Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = aeroelastic test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3717 KB  
Article
Multi-Objective ADRC-Based Aircraft Gust Load Control
by Chengxiang Li, Zheng Gong, Yalei Bai, Sikai Guo and Longbin Zhang
Appl. Sci. 2025, 15(16), 8882; https://doi.org/10.3390/app15168882 - 12 Aug 2025
Viewed by 160
Abstract
In this paper, we propose a dual-loop Active Disturbance Rejection Control (ADRC) strategy for gust load alleviation in flexible aircraft. By decoupling the control of modal and normal accelerations and spatially allocating control surfaces, the method effectively resolves signal interference. Simulation results show [...] Read more.
In this paper, we propose a dual-loop Active Disturbance Rejection Control (ADRC) strategy for gust load alleviation in flexible aircraft. By decoupling the control of modal and normal accelerations and spatially allocating control surfaces, the method effectively resolves signal interference. Simulation results show that compared to the uncontrolled case, the ADRC controller reduces the wing root bending moment peak by 38%, the normal load factor peak by 32%, and the pitch angle fluctuation by 38%. Robustness tests under actuator delays (4 Δt and 8 Δt) and gain perturbations (−50% and +100%) further confirm that the system maintains time-domain stability and effective load mitigation across varying conditions. These results demonstrate that the proposed ADRC scheme not only improves load suppression but also offers strong robustness against parameter uncertainty, providing theoretical and practical support for next-generation active control systems in aeroelastic environments. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

27 pages, 6700 KB  
Article
Experimental and Computational Analysis of Large-Amplitude Flutter in the Tacoma Narrows Bridge: Wind Tunnel Testing and Finite Element Time-Domain Simulation
by Bishang Zhang and Ledong Zhu
Buildings 2025, 15(15), 2800; https://doi.org/10.3390/buildings15152800 - 7 Aug 2025
Viewed by 244
Abstract
Nonlinear wind-induced vibrations and coupled static–dynamic instabilities pose significant challenges for long-span suspension bridges, especially under large-amplitude and high-angle-of-attack conditions. However, existing studies have yet to fully capture the mechanisms behind large-amplitude torsional flutter. To address this, wind tunnel experiments were performed on [...] Read more.
Nonlinear wind-induced vibrations and coupled static–dynamic instabilities pose significant challenges for long-span suspension bridges, especially under large-amplitude and high-angle-of-attack conditions. However, existing studies have yet to fully capture the mechanisms behind large-amplitude torsional flutter. To address this, wind tunnel experiments were performed on H-shaped bluff sections and closed box girders using a high-precision five-component piezoelectric balance combined with a custom support system. Complementing these experiments, a finite element time-domain simulation framework was developed, incorporating experimentally derived nonlinear flutter derivatives. Validation was achieved through aeroelastic testing of a 1:110-scale model of the original Tacoma Narrows Bridge and corresponding numerical simulations. The results revealed Hopf bifurcation phenomena in H-shaped bluff sections, indicated by amplitude-dependent flutter derivatives and equivalent damping coefficients. The simulation results showed less than a 10% deviation from experimental and historical wind speed–amplitude data, confirming the model’s accuracy. Failure analysis identified suspenders as the critical failure components in the Tacoma collapse. This work develops a comprehensive performance-based design framework that improves the safety, robustness, and resilience of long-span suspension bridges against complex nonlinear aerodynamic effects while enabling cost-effective, targeted reinforcement strategies to advance modern bridge engineering. Full article
Show Figures

