Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = aeroengine rotor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 12545 KiB  
Article
Denoised Improved Envelope Spectrum for Fault Diagnosis of Aero-Engine Inter-Shaft Bearing
by Danni Li, Longting Chen, Hanbin Zhou, Jinyuan Tang, Xing Zhao and Jingsong Xie
Appl. Sci. 2025, 15(15), 8270; https://doi.org/10.3390/app15158270 - 25 Jul 2025
Viewed by 160
Abstract
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the [...] Read more.
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the operational health status of an aero-engine’s support system. However, affected by a complex vibration transmission path and vibration of the dual-rotor, the intrinsic vibration information of the inter-shaft bearing is faced with strong noise and a dual-frequency excitation problem. This excitation is caused by the wide span of vibration source frequency distribution that results from the quite different rotational speeds of the high-pressure rotor and low-pressure rotor. Consequently, most existing fault diagnosis methods cannot effectively extract inter-shaft bearing characteristic frequency information from the casing signal. To solve this problem, this paper proposed the denoised improved envelope spectrum (DIES) method. First, an improved envelope spectrum generated by a spectrum subtraction method is proposed. This method is applied to solve the multi-source interference with wide-band distribution problem under dual-frequency excitation. Then, an improved adaptive-thresholding approach is subsequently applied to the resultant subtracted spectrum, so as to eliminate the influence of random noise in the spectrum. An experiment on a public run-to-failure bearing dataset validates that the proposed method can effectively extract an incipient bearing fault characteristic frequency (FCF) from strong background noise. Furthermore, the experiment on the inter-shaft bearing of an aero-engine test platform validates the effectiveness and superiority of the proposed DIES method. The experimental results demonstrate that this proposed method can clearly extract fault-related information from dual-frequency excitation interference. Even amid strong background noise, it precisely reveals the inter-shaft bearing’s fault-related spectral components. Full article
Show Figures

Figure 1

22 pages, 10008 KiB  
Article
Design and Testing of a Device to Investigate Dynamic Performance of Aero-Engine Rotor–Stator Rubbing Dynamics
by Qinqin Mu, Qun Yan, Peng Sun, Yonghui Chen, Jiaqi Chang and Shiyu Huo
Eng 2025, 6(7), 162; https://doi.org/10.3390/eng6070162 - 17 Jul 2025
Viewed by 168
Abstract
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was [...] Read more.
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was evaluated in terms of its critical speed, vibration characteristics, component strength under operational conditions, and response characteristics in abnormal extreme scenarios. A ball screw-type feeding system is employed to achieve precise rotor–stator rubbing during rotation by controlling the coating feed. Additionally, a quartz lamp heating system is used to apply thermal loads to coating specimens, and the appropriate heat insulation and cooling measures are implemented. Furthermore, a high-frequency rubbing force test platform is developed to capture the key characteristics caused by rubbing. The test rig can conduct response tests of the system with rotor–stator rubbing and abrasion tests with tip speeds reaching 425 m/s, feed rates ranging from 2 to 2000 μm/s, and heating temperatures up to 1200 °C. Test debugging has confirmed these specifications and successfully executed rubbing tests, which demonstrate stability throughout the process and provide reliable rubbing force test results. This designed test rig and analysis methodology offers valuable insights for developing high-speed rotating machinery. Full article
Show Figures

Figure 1

27 pages, 5964 KiB  
Article
Investigation of Improved Labyrinth Seal Stability Accounting for Radial Deformation
by Guozhe Ren, Hongyuan Tang, Dan Sun, Wenfeng Xu and Yu Li
Aerospace 2025, 12(7), 621; https://doi.org/10.3390/aerospace12070621 - 10 Jul 2025
Viewed by 221
Abstract
This study examines the labyrinth seal disc of an aero-engine, specifically analysing the radial deformation caused by centrifugal force and heat stress during operation. This distortion may lead to discrepancies in the performance attributes of the labyrinth seal and could potentially result in [...] Read more.
This study examines the labyrinth seal disc of an aero-engine, specifically analysing the radial deformation caused by centrifugal force and heat stress during operation. This distortion may lead to discrepancies in the performance attributes of the labyrinth seal and could potentially result in contact between the labyrinth seal tip and neighbouring components. A numerical analytical model incorporating the rotor and stator cavities, along with the labyrinth seal disc structure, has been established. The sealing integrity of a standard labyrinth seal disc’s flow channel is evaluated and studied at different clearances utilising the fluid–solid-thermal coupling method. The findings demonstrate that, after considering radial deformation, a cold gap of 0.5 mm in the conventional labyrinth structure leads to stabilisation of the final hot gap and flow rate, with no occurrence of tooth tip rubbing; however, both the gap value and flow rate show considerable variation relative to the cold state. When the cold gap is 0.3 mm, the labyrinth plate makes contact with the stator wall. To resolve the problem of tooth tip abrasion in the conventional design with a 0.3 mm cold gap, two improved configurations are proposed, and a stability study for each configuration is performed independently. The leakage and temperature rise attributes of the two upgraded configurations are markedly inferior to those of the classic configuration at a cold gap of 0.5 mm. At a cold gap of 0.3 mm, the two improved designs demonstrate no instances of tooth tip rubbing. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

