Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,392)

Search Parameters:
Keywords = aerodynamic modeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1471 KB  
Article
Midcourse Guidance via Variable-Discrete-Scale Sequential Convex Programming
by Jinlin Zhang, Jiong Li, Lei Shao, Jikun Ye and Yangchao He
Aerospace 2025, 12(11), 952; https://doi.org/10.3390/aerospace12110952 (registering DOI) - 24 Oct 2025
Abstract
To address the challenges of strong nonlinearity, stringent terminal constraints, and the trade-off between computational efficiency and accuracy in the midcourse guidance trajectory optimization problem of aerodynamically controlled interceptors, this paper proposes a variable-discrete-scale sequential convex programming (SCP) method. Firstly, a dynamic model [...] Read more.
To address the challenges of strong nonlinearity, stringent terminal constraints, and the trade-off between computational efficiency and accuracy in the midcourse guidance trajectory optimization problem of aerodynamically controlled interceptors, this paper proposes a variable-discrete-scale sequential convex programming (SCP) method. Firstly, a dynamic model is established by introducing the range domain to replace the traditional time domain, thereby reducing the approximation error of the planned trajectory. Second, to overcome the critical issues of solution space restriction and trajectory divergence caused by terminal equality constraints, a terminal error-proportional relaxation approach is proposed. Subsequently, an improved second-order cone programming (SOCP) formulation is developed through systematic integration of three key techniques: terminal error-proportional relaxation, variable trust region, and path normalization. Finally, an initial trajectory generation algorithm is proposed, upon which a variable-discrete-scale optimization framework is constructed. This framework incorporates a residual-driven discrete-scale adaptation mechanism, which balances discretization errors and computational load. Numerical simulation results indicate that under large discretization scales, the computation time required by the improved SOCP is only about 5.4% of that of GPOPS-II. For small-discretization-scale optimization, the SCP method with the variable discretization framework demonstrates high efficiency, achieving comparable accuracy to GPOPS-II while reducing the computation time to approximately 7.4% of that required by GPOPS-II. Full article
(This article belongs to the Special Issue New Perspective on Flight Guidance, Control and Dynamics)
24 pages, 3190 KB  
Article
Experimental Study on the Effects of Sideslip and Rudder Deflection Angles on the Aerodynamics of an Aircraft Vertical Tail at Low Speeds
by Arash Shams Taleghani, Saeid Yektaei, Vahid Esfahanian and Soheila Abdolahipour
Fluids 2025, 10(11), 277; https://doi.org/10.3390/fluids10110277 - 23 Oct 2025
Abstract
The vertical tail plays a crucial role in aircraft directional stability and lateral control, especially during low-speed operations such as takeoff and landing. This study examines the effect of aircraft mass on vertical tail geometry through a statistical analysis of 65 design parameters [...] Read more.
The vertical tail plays a crucial role in aircraft directional stability and lateral control, especially during low-speed operations such as takeoff and landing. This study examines the effect of aircraft mass on vertical tail geometry through a statistical analysis of 65 design parameters from civil jet aircraft. Aerodynamic performance of a sub-scale Boeing 777-200 vertical tail model was further investigated in a low-speed wind tunnel under rudder deflections and sideslip angles. Experiments were conducted at freestream speeds of 20 and 30 m/s, corresponding to Reynolds numbers of 5 × 105 and 7.5 × 105, with model blockage ratios below 2% in all configurations. Side force and drag coefficients were measured for rudder deflections from −30° to +30° and sideslip angles from −7.5° to +7.5°. Results show a nearly linear variation of side force with rudder deflection, while drag exhibits noticeable nonlinearity at higher deflections. At zero sideslip, increasing rudder deflection from 0° to 30° raised the side force coefficient from 0 to 0.65, with a maximum uncertainty of ±0.011, while drag coefficient uncertainty remained below ±0.0055. Furthermore, the application of positive or negative sideslip resulted in substantial variations in the side force coefficient, reaching values of up to ±1.1 depending on the direction. By integrating experimental data with statistical analysis of real aircraft geometries, this study provides reliable quantitative benchmarks and highlights the vertical tail’s aerodynamic importance. Full article
Show Figures