Figure 1

31 pages, 26260 KB  
Article
Aeroelastic Analysis of a Tailless Flying Wing with a Rotating Wingtip
by Weiji Wang, Xinyu Ai, Xin Hu, Chongxu Han, Xiaole Xu, Zhihai Liang and Wei Qian
Aerospace 2025, 12(8), 688; https://doi.org/10.3390/aerospace12080688 - 31 Jul 2025
Viewed by 226
Abstract
This paper presents a preliminary investigation into the aeroelastic behavior of a tailless flying wing equipped with a rotating wingtip. Based on the configuration of Innovative Control Effectors (ICE) aircraft, an aeroelastic model of the tailless flying wing with a rotating wingtip has [...] Read more.
This paper presents a preliminary investigation into the aeroelastic behavior of a tailless flying wing equipped with a rotating wingtip. Based on the configuration of Innovative Control Effectors (ICE) aircraft, an aeroelastic model of the tailless flying wing with a rotating wingtip has been developed. Both numerical simulation and wind tunnel tests (WTTs) are employed to study the aeroelastic characteristics of this unique design. The numerical simulation involves the coupling of computational fluid dynamics (CFD) and implicit dynamic approaches (IDAs). Using the CFD/IDA coupling method, aeroelastic response results are obtained under different flow dynamic pressures. The critical flutter dynamic pressure is identified by analyzing the trend of the damping coefficient, with a focus on its transition from negative to positive values. Additionally, the critical flutter velocity and flutter frequency are obtained from the WTT results. The critical flutter parameters, including dynamic pressure, velocity, and flutter frequency, are examined under different wingtip rotation frequencies and angles. These parameters are derived using both the CFD/IDA coupling method and WTT. The results indicate that the rotating wingtip plays a significant role in influencing the flutter behavior of aircraft with such a configuration. Research has shown that the rotation characteristics of the rotating wingtip are the primary factor affecting its aeroelastic behavior, and increasing both the rotation frequency and rotation angle can raise the flutter boundary and effectively suppress flutter onset. Full article
(This article belongs to the Special Issue Aeroelasticity, Volume V)
Show Figures

Figure 1

20 pages, 3429 KB  
Article
Damping Identification Sensitivity in Flutter Speed Estimation
by Gabriele Dessena, Alessandro Pontillo, Marco Civera, Dmitry I. Ignatyev, James F. Whidborne and Luca Zanotti Fragonara
Vibration 2025, 8(2), 24; https://doi.org/10.3390/vibration8020024 - 16 May 2025
Viewed by 632
Abstract
Predicting flutter remains a key challenge in aeroelastic research, with certain models relying on modal parameters, such as natural frequencies and damping ratios. These models are particularly useful in early design stages or for the development of small Unmanned Aerial Vehicles (maximum take-off [...] Read more.
Predicting flutter remains a key challenge in aeroelastic research, with certain models relying on modal parameters, such as natural frequencies and damping ratios. These models are particularly useful in early design stages or for the development of small Unmanned Aerial Vehicles (maximum take-off mass below 7 kg). This study evaluates two frequency-domain system identification methods, Fast Relaxed Vector Fitting (FRVF) and the Loewner Framework (LF), for predicting the flutter onset speed of a flexible wing model. Both methods are applied to extract modal parameters from Ground Vibration Testing data, which are subsequently used to develop a reduced-order model with two degrees of freedom. The results indicate that FRVF- and LF-informed models provide reliable flutter speed, with predictions deviating by no more than 3% (FRVF) and 5% (LF) from the N4SID-informed benchmark. The findings highlight the sensitivity of flutter speed predictions to damping ratio identification accuracy and demonstrate the potential of these methods as computationally efficient alternatives for preliminary aeroelastic assessments. Full article
Show Figures