30 pages, 5714 KiB  
Article
Analysis of Unbalance Response and Vibration Reduction of an Aeroengine Gas Generator Rotor System
by Haibiao Zhang, Xing Heng, Ailun Wang, Tao Liu, Qingshan Wang and Kun Liu
Lubricants 2025, 13(6), 266; https://doi.org/10.3390/lubricants13060266 - 15 Jun 2025
Viewed by 419
Abstract
To ensure the vibration safety of rotor support systems in modern aeroengines, this study develops a dynamic model of the aeroengine gas generator rotor system and analyzes its complex unbalance response characteristics. Subsequently, it investigates vibration reduction strategies based on these response patterns. [...] Read more.
To ensure the vibration safety of rotor support systems in modern aeroengines, this study develops a dynamic model of the aeroengine gas generator rotor system and analyzes its complex unbalance response characteristics. Subsequently, it investigates vibration reduction strategies based on these response patterns. This study begins by developing individual dynamic models for the disk–blade system, the circular arc end-teeth connection structure and the squeeze film damper (SFD) support system. These models are then integrated using the differential quadrature finite element method (DQFEM) to create a comprehensive dynamic model of the gas generator rotor system. The unbalance response characteristics of the rotor system are calculated and analyzed, revealing the impact of the unbalance mass distribution and the combined support system characteristics on the unbalance response of the rotor system. Drawing on the obtained unbalance response patterns, the vibration reduction procedures for the rotor support system are explored and experimentally verified. The results demonstrate that the vibration response of the modern aeroengine rotor support system can be reduced by adjusting the unbalance mass distribution, decreasing the bearing stiffness and increasing the bearing damping, thereby enhancing the vibration safety of the rotor system. This study introduces a novel integration of DQFEM with detailed component-level modeling of circular arc end-teeth connections, disk–blade interactions and SFD dynamics. This approach uniquely captures the coupled effects of unbalance distribution and support system characteristics, offering a robust framework for enhancing vibration safety in aeroengine rotor systems. The methodology provides both theoretical insights and practical guidelines for optimizing rotor dynamic performance under unbalance-induced excitations. Full article
Show Figures

Figure 1

15 pages, 5938 KiB  
Article
Experimental Verification of High-Temperature Resistance and High Resolution of Inductive Tip Clearance Measurement System
by Ziyu Zhao, Lingqiang Zhao, Yaguo Lyu and Zhenxia Liu
Sensors 2025, 25(10), 3145; https://doi.org/10.3390/s25103145 - 16 May 2025
Viewed by 501
Abstract
An inductive clearance measurement sensor has advantages of good anti-interference, fast response speed, and high sensitivity, and it has obvious technical potential in aeroengine turbine tip clearance measurement. In this paper, a rotor dynamic tip clearance measurement experiment system was designed based on [...] Read more.
An inductive clearance measurement sensor has advantages of good anti-interference, fast response speed, and high sensitivity, and it has obvious technical potential in aeroengine turbine tip clearance measurement. In this paper, a rotor dynamic tip clearance measurement experiment system was designed based on a high-resolution inductive measurement system. The high temperature calibration experiment, performance verification experiment, and dynamic clearance measurement experiment under varying operating conditions were used to verify the high-temperature dynamic measurement performance of the measurement system. The resolution was used as the evaluation parameter of measurement performance. The experimental result shows the system has good resolution and dynamic response at 1000 °C, and the dynamic resolution reaches 10 μm in the 3 mm measuring range. The varying condition experiment results show that the blade deformation caused by the speed change of 1000–3000 r/min and the temperature change of 600–1000 °C can be resolved, and the resolution reaches about 10 μm. The research results verify that the inductance clearance measurement system has the characteristics of high temperature resistance and high resolution, and the technical specifications of clearance detection meet the basic requirements of dynamic clearance measurement of turbine tips, which provides an effective detection method for aeroengine health monitoring. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