Figure 1

28 pages, 6562 KB  
Article
Advancing Bridge Aerodynamics: Open-Jet Testing, Reynolds Number Effects, and Sustainable Mitigation Through Green Energy Integration
by Aly Mousaad Aly and Hannah DiLeo
Wind 2025, 5(4), 27; https://doi.org/10.3390/wind5040027 - 21 Oct 2025
Viewed by 140
Abstract
Bridges, as critical transportation infrastructure, are highly vulnerable to aerodynamic forces, particularly vortex-induced vibrations (VIV), which severely compromise their structural integrity and operational safety. These low-frequency, high-amplitude vibrations are a primary challenge to serviceability and fatigue life. Ensuring the resilience of these structures [...] Read more.
Bridges, as critical transportation infrastructure, are highly vulnerable to aerodynamic forces, particularly vortex-induced vibrations (VIV), which severely compromise their structural integrity and operational safety. These low-frequency, high-amplitude vibrations are a primary challenge to serviceability and fatigue life. Ensuring the resilience of these structures demands advanced understanding and robust mitigation strategies. This paper comprehensively addresses the multifaceted challenges of bridge aerodynamics, presenting an in-depth analysis of contemporary testing methodologies and innovative solutions. We critically examine traditional wind tunnel modeling, elucidating its advantages and inherent limitations, such as scale effects, Reynolds number dependence, and boundary interference, which can lead to inaccurate predictions of aerodynamic forces and vibration amplitudes. This scale discrepancy is critical, as demonstrated by peak pressure coefficients being underestimated by up to 64% in smaller-scale wind tunnel environments compared to high-Reynolds-number open-jet testing. To overcome these challenges, the paper details the efficacy of open-jet testing at facilities like the Windstorm Impact, Science, and Engineering (WISE) Laboratory, demonstrating its superior capability in replicating realistic atmospheric boundary layer flow conditions and enabling larger-scale, high-Reynolds-number testing for more accurate insights into bridge behavior under dynamic wind loads. Furthermore, we explore the design principles and applications of various aerodynamic mitigation devices, including handrails, windshields, guide vanes, and spoilers, which are essential for altering airflow patterns and suppressing vortex-induced vibrations. The paper critically investigates the innovative integration of green energy solutions, specifically solar panels, with bridge structures. This study presents the application of solar panel arrangements to provide both renewable energy production and verifiable aerodynamic mitigation. This strategic incorporation is shown not only to harness renewable energy but also to actively improve aerodynamic performance and mitigate wind-induced vibrations, thereby fostering both bridge safety and sustainable infrastructure development. Unlike previous studies focusing primarily on wind loads on PV arrays, this work demonstrates how the specific geometric integration of solar panels can serve as an active aerodynamic mitigation device for bridge decks. This dual functionality—harnessing renewable energy while simultaneously serving as a passive geometric countermeasure to vortex-induced vibrations—marks a novel advancement over single-purpose mitigation technologies. Through this interdisciplinary approach, the paper seeks to advance bridge engineering towards more resilient, efficient, and environmentally responsible solutions. Full article
Show Figures

Figure 1

21 pages, 7039 KB  
Article
Optimizing Film Cooling Hole Arrangement Along Conjugate Isotherms on Turbine Vanes: A Combined Numerical and Experimental Investigation
by Zhengyu Shi, Changxin Liu, Yuhao Jia, Xing He, Ge Xia and Yongbao Liu
Processes 2025, 13(10), 3344; https://doi.org/10.3390/pr13103344 - 18 Oct 2025
Viewed by 203
Abstract
This study introduces a method for positioning film holes guided by conjugate isotherms. The aerodynamic performance exhibited by the turbine blade was evaluated, and the cooling effectiveness of various film hole configurations were systematically compared through combined numerical simulations and cascade wind tunnel [...] Read more.
This study introduces a method for positioning film holes guided by conjugate isotherms. The aerodynamic performance exhibited by the turbine blade was evaluated, and the cooling effectiveness of various film hole configurations were systematically compared through combined numerical simulations and cascade wind tunnel experiments. Key influencing factors were investigated, and the underlying flow field structures and optimization mechanisms were elucidated. Numerical models reliably captured the aerodynamic and heat transfer characteristics, including pressure distribution and overall cooling effectiveness trends. Elevating the mass flow rate ratio was shown to enhance the overall cooling effectiveness across the blade surface. Modifications in film hole layout altered the cooling effectiveness along the blade region downstream of the holes and influenced cooling behavior in non-perforated areas near the endwall. While mid-blade cooling effectiveness showed minimal variation between Hole pattern #1 and #2, the latter exhibited superior overall cooling effectiveness at both the leading and trailing edges. Moreover, Hole pattern #2 diminished the temperature gradient between the suction and pressure sides, thereby augmenting blade structural integrity. Furthermore, Hole pattern #2 promoted a more even distribution of cooling effectiveness over the blade surface, leading to improved thermal protection. Therefore, strategic arrangement of film holes along conjugate isotherms serves as a vital approach for increasing gas turbine efficiency. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