Figure 1

23 pages, 17577 KB  
Article
Deep Learning Framework for Predicting Transonic Wing Buffet Loads Due to Structural Eigenmode-Based Deformations
by Rebecca Zahn, Moritz Zieher and Christian Breitsamter
Aerospace 2025, 12(5), 415; https://doi.org/10.3390/aerospace12050415 - 7 May 2025
Viewed by 480
Abstract
In the present paper, a reduced-order modeling (ROM) approach based on a hybrid neural network is presented in order to calculate wing buffet pressure distributions due to structural eigenmode-based deformations. The accurate prediction of unsteady surface pressure distributions is crucial for assessing aeroelastic [...] Read more.
In the present paper, a reduced-order modeling (ROM) approach based on a hybrid neural network is presented in order to calculate wing buffet pressure distributions due to structural eigenmode-based deformations. The accurate prediction of unsteady surface pressure distributions is crucial for assessing aeroelastic stability and preventing structural failure, but full-order simulations are computationally expensive; the proposed ROM provides a fast and efficient alternative with a sufficient level of accuracy. The hybrid ROM is defined by a series connection of a convolutional autoencoder (CNN-AE) and a long short-term memory (LSTM) neural network. As a test case, the NASA Common Research Model (CRM) configuration for the transonic buffet condition is applied. Forced-motion computational fluid dynamics (CFD) simulations are conducted in order to obtain the aerodynamic responses induced by the eigenmode-based deformations. For the unsteady simulations, the triangular adaptive upwind (TAU) solver of the German Aerospace Center (DLR), is used. Based on a selected structural model, symmetric and asymmetric eigenmode-based deformations of the wing structure are implemented and considered for performance evaluation. Comparing the pressure loads modeled by the hybrid ROM and the reference full-order numerical solution, an overall good prediction performance is indicated with mean squared error (MSE) values mostly below 3%, reaching local maxima of about 12%, due to strong pressure gradients associated with pronounced shock oscillations. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

26 pages, 13145 KB  
Article
Numerical Method for Aeroelastic Simulation of Flexible Aircraft in High Maneuver Flight Based on Rigid–Flexible Model
by Shuang Chen, Pengzhen He and Shuling Tian
Appl. Sci. 2025, 15(8), 4333; https://doi.org/10.3390/app15084333 - 14 Apr 2025
Viewed by 566
Abstract
Traditional elastic correction methods fail to address the significant aeroelastic interactions arising from unsteady flow fields and structural deformations during aggressive maneuvers. To resolve this, a numerical method is developed by solving unsteady aerodynamic equations coupled with a rigid–flexible dynamics equations derived from [...] Read more.
Traditional elastic correction methods fail to address the significant aeroelastic interactions arising from unsteady flow fields and structural deformations during aggressive maneuvers. To resolve this, a numerical method is developed by solving unsteady aerodynamic equations coupled with a rigid–flexible dynamics equations derived from Lagrangian mechanics in quasi-coordinates. Validation via a flexible pendulum test and AGARD445.6 wing flutter simulations demonstrates excellent agreement with experimental data, confirming the method’s accuracy. Application to a slender air-to-air missile reveals that reducing structural stiffness can destabilize the aircraft, transitioning it from stable to unstable states during forced pitching motions. Studies on longitudinal flight under preset rudder deflection control indicate that the aeroelastic effect increases both the amplitude and period of pitch angles, ultimately resulting in larger equilibrium angles compared to a rigid-body model. The free-flight simulations highlight trajectory deviations due to deformation-induced aerodynamic forces, which emphasizes the necessity of multidisciplinary coupling analysis. The numerical results show that the proposed CFD/CSD-based coupling methodology offers a robust aeroelastic effect analysis tool for flexible flight vehicles during aggressive maneuvers. Full article
Show Figures

Figure 1

16 pages, 3767 KB  
Article
Aeroelastic Behavior of 3D-Printed Tapered Polylactic Acid Plates Under Subsonic Flow Conditions
by Mirko Dinulović, Mato Perić, Dragi Stamenković, Aleksandar Bengin, Vuk Adžić and Marta Trninić
Materials 2025, 18(5), 1127; https://doi.org/10.3390/ma18051127 - 2 Mar 2025
Viewed by 831
Abstract
This research investigates the aeroelastic stability of tapered polylactic acid (PLA) plates produced through fused deposition modeling (FDM) under low-Mach-number airflow conditions. While the static properties of 3D-printed structural components for drones, unmanned aerial vehicles (UAVs), and unmanned aircraft systems (UAS) have been [...] Read more.
This research investigates the aeroelastic stability of tapered polylactic acid (PLA) plates produced through fused deposition modeling (FDM) under low-Mach-number airflow conditions. While the static properties of 3D-printed structural components for drones, unmanned aerial vehicles (UAVs), and unmanned aircraft systems (UAS) have been thoroughly explored, their dynamic behavior, especially flutter, has been less studied. This study applies a binary flutter model to thin PLA plates, and the analytically predicted flutter speeds are compared with experimental data from wind-tunnel tests. The strong agreement between theoretical predictions and experimental results confirms the validity of the proposed dynamic aeroelastic analysis approach. This methodology provides valuable insights into designing aerodynamic lifting and stabilizing surfaces for UAS applications. Full article
Show Figures