22 pages, 7152 KiB  
Article
Finite Element Analysis of Structural Parameter Effects on Stiffness Nonlinearity Behavior in Aero-Engine Elastic Rings
by Yihang Shi, Jiaqi Li, Zhongyu Yang and Yinli Feng
Aerospace 2025, 12(4), 338; https://doi.org/10.3390/aerospace12040338 - 14 Apr 2025
Viewed by 565
Abstract
Elastic rings are extensively utilized in aero-engine rotor systems owing to their compact size and ease of assembly, where they play a critical role in vibration suppression during engine operation. The dynamic behavior of elastic rings is governed by their structural parameters, with [...] Read more.
Elastic rings are extensively utilized in aero-engine rotor systems owing to their compact size and ease of assembly, where they play a critical role in vibration suppression during engine operation. The dynamic behavior of elastic rings is governed by their structural parameters, with stiffness being a pivotal factor influencing the rotor system’s performance. This study employs finite element methods to investigate the effects of elastic ring structural parameters, particularly the geometric features of bosses and internal/external assembly clearances, on stiffness nonlinearity, with a focus on its mechanisms and contributing factors. The results reveal that stiffness nonlinearity emerges when the whirling radius exceeds a critical threshold. Specifically, increasing the boss width, reducing the boss height, or augmenting the number of bosses all attenuate stiffness nonlinearity under identical whirling radii. Furthermore, external clearances exhibit a stronger capability to suppress stiffness nonlinearity compared to internal clearances. Engineering insights suggest that maintaining a small clearance fit during assembly effectively mitigates stiffness nonlinearity, thereby enhancing the rotor’s dynamic performance. This study elucidates the stiffness nonlinearity behavior of elastic rings in practical applications and provides actionable guidance for their design and operational optimization in rotor systems. Full article
(This article belongs to the Special Issue Advances in Thermal Fluid, Dynamics and Control)
Show Figures

Figure 1

20 pages, 4522 KiB  
Article
Dynamic Modeling of Aeroengine Rotor Speed Based on Data Fusion Method
by Jun Hong, Hongxin Wang, Ziqiao Chen, Jiawei Lu and Gang Xiao
Aerospace 2025, 12(4), 322; https://doi.org/10.3390/aerospace12040322 - 9 Apr 2025
Viewed by 735
Abstract
In this paper, a data-driven system identification method is presented based on the data fusion of a dynamic model and flight test data. The dynamic model is built by a combination of nonlinear auto-regressive networks (NARX) and the steady-state model. In such a [...] Read more.
In this paper, a data-driven system identification method is presented based on the data fusion of a dynamic model and flight test data. The dynamic model is built by a combination of nonlinear auto-regressive networks (NARX) and the steady-state model. In such a combination, NARX can calibrate the dynamic characteristics of high-pressure and low-pressure rotor speed based on automatic control system steady-state models. As such, the calibrated engine model’s output speed is able to meet the requirements of simulation test tolerance accuracy. To enhance the robustness of the dynamic model against measurement noise, the Kalman filter is used to fuse the model prediction and the measurement data with noise. As such, the fused model can efficiently remove the influence of measurement noise and improve prediction accuracy. The proposed method supports the construction of reliable and environment-adaptive platforms for simulation application verification and provides high-fidelity simulation incentives for the realization of simulation test scenarios in the aviation industry. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

