C.M.; Tiszenkel, L.; Ouyang, Q.; Lee, S.; Johnston, M.V. Growth of Aitken mode ammonium sulfate particles by α-pinene ozonolysis. Aerosol Sci. Technol. 2019, 53, 406–418. [Google Scholar] [CrossRef]
- Ye, J.; Abbatt, J.P.D.; Chan, A.W.H. Novel pathway of SO2 oxidation in the atmosphere: Reactions with monoterpene ozonolysis intermediates and secondary organic aerosol. Atmos. Chem. Phys. 2018, 18, 5549–5565. [Google Scholar] [CrossRef]
- Jang, M.; Czoschke, N.M.; Lee, S.; Kamens, R.M. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 2002, 298, 814–817. [Google Scholar] [CrossRef]
- Czoschke, N. Effect of acidic seed on biogenic secondary organic aerosol growth. Atmos. Environ. 2003, 37, 4287–4299. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Ng, N.L.; Canagaratna, M.R.; Jimenez, J.L.; Chhabra, P.S.; Seinfeld, J.H.; Worsnop, D.R. Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmos. Chem. Phys. 2011, 11, 6465–6474. [Google Scholar] [CrossRef]
- Zhu, M.; Jiang, B.; Li, S.; Yu, Q.; Yu, X.; Zhang, Y.; Bi, X.; Yu, J.; George, C.; Yu, Z.; et al. Organosulfur compounds formed from heterogeneous reaction between SO2 and particulate-bound unsaturated fatty acids in ambient air. Environ. Sci. Technol. Lett. 2019, 6, 318–322. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, S.; Zhang, Y.; Yu, Z.; Yu, Y.; Wang, X. Particle-bound highly oxidized organic molecules derived from aromatic hydrocarbons in an urban atmosphere. Environ. Sci. Technol. Lett. 2022, 9, 1030–1036. [Google Scholar] [CrossRef]
Matrix Air | T | RH | [NO]0 | [NO2]0 | [SO2]0 | [α-Pinene]0 | ∆[α-Pinene] | [O3]max | OH | M0 | PN a | SA b | SOA | SOA Yield | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(°C) | (%) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (μg m−3) | (cm−3) | (μm2 cm−3) | (μg m−3) | (%) | |||
Exp. 1 | Purified | 25.0 | 49.7 | 52.2 | 0.8 | 84.8 | 127.0 | 102.1 | 52.2 | 6.33 | − c | − | − | 186.6 | 32.9 |
Exp. 2 | 25.5 | 46.5 | 54.5 | 0.6 | 74.6 | 108.3 | 98.6 | 57.8 | 2.80 | − | − | − | 174.6 | 32.0 | |
Exp. 3 | 25.7 | 42.9 | 54.4 | 0.7 | 75.2 | 97.5 | 89.2 | 61.6 | 2.44 | − | − | − | 159.8 | 32.3 | |
Exp. 4 | Ambient | 25.7 | 56.7 | 54.5 | 23.7 | 76.4 | 103.0 | 96.8 | 64.1 | 3.31 | 1.4 | 686 | 37 | 190.9 | 35.7 |
Exp. 5 | 24.5 | 41.7 | 50.2 | 30.3 | 72.3 | 100.1 | 91.6 | 64.7 | 6.60 | 1.0 | 1508 | 41 | 221.6 | 43.8 | |
Exp. 6 | 25.4 | 42.6 | 51.1 | 32.5 | 74.9 | 98.6 | 92.5 | 77.4 | 3.44 | 1.6 | 989 | 47 | 250.2 | 48.6 | |
Exp. BK | 24.4 | 43.9 | 53.4 | 24.0 | 77.8 | − | − | 6.4 | − | 1.4 | 836 | 33 | 2.4 | − |
m/z | Formula | Ambient Air | Purified Air |
---|---|---|---|
31 | CH2O | 1.0 ± 0.2 | 0.7 ± 0.1 |
59 | C3H6O | 48.9 ± 1.7 | 50.4 ± 4.2 |
61 | C2H4O2 | 13.3 ± 5.1 | 9.4 ± 1.3 |
73 | C3H4O2 | 2.1 ± 0.9 | 1.7 ± 0.9 |
77 | C2H4O3 | 1.2 ± 0.1 | 1.3 ± 0.1 |
87 | C3H2O3 | 3.0 ± 0.7 | 1.9 ± 0.0 |
89 | C3H4O3 | 0.6 ± 1.1 | 0.4 ± 0.4 |
101 | C4H4O3 | 0.2 ± 0.9 | 0.4 ± 0.1 |
103 | C4H6O3 | 0.1 ± 0.0 | 0.1 ± 0.0 |