Figure 1

18 pages, 12981 KB  
Article
Galloping Performance of Transmission Line System Aeroelastic Model with Rime Through Wind-Tunnel Tests
by Mingguan Zhao, Meng Li, Shenglong Li, Yuanhao Wan, Yang Hai and Chunguang Li
Energies 2025, 18(5), 1203; https://doi.org/10.3390/en18051203 - 28 Feb 2025
Cited by 3 | Viewed by 950
Abstract
This study presents an experimental investigation for the galloping performance of the transmission line system with rime under wind excitation. A full aeroelastic model wind-tunnel test is conducted to investigate the dynamic response of a two-bundled transmission line system with rime under different [...] Read more.
This study presents an experimental investigation for the galloping performance of the transmission line system with rime under wind excitation. A full aeroelastic model wind-tunnel test is conducted to investigate the dynamic response of a two-bundled transmission line system with rime under different conditions. The time histories of the displacement of the conductor and the acceleration of the tower are measured in detail to analyze the characteristic of the wind-induced response. A comprehensive parametric experiment is performed to explore the effects of wind speed, wind direction, the number of conductor spans and the coupling between the conductor and the tower on the galloping performance of the transmission line system with rime. The results showed that the wind speed, wind direction and the number of conductor spans have significant influence on the galloping performance of conductor. The zero-degree wind direction is the most dangerous direction for the conductor. The multi-span conductor has different galloping initiation wind speed and vibration characteristics compared to the single-span conductor. The coupling effect between the conductor and the tower has trivial influence on the response of tower. This study uses 3D-printing models to simulate the aerodynamic shape of ice-covered wires with different thicknesses for wind-tunnel tests and obtains the influence of a series of parameters on the galloping vibration of transmission tower line systems. Full article
Show Figures