16 pages, 6583 KiB  
Article
Study on the Influence of Unbalanced Phase Difference Combinations on Vibration Characteristics of Rotor Systems
by Yiming Cao, Shijie Zhong, Xuejun Li, Mingfeng Li and Jie Bian
Sensors 2025, 25(6), 1691; https://doi.org/10.3390/s25061691 - 8 Mar 2025
Viewed by 725
Abstract
Taking the cantilever rotor of a turbine engine as the research object, a dynamic and finite-element model of the cantilever rotor is established, and the effectiveness of the model is verified by the rotor test platform. The transfer function method is used to [...] Read more.
Taking the cantilever rotor of a turbine engine as the research object, a dynamic and finite-element model of the cantilever rotor is established, and the effectiveness of the model is verified by the rotor test platform. The transfer function method is used to balance the rotor system under unbalanced excitation, and the experiments prove that the method adopted in this paper has a good balancing effect and effectively reduces the vibration of the unbalanced rotor. On this basis, the experimental tests and simulation analyses of the rotor vibration response under different unbalanced phases and difference combinations are carried out, and the influence of the unbalanced phase’s difference combinations on unbalance and dynamic balance is analyzed. The results show that the vibration response of the system decreases with the increase in the unbalanced phase difference combinations, and the amplitude of the vibration induced by the unbalance of the reverse combination is smaller than that of the in-phase combination. The work in this paper can provide a theoretical basis for the dynamic balance and vibration control of the flexible rotor of an aero-engine. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 3674 KiB  
Article
Intelligent Performance Degradation Prediction of Light-Duty Gas Turbine Engine Based on Limited Data
by Chunyan Hu, Keqiang Miao, Mingyang Zhou, Yafeng Shen and Jiaxian Sun
Symmetry 2025, 17(2), 277; https://doi.org/10.3390/sym17020277 - 11 Feb 2025
Viewed by 819
Abstract
The health monitoring system has been the main technological approach to extending the life of gas turbine engines and reducing maintenance costs resulting from performance degradation caused by asymmetric factors like carbon deposition, damage, or deformation. One of the most critical techniques within [...] Read more.
The health monitoring system has been the main technological approach to extending the life of gas turbine engines and reducing maintenance costs resulting from performance degradation caused by asymmetric factors like carbon deposition, damage, or deformation. One of the most critical techniques within the health monitoring system is performance degradation prediction. At present, most research on degradation prediction is carried out using NASA’s open dataset, C-MAPSS, without considering that monitoring measurements are not always available, as in the ideal dataset. This limitation makes fault diagnosis algorithms and remaining useful life prediction methods difficult to apply to real gas turbine engines. Therefore, to solve the problem of performance degradation prediction in light-duty gas turbine engines, a prediction diagram is proposed based on Long Short-Term Memory (LSTM). Various types of onboard signals are taken into consideration among the experimental data. Only accumulated usage time, total temperature and total pressure before the inlet, low-pressure rotor speed, high-pressure rotor speed, fuel flow rate, exhaust temperature, and thrust are used in the training process, which is indispensable for an aero-engine. A genetic algorithm (GA) is introduced into the training process to optimize the hyperparameters of LSTM. The performance degradation prediction modeled with the GA-LSTM method is validated using experimental data. The maximum prediction error of thrust is 70 daN, and the mean absolute percentage error (MAPE) is less than 0.04. This study provides a practical approach to implementing performance degradation prediction in health monitoring systems to improve gas turbine engine reliability, economy, and environmental performance. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