28 pages, 4794 KB  
Article
Aircraft Propeller Design Technology Based on CST Parameterization, Deep Learning Models, and Genetic Algorithm
by Evgenii I. Kurkin, Jose Gabriel Quijada Pioquinto, Oleg E. Lukyanov, Vladislava O. Chertykovtseva and Artem V. Nikonorov
Technologies 2025, 13(10), 469; https://doi.org/10.3390/technologies13100469 - 16 Oct 2025
Viewed by 248
Abstract
This article presents aircraft propeller optimal design technology; including an algorithm and OpenVINT 5 code. To achieve greater geometric flexibility, the proposed technique implements Class-Shape Transformation (CST) parameterization combined with Bézier curves, replacing the previous fully Bézier-based system. Performance improvements in the optimization [...] Read more.
This article presents aircraft propeller optimal design technology; including an algorithm and OpenVINT 5 code. To achieve greater geometric flexibility, the proposed technique implements Class-Shape Transformation (CST) parameterization combined with Bézier curves, replacing the previous fully Bézier-based system. Performance improvements in the optimization process are accomplished through deep learning models and a genetic algorithm, which substitute XFOIL and Differential Evolution-based approaches, respectively. The scientific novelty of the article lies in the application of a neural network to predict the aerodynamic characteristics of profiles in the form of contour diagrams, rather than scalar values, which execute the neural network repeatedly per ISM algorithm iteration and speed up the design time of propeller blades by 32 times as much. A propeller for an aircraft-type UAV was designed using the proposed methodology and OpenVINT 5. A comparison was made with the results to solve a similar problem using numerical mathematical models and experimental studies in a wind tunnel. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

15 pages, 3566 KB  
Article
Passive Control of Boundary-Layer Separation on a Wind Turbine Blade Using Varying-Parameter Flow Deflector
by Xin Chen, Jiaqian Qiu, Junwei Zhong, Chaolei Zhang and Yufeng Gan
Fluids 2025, 10(10), 270; https://doi.org/10.3390/fluids10100270 - 16 Oct 2025
Viewed by 141
Abstract
Horizontal-axis wind turbines are widely used for wind energy harvesting, but they often encounter flow separation near the blade root, leading to power loss and structural fatigue. A varying-parameter flow deflector (FD) is proposed as a passive flow control method. The FD adopts [...] Read more.
Horizontal-axis wind turbines are widely used for wind energy harvesting, but they often encounter flow separation near the blade root, leading to power loss and structural fatigue. A varying-parameter flow deflector (FD) is proposed as a passive flow control method. The FD adopts varying parameters along the blade spanwise direction to match the varying local angle of attack. Numerical simulation using the transition SST k-ω turbulence model combined with the response-surface methodology are used to investigate the effect of the varying-parameter FD on the flow structure and aerodynamic performance of the NREL Phase VI wind turbine. The results indicate that optimal performance can be achieved when the normal position of the FD increases from the blade root to the tip, and the install angle of the FD should be greater than 62° at blade section of r/R = 63.1%. Furthermore, response-surface methodology was employed to optimize the deflector parameters, with analysis of variance revealing the relative significance of geometric factors (l1 > l2 > θ1 > θ2). Compared with the original blade, the shaft torque of the controlled blade with the optimal FD is improved by 24.7% at 10 m/s. Full article
(This article belongs to the Special Issue Industrial CFD and Fluid Modelling in Engineering, 3rd Edition)
Show Figures