Figure 1

15 pages, 6118 KB  
Article
Wind Performance of New and Existing Continuous Beam Bridges During Construction Stages
by Fulin Yang, Xinmin Zhang, Zeen Xie and Jianming Hao
Buildings 2025, 15(5), 791; https://doi.org/10.3390/buildings15050791 - 28 Feb 2025
Cited by 1 | Viewed by 777
Abstract
This study assesses the wind resistance and vortex-induced vibration (VIV) risks of the Dongzhou River Bridge in China reconstruction during critical construction stages. Computational Fluid Dynamics (CFD) simulations analyzed wind effects when the twin main girders were maximally separated, revealing asymmetric vortex shedding [...] Read more.
This study assesses the wind resistance and vortex-induced vibration (VIV) risks of the Dongzhou River Bridge in China reconstruction during critical construction stages. Computational Fluid Dynamics (CFD) simulations analyzed wind effects when the twin main girders were maximally separated, revealing asymmetric vortex shedding patterns influenced by upstream–downstream aerodynamic interactions. The upstream girder’s wake generated complex flow fields, increasing turbulence on the downstream girder and indicating elevated VIV susceptibility. A 1:50 scale aeroelastic model validated these findings through wind tunnel tests, confirming that CFD-predicted critical VIV wind speeds aligned with experimental observations. Tests identified a distinct “jump-like” vibration mode at specific wind speeds (35–40 m/s full-scale equivalent), characterized by abrupt amplitude escalation rather than gradual growth—a signature of unstable VIV resonance. However, measured amplitudes remained below the 61.5 mm full-scale equivalent safety threshold, confirming that vibrations posed no critical risk. While aerodynamic coupling between girders requires monitoring during cantilever construction, the study concludes that existing control measures ensure safe construction and operation without structural modifications. These results provide actionable guidelines for wind risk mitigation through construction sequencing and real-time wind speed restrictions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 10230 KB  
Article
Wind-Induced Vibration Characteristics and Shading Effects of a Double-Layer Cable-Supported Photovoltaic Module System Based on Wind Tunnel Test
by Zhenkai Zhang, Zhiyu Xiao, Wenyong Ma and Xinyue Liu
Buildings 2025, 15(4), 550; https://doi.org/10.3390/buildings15040550 - 11 Feb 2025
Cited by 2 | Viewed by 920
Abstract
The double-layer (DL) cable-supported photovoltaic (PV) module system is an emerging type of structure that has garnered significant attention in recent years due to its large span, strong terrain adaptability, and economic advantages. As it is a flexible structure supported by cables, wind-induced [...] Read more.
The double-layer (DL) cable-supported photovoltaic (PV) module system is an emerging type of structure that has garnered significant attention in recent years due to its large span, strong terrain adaptability, and economic advantages. As it is a flexible structure supported by cables, wind-induced vibrations can lead to structural instability or even component damage, posing a serious threat to the safety of PV power plants. Determining the wind-induced vibration characteristics of the DL cable-supported PV module system is the foundation for ensuring its structural safety. In this study, based on wind tunnel tests performed on an aeroelastic model, a typical DL cable-supported PV module system used in a real engineering project was examined. The wind-induced displacement and torsional vibration characteristics of the model were compared and analyzed under different wind speeds. The shading effects of the PV array were also studied, and the impact of different wind angles and the initial tilt angles of PV modules on the wind-induced vibration characteristics was revealed. The results show that the greatest displacement vibration response occurs in the vertical direction; in comparison, displacements in other directions are smaller. Wind-induced torsional vibrations are negligible and can be ignored compared to displacement vibrations. The wind-induced vibration of the first row in the cable-supported PV array is significantly greater than that of the subsequent rows, and the shading effect is obvious. In the same row, the displacement vibration of modules at the center span is greater than at the sides. Different wind angles and initial PV module tilt angles affect the wind-induced vibration characteristics. When the wind direction is perpendicular to the cables and wind suction occurs, the wind-induced vibration is maximal. Within a limited range, the larger the initial tilt angle of the PV module, the greater the wind-induced vibration. Full article
(This article belongs to the Special Issue Recent Advances in Technology and Properties of Composite Materials)
Show Figures

Figure 1

17 pages, 2037 KB  
Article
Application of Deep Learning to Identify Flutter Flight Testing Signals Parameters and Analysis of Real F-18 Flutter Flight Test Data
by Sami Abou-Kebeh, Roberto Gil-Pita and Manuel Rosa-Zurera
Aerospace 2025, 12(1), 34; https://doi.org/10.3390/aerospace12010034 - 9 Jan 2025
Cited by 1 | Viewed by 931
Abstract
Aircraft envelope expansion during the installation of new underwing stores presents significant challenges, particularly due to the aeroelastic flutter phenomenon. Accurate modeling of aeroelastic behavior often necessitates flight testing, which poses risks due to the potential catastrophic consequences of reaching the flutter point. [...] Read more.
Aircraft envelope expansion during the installation of new underwing stores presents significant challenges, particularly due to the aeroelastic flutter phenomenon. Accurate modeling of aeroelastic behavior often necessitates flight testing, which poses risks due to the potential catastrophic consequences of reaching the flutter point. Traditional methods, like frequency sweeps, are effective but require prolonged exposure to flutter conditions, making them less suitable for transonic flight validations. This paper introduces a robust deep learning approach to process sine dwell signals from aeroelastic flutter flight tests, characterized by short data lengths (less than 5 s) and low frequencies (less than 10 Hz). We explore the preliminary viability of different deep learning networks and compare their performances to existing methods such as the PRESTO algorithm and Laplace Wavelet Matching Pursuit estimation. Deep learning algorithms demonstrate substantial accuracy and robustness, providing reliable parameter identification for flutter analysis while significantly reducing the time spent near flutter conditions. Although the results with the networks trained show less accuracy than the PRESTO algorithm, they are more accurate than the Laplace Wavelet estimation, and the results are promising enough to justify extended investigation on this area. This approach is validated using both synthetic data and real F-18 flight test signals, which highlights its potential for real-time analysis and broader applicability in aeroelastic testing. Full article
(This article belongs to the Special Issue Recent Advances in Flight Testing)
Show Figures