21 pages, 10473 KiB  
Article
Neural Network-Based Parameter Estimation and Compensation Control for Time-Delay Servo System of Aeroengine
by Hongyi Chen, Qiuhong Li, Zhifeng Ye and Shuwei Pang
Aerospace 2025, 12(1), 64; https://doi.org/10.3390/aerospace12010064 - 17 Jan 2025
Cited by 3 | Viewed by 1316
Abstract
Servo systems are important actuators of aeroengines. The repetitive, reciprocating motion of the servo system leads to significant changes in its time delay and gain characteristics, and degradation increases the uncertainty of these changes. These characteristic variations may have an adverse effect on [...] Read more.
Servo systems are important actuators of aeroengines. The repetitive, reciprocating motion of the servo system leads to significant changes in its time delay and gain characteristics, and degradation increases the uncertainty of these changes. These characteristic variations may have an adverse effect on the dynamic performance of the aeroengine. Therefore, a neural network-based parameter estimation and a multi-loop neural network-based predictive control (ML-NNPC) method for aeroengine inlet guide vane (IGV) servo systems (SVS) were proposed. In this study, the time delay estimation of the servo system was treated as a classification problem, and an SE (squeeze-and-excitation)-GRU (gated recurrent unit) network was proposed to estimate the time delay by using the selected dynamic data of the servo system. The estimated delay was embedded into an online sequential extreme learning machine, and a nonlinear model predictive controller was designed to obtain an optimal control sequence. The compensation control loop was designed to reduce the impact of the model and delay mismatch problems of the control system. The proposed method was applied to the IGV SVS control of a turboshaft engine. The simulation results demonstrate that the time delay is estimated accurately and compensated effectively. Compared to the existing PI and PI with Smith predictor methods, the ML-NNPC method achieves better control performance in the control of both the SVS and the engine rotor speed system. The stability and robustness of the ML-NNPC also show superiority. The results verify the effectiveness of the proposed time delay estimation method and the ML-NNPC method. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 5782 KiB  
Article
A Novel Approach to High Stability Engine Control for Aero-Propulsion Systems in Supersonic Conditions
by Fengyong Sun, Jitai Han and Changpo Song
Aerospace 2024, 11(12), 1029; https://doi.org/10.3390/aerospace11121029 - 16 Dec 2024
Viewed by 945
Abstract
In a supersonic state, the aero-engine operates under harsh circumstances of elevated temperature, high pressure, and rapid rotor speed. This work provides an innovative high-stability control technique for engines with fixed-geometry inlets, addressing stability control issues at the aero-propulsion system level. The discussion [...] Read more.
In a supersonic state, the aero-engine operates under harsh circumstances of elevated temperature, high pressure, and rapid rotor speed. This work provides an innovative high-stability control technique for engines with fixed-geometry inlets, addressing stability control issues at the aero-propulsion system level. The discussion begins with the importance of an integrated model for the intake and the aero-engine, introducing two stability indices (surge margin and buzz margin) to characterize inlet stability. A novel predictive model for engine air mass flow is developed to address the indeterminate issue of engine air mass flow. The integration of input parameters in the predictive model is refined using the least squares support vector regression (LSSVR) algorithm, and historical input data is used to enhance predictive performance, as validated by numerical simulation results. A data-driven adaptive augmented linear quadratic regulator (d-ALQR) control technique is suggested to adaptively modify the control parameters of the augmented linear quadratic regulator. A highly stable control strategy is finally proposed, integrating the predictive model with the d-ALQR controller. The simulation results conducted during maneuvering flight operations demonstrate that the developed high-stability controller can maintain the inlet in an efficient and safe condition, ensuring optimal compatibility between the engine and the inlet. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

14 pages, 9345 KiB  
Article
Effect of Oil Film Radial Clearances on Dynamic Characteristics of Variable Speed Rotor with Non-Concentric SFD
by Weijian Nie, Xiaoguang Yang, Guang Tang, Qicheng Zhang and Ge Wang
Machines 2024, 12(12), 882; https://doi.org/10.3390/machines12120882 - 5 Dec 2024
Cited by 1 | Viewed by 846
Abstract
Variable-speed aircraft engines require the power turbine rotor to operate stably within a wide range of output speeds, posing a challenge for rotor vibration reduction design. Non-concentric squeeze film dampers (NCSFDs) have been widely used in rotor vibration reduction design due to their [...] Read more.
Variable-speed aircraft engines require the power turbine rotor to operate stably within a wide range of output speeds, posing a challenge for rotor vibration reduction design. Non-concentric squeeze film dampers (NCSFDs) have been widely used in rotor vibration reduction design due to their simple structure. However, comprehensive research on the matching and applicability of NCSFDs under varying operating speeds is lacking. Therefore, this paper investigates the influence of oil film radial clearances on the dynamic characteristics of a variable-speed rotor system with an NCSFD, examining its suitability across variable speeds. This study introduces the principle of equivalent rotor dynamics similarity design, demonstrating good consistency between simulated and real rotor dynamic characteristics, with a radial clearance of 0.10 mm being deemed optimal. The vibration response variation in the rotor at a fixed speed within the range of 0.51 n to 1.0 n does not exceed 4 μm, and the vibration acceleration variation does not exceed 0.04 g, indicating a wide, stable operating speed range. This study can be helpful for the engineering design and vibration reduction design of variable-speed rotors in aircraft engines. Full article
(This article belongs to the Special Issue Power and Propulsion Engineering)
Show Figures