115 | C5H6O3 | 1.5 ± 0.3 | 1.3 ± 0.2 |
117 | C5H8O3, C4H4O4 | 0.1 ± 0.5 | 0.3 ± 0.1 |
119 | C4H6O4 | 0.1 ± 0.5 | 0.3 ± 0.0 |
133 | C5H8O4, C4H4O5 | 0.6 ± 0.1 | 0.7 ± 0.0 |
135 | C4H6O5 | 1.3 ± 0.2 | 1.3 ± 0.2 |
143 | C8H14O2, C6H6O4 | 0.3 ± 0.1 | 0.3 ± 0.0 |
147 | C6H10O4, C5H6O5 | 0.2 ± 0.0 | 0.2 ± 0.0 |
155 | C9H14O2 | 1.6 ± 0.2 | 1.8 ± 0.2 |
157 | C7H8O4, C8H12O3, C9H16O2 | 0.6 ± 0.2 | 0.6 ± 0.0 |
159 | C7H10O4, C8H14O3 | 0.1 ± 0.0 | 0.1 ± 0.0 |
161 | C7H12O4 | 0.04 ± 0.02 | 0.05 ± 0.04 |
169 | C10H16O2 | 23.8 ± 2.9 | 19.8 ± 7.2 |
171 | C9H14O3, C10H18O2 | 0.6 ± 0.1 | 0.6 ± 0.1 |
173 | C9H16O3 | 0.2 ± 0.0 | 0.1 ± 0.0 |
175 | C8H14O4, C7H10O5 | 0.03 ± 0.01 | 0.04 ± 0.00 |
183 | C10H14O3 | 0.9 ± 0.1 | 1.1 ± 0.0 |
185 | C10H16O3 | 0.7 ± 0.1 | 0.8 ± 0.1 |
187 | C9H14O4, C10H18O3 | 0.1 ± 0.0 | 0.1 ± 0.0 |
189 | C9H16O4, C7H8O6, C8H12O5 | 0.01 ± 0.01 | 0.01 ± 0.00 |
201 | C10H16O4 | 0.05 ± 0.01 | 0.03 ± 0.01 |
T (°C) | RH (%) | Oxidant | Seed | [NO]0 (ppb) | [α-Pinene]0 (ppb) | SOA Yield (%) | Reference |
---|---|---|---|---|---|---|---|
25.4 ± 0.3 | 46.4 ± 2.8 | H2O2 + NOx | – b | 53.7 ± 1.1 | 110.9 ± 12.2 | 32.4 ± 0.4 | This study |
25.2 ± 0.5 | 47.0 ± 6.9 | H2O2 + NOx | ambient air | 51.9 ± 1.9 | 100.6 ± 1.8 | 42.7 ± 5.3 | |
25 | <5 | H2O2 | – | – | 1028.6 | 21.8 | [44] |
25 | <5 | H2O2 + NOx | – | 1064 | 1126.4 | 9.2 | |
24–26 | 64–67 | H2O2 | AS a | <0.3 | 17.4–19.6 | 28.6–36.3 | [43] |
23–26 | 47–61 | H2O2 + NOx | AS | 66–72 | 13.6–17.6 | 4.2–7.6 | |
20–23 | <10 | H2O2 | none, AS | – | 45.0–48.5 | 26.7–28.9 | [24] |
20–23 | <10 | HONO | none, AS | – | 45.5–52.4 | 7.7–17.6 | |
20 | 5.3–6.2 | H2O2 | AS | 0–1 | 13.8–47.5 | 37.9–45.8 | [42] |
20 | 6.4 | H2O2 + NOx | AS | 198 | 13.1 | 21.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ren, Z.; Zhang, X.; Pang, X.; Song, W.; Zhang, Y.; Wang, X. Differences in Secondary Organic Aerosol Formation from α-Pinene Photooxidation in a Chamber with Purified Air and Ambient Air as Matrices: Preliminary Results. Atmosphere 2024, 15, 204. https://doi.org/10.3390/atmos15020204
Li X, Ren Z, Zhang X, Pang X, Song W, Zhang Y, Wang X. Differences in Secondary Organic Aerosol Formation from α-Pinene Photooxidation in a Chamber with Purified Air and Ambient Air as Matrices: Preliminary Results. Atmosphere. 2024; 15(2):204. https://doi.org/10.3390/atmos15020204
Chicago/Turabian StyleLi, Xinyi, Zhuoyue Ren, Xiangyu Zhang, Xiaodie Pang, Wei Song, Yanli Zhang, and Xinming Wang. 2024. "Differences in Secondary Organic Aerosol Formation from α-Pinene Photooxidation in a Chamber with Purified Air and Ambient Air as Matrices: Preliminary Results" Atmosphere 15, no. 2: 204. https://doi.org/10.3390/atmos15020204
APA StyleLi, X., Ren, Z., Zhang, X., Pang, X., Song, W., Zhang, Y., & Wang, X. (2024). Differences in Secondary Organic Aerosol Formation from α-Pinene Photooxidation in a Chamber with Purified Air and Ambient Air as Matrices: Preliminary Results. Atmosphere, 15(2), 204. https://doi.org/10.3390/atmos15020204