Figure 1

23 pages, 8949 KB  
Article
Optimized Design and Test of Geometrically Nonlinear Static Aeroelasticity Model for High-Speed High-Aspect-Ratio Wing
by Xing Li, Wei Qian, Ling Xiao, Xinyu Ai and Jun Liu
Aerospace 2024, 11(12), 1015; https://doi.org/10.3390/aerospace11121015 - 10 Dec 2024
Cited by 1 | Viewed by 927
Abstract
Large transport aircraft tend to adopt a wing layout with a high aspect ratio and swept-back angle due to the requirement of a high lift-to-drag ratio. Composite material is typically employed to ensure the light weight of the structure, causing serious static aeroelasticity [...] Read more.
Large transport aircraft tend to adopt a wing layout with a high aspect ratio and swept-back angle due to the requirement of a high lift-to-drag ratio. Composite material is typically employed to ensure the light weight of the structure, causing serious static aeroelasticity problems to the aircraft. When the airplane is flying in the transonic region, its aerodynamic load is very complex, and the large load leads to large deformation of the wing, triggering geometric nonlinear effects, which further affects the static aerodynamic elasticity characteristics of the wing. In this study, in order to study the static aeroelastic characteristics of the transonic flow of a high-aspect-ratio airfoil, a new design method of the scaled similar optimization model is described, and the change in the model lift coefficient due to geometrically nonlinear static aeroelasticity effects when the angle of attack is changed was investigated by using simulation and wind tunnel test methods. In order to ensure the accuracy of the wing shape when the model was deformed greatly, this study employed the structural design scheme of the wing with the skin as the main stiffness component, and the thicknesses of different regions of the skin were used as the design variables for the stiffness optimization design. The engineering algorithm of nonlinear finite elements was used in this study to calculate the curve of lift with the angle of attack considering the geometric nonlinear static aeroelasticity effect. The results show that the similarity optimization process employed in this study can be used to complete the design of the high-speed aerostatic wing test model, and the wind tunnel test results show that geometric nonlinearity has a large impact on the lift coefficient of the wing. Full article
(This article belongs to the Special Issue Aircraft Design and System Optimization)
Show Figures

Figure 1

25 pages, 5517 KB  
Article
Gust Response and Alleviation of Avian-Inspired In-Plane Folding Wings
by Haibo Zhang, Haolin Yang, Yongjian Yang, Chen Song and Chao Yang
Biomimetics 2024, 9(10), 641; https://doi.org/10.3390/biomimetics9100641 - 18 Oct 2024
Viewed by 1420
Abstract
The in-plane folding wing is one of the important research directions in the field of morphing or bionic aircraft, showing the unique application value of enhancing aircraft maneuverability and gust resistance. This article provides a structural realization of an in-plane folding wing and [...] Read more.
The in-plane folding wing is one of the important research directions in the field of morphing or bionic aircraft, showing the unique application value of enhancing aircraft maneuverability and gust resistance. This article provides a structural realization of an in-plane folding wing and an aeroelasticity modeling method for the folding process of the wing. By approximating the change in structural properties in each time step, a method for calculating the structural transient response expressed in recursive form is obtained. On this basis, an aeroelasticity model of the wing is developed by coupling with the aerodynamic model using the unsteady panel/viscous vortex particle hybrid method. A wind-tunnel test is implemented to demonstrate the controllable morphing capability of the wing under aerodynamic loads and to validate the reliability of the wing loads predicted by the method in this paper. The results of the gust simulation show that the gust scale has a significant effect on the response of both the open- and closed-loop systems. When the gust alleviation controller is enabled, the peak bending moment at the wing root can be reduced by 5.5%∼47.3% according to different gust scales. Full article
Show Figures