Figure 1

21 pages, 6144 KiB  
Article
Unbalanced Position Recognition of Rotor Systems Based on Long and Short-Term Memory Neural Networks
by Yiming Cao, Changzhi Shi, Xuejun Li, Mingfeng Li and Jie Bian
Machines 2024, 12(12), 865; https://doi.org/10.3390/machines12120865 - 28 Nov 2024
Cited by 3 | Viewed by 1154
Abstract
Rotor unbalance stands as one of the primary causes of vibration and noise in rotating equipment. Accurate identification of unbalanced positions enables targeted measures for balance correction, thereby reducing vibration and noise levels and enhancing the operational efficiency and stability of the equipment. [...] Read more.
Rotor unbalance stands as one of the primary causes of vibration and noise in rotating equipment. Accurate identification of unbalanced positions enables targeted measures for balance correction, thereby reducing vibration and noise levels and enhancing the operational efficiency and stability of the equipment. However, the complexity of rotor structures may lead to a diversity of vibration transmission paths, which complicates the identification of unbalanced positions. In this paper, an experimental platform for rotor systems is established to analyze the change patterns of vibration displacement in rotor systems at four unbalanced positions. Additionally, a rotor dynamics model is developed based on the finite element method and verified through experiments. Furthermore, an unbalanced rotor position identification method based on Long Short-Term Memory (LSTM) neural networks is proposed. This method utilizes multiple sets of measured response data and simulated data from unbalanced rotor positions to train the LSTM network, achieving precise identification of unbalanced positions at various rotational speeds. The research results indicate that under subcritical, critical, and supercritical speeds, the identification accuracy based on measured data reaches 95.5%, while the accuracy based on simulated data remains at a high level of 90.5%. These results fully validate the effectiveness and accuracy of the proposed model and identification method, providing new insights and technical means for identifying unbalanced rotor positions. Full article
Show Figures

Figure 1

16 pages, 8804 KiB  
Article
Research on Unbalanced Vibration Characteristics and Assembly Phase Angle Probability Distribution of Dual-Rotor System
by Hui Li, Changzhi Shi, Xuejun Li, Mingfeng Li and Jie Bian
Machines 2024, 12(12), 842; https://doi.org/10.3390/machines12120842 - 24 Nov 2024
Viewed by 917
Abstract
This paper addresses the complex issue of vibration response characteristics resulting from the unbalanced assembly of the double rotors in the 31F aero-engine. The study investigates the vibration response behavior of the dual-rotor system through the adjustment of rotor assembly phase angle. Initially, [...] Read more.
This paper addresses the complex issue of vibration response characteristics resulting from the unbalanced assembly of the double rotors in the 31F aero-engine. The study investigates the vibration response behavior of the dual-rotor system through the adjustment of rotor assembly phase angle. Initially, a dynamic model of the four-disk, five-pivot dual-rotor system is established, with its natural frequencies and vibration modes verified. The influence of size and the position of the unbalance on the vibration amplitude in the dual-rotor system is analyzed. Additionally, the probability distribution of the assembly phase angles for both the compressor and turbine sections of the low-pressure rotor is examined. The results indicate that for the low-pressure rotor exhibiting excessive vibration, adjusting the assembly phase angle of the rotors’ system’s compressor or the turbine section by 180 degrees leads to a vibration qualification rate of 70.1435%. This finding is consistent with the observations from the field experience method used in the former Soviet Union. Finally, corresponding experimental verification is conducted. Full article
Show Figures

Figure 1

20 pages, 11411 KiB  
Article
Modeling and Nonlinear Dynamic Characteristics Analysis of Fault Bearing Time-Varying Stiffness-Flexible Rotor Coupling System
by Renzhen Chen, Jingyi Lv, Jing Tian, Yanting Ai, Fengling Zhang and Yudong Yao
Mathematics 2024, 12(22), 3591; https://doi.org/10.3390/math12223591 - 16 Nov 2024
Cited by 2 | Viewed by 1026
Abstract
There is a complex dynamic interaction between the aero-engine bearing and the rotor, and the resulting time-varying system parameters have an impact on the nonlinear dynamic characteristics of the rolling bearing-flexible rotor system. In this study, the interaction between the time-varying stiffness of [...] Read more.
There is a complex dynamic interaction between the aero-engine bearing and the rotor, and the resulting time-varying system parameters have an impact on the nonlinear dynamic characteristics of the rolling bearing-flexible rotor system. In this study, the interaction between the time-varying stiffness of the rolling bearing and the transient response of the flexible rotor is considered. The Newmark-β integral method is used to solve the dynamic equation, and the relationship between the time-varying characteristics of bearing stiffness and load and the dynamic characteristics of the rotor is studied. The relationship between bearing stiffness and vibration strength is analyzed, and the influence of damage size on the time domain signal energy of the disc is analyzed. The results show that the model established in this paper can accurately reflect the dynamic interaction between the bearing and the rotor. With the extension of the bearing damage, the dynamic stiffness of the bearing attenuates, the intensity of the excitation force increases, and the vibration is transmitted to the disc, which affects the motion stability and vibration response of the disc. Full article
Show Figures

Figure 1

Back to TopTop