Figure 1

15 pages, 18216 KB  
Article
A Study on Post-Flutter Characteristics of a Large-Span Double-Deck Steel Truss Main Girder Suspension Bridge
by Chunguang Li, Minhao Zou, Kai Li, Yan Han, Hubin Yan and Chunsheng Cai
Buildings 2024, 14(10), 3206; https://doi.org/10.3390/buildings14103206 - 9 Oct 2024
Cited by 3 | Viewed by 1543
Abstract
To investigate the nonlinear flutter characteristics of long-span suspension bridges under different deck ancillary structures and configurations, including those with and without a central wind-permeable zone, as well as to analyze the hysteresis phenomenon of a subcritical flutter and elucidate the mechanisms leading [...] Read more.
To investigate the nonlinear flutter characteristics of long-span suspension bridges under different deck ancillary structures and configurations, including those with and without a central wind-permeable zone, as well as to analyze the hysteresis phenomenon of a subcritical flutter and elucidate the mechanisms leading to the occurrence of nonlinear flutter, this paper studies first the post-flutter characteristics of the torsion single-degree-of-freedom (SDOF) test systems and vertical bending–torsion two-degree-of-freedom (2DOF) test systems under different aerodynamic shape conditions are further analyzed, and the role of the vertical vibration in coupled nonlinear flutter is discussed. The results indicate that better flutter performance is achieved in the absence of bridge deck auxiliary structures with a central wind-permeable zone. The participation of vertical vibrations in the post-flutter vibration increases with the increase in wind speed, reducing the flutter performance of the main girder. Furthermore, the hysteresis phenomenon in the subcritical flutter state is observed in the wind tunnel experiment, and its evolution law and mechanism are discussed from the perspective of amplitude-dependent damping. Finally, the vibration-generating mechanism of the limit oscillation ring is elaborated in terms of the evolution law of the post-flutter vibration damping. Full article
(This article belongs to the Special Issue Wind Load Effects on High-Rise and Long-Span Structures: 2nd Edition)
Show Figures

Figure 1

12 pages, 6000 KB  
Article
Development and Design Validation of an Inflow-Settling Chamber for Turbomachinery Test-Benches
by Michael Henke, Stefan Gärling, Lena Junge, Lars Wein and Hans-Ulrich Fleige
Int. J. Turbomach. Propuls. Power 2024, 9(4), 31; https://doi.org/10.3390/ijtpp9040031 - 24 Sep 2024
Viewed by 1443
Abstract
At Leibniz University of Hannover, Germany, a new turbomachinery test facility has been built over the last few years. A major part of this facility is a new 6 MW compressor station, which is connected to a large piping system, both designed and [...] Read more.
At Leibniz University of Hannover, Germany, a new turbomachinery test facility has been built over the last few years. A major part of this facility is a new 6 MW compressor station, which is connected to a large piping system, both designed and built by AERZEN. This system provides air supply to several wind tunnel and turbomachinery test rigs, e.g., axial turbines and axial compressors. These test rigs are designed to conduct high-quality aerodynamic, aeroelastic, and aeroacoustic measurements to increase physical understanding of steady and unsteady effects in turbomachines. One primary purpose of these investigations is the validation of aerodynamic and aeroacoustic numerical methods. To provide precise boundary conditions for the validation process, extremely high homogeneity of the inflow to the investigated experimental setup is imminent. Thus, customized settling chambers have been developed using analytical and numerical design methods. The authors have chosen to follow basic aerodynamic design steps, using analytical assumptions for the inlet section, the “mixing” area of a settling chamber, and the outlet nozzle in combination with state-of-the-art numerical investigations. In early 2020, the first settling chamber was brought into operation for the acceptance tests. In order to collect high-resolution flow field data during the tests, Leibniz University and AERZEN have designed a unique measurement device for robust and fast in-line flow field measurements. For this measurement device, total pressure and total-temperature rake probes, as well as traversing multi-hole probes, have been used in combination to receive high-resolution flow field data at the outlet section of the settling chamber. The paper provides information about the design process of the settling chamber, the developed measurement device, and measurement data gained from the acceptance tests. Full article
Show Figures

Figure 1

Back to TopTop