Figure 1

28 pages, 8901 KB  
Article
Aerodynamic Performance of a Natural Laminar Flow Swept-Back Wing for Low-Speed UAVs Under Take Off/Landing Flight Conditions and Atmospheric Turbulence
by Nikolaos K. Lampropoulos, Ioannis E. Sarris, Spyridon Antoniou, Odysseas Ziogas, Pericles Panagiotou and Kyros Yakinthos
Aerospace 2025, 12(10), 934; https://doi.org/10.3390/aerospace12100934 - 16 Oct 2025
Viewed by 168
Abstract
The topic of the present study is the aerodynamic performance of a Natural Laminar Flow (NLF) wing for UAVs at low speed. The basis is a thoroughly tested NLF airfoil in the wind tunnel of NASA which is well-customized for light aircrafts. The [...] Read more.
The topic of the present study is the aerodynamic performance of a Natural Laminar Flow (NLF) wing for UAVs at low speed. The basis is a thoroughly tested NLF airfoil in the wind tunnel of NASA which is well-customized for light aircrafts. The aim of this work is the numerical verification that a typical wing design (tapered with moderate aspect ratio and wash-out), being constructed out of aerodynamically highly efficient NLF airfoils during cruise, can deliver high aerodynamic loading under minimal freestream turbulence as well as realistic atmospheric conditions of intermediate turbulence. Thus, high mission flexibility is achieved, e.g., short take off/landing capabilities on the deck of ship where moderate air turbulence is prevalent. Special attention is paid to the effect of the Wing Tip Vortex (WTV) under minimal inflow turbulence regimes. The flight conditions are take off or landing at moderate Reynolds number, i.e., one to two millions. The numerical simulation is based on an open source CFD code and parallel processing on a High Performance Computing (HPC) platform. The aim is the identification of both mean flow and turbulent structures around the wing and subsequently the formation of the wing tip vortex. Due to the purely three-dimensional character of the flow, the turbulence is resolved with advanced modeling, i.e., the Improved Delayed Detached Eddy Simulation (IDDES) which is well-customized to switch modes between Delayed Detached Eddy Simulation (DDES) and Wall-Modeled Large Eddy Simulation (WMLES), thus increasing the accuracy in the shear layer regions, the tip vortex and the wake, while at the same time keeping the computational cost at reasonable levels. IDDES also has the capability to resolve the transition of the boundary layer from laminar to turbulent, at least with engineering accuracy; thus, it serves as a high-fidelity turbulence model in this work. The study comprises an initial benchmarking of the code against wind tunnel measurements of the airfoil and verifies the adequacy of mesh density that is used for the simulation around the wing. Subsequently, the wing is positioned at near-stall conditions so that the aerodynamic loading, the kinematics of the flow and the turbulence regime in the wing vicinity, the wake and far downstream can be estimated. In terms of the kinematics of the WTV, a thorough examination is attempted which comprises its inception, i.e., the detachment of the boundary layer on the cut-off wing tip, the roll-up of the shear layer to form the wake and the motion of the wake downstream. Moreover, the effect of inflow turbulence of moderate intensity is investigated that verifies the bibliography with regard to the performance degradation of static airfoils in a turbulent atmospheric regime. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

24 pages, 4333 KB  
Article
Development of Co-Amorphous Systems for Inhalation Therapy—Part 2: In Silico Guided Co-Amorphous Rifampicin–Moxifloxacin and –Ethambutol Formulations
by Eleonore Fröhlich, Noon Sharafeldin, Valerie Reinisch, Nila Mohsenzada, Stefan Mitsche, Hartmuth Schröttner and Sarah Zellnitz-Neugebauer
Pharmaceutics 2025, 17(10), 1339; https://doi.org/10.3390/pharmaceutics17101339 - 16 Oct 2025
Viewed by 267
Abstract
Background/Objectives: Tuberculosis (TB) remains a global health challenge due to long treatment durations, poor adherence, and growing drug resistance. Inhalable co-amorphous systems (COAMS) offer a promising strategy for targeted pulmonary delivery of fixed-dose combinations, improving efficacy and reducing systemic side effects. Methods: [...] Read more.
Background/Objectives: Tuberculosis (TB) remains a global health challenge due to long treatment durations, poor adherence, and growing drug resistance. Inhalable co-amorphous systems (COAMS) offer a promising strategy for targeted pulmonary delivery of fixed-dose combinations, improving efficacy and reducing systemic side effects. Methods: Our in-house-developed machine learning (ML) tool identified two promising API-API combinations for TB therapy, rifampicin (RIF)–moxifloxacin (MOX) and RIF–ethambutol (ETH). Physiologically based pharmacokinetic (PBPK) modeling was used to estimate therapeutic lung doses of RIF, ETH, and MOX following oral administration. Predicted lung doses were translated into molar ratios, and COAMS of RIF-ETH and RIF-MOX at both model-predicted (1:1) and PBPK-informed ratios were prepared by spray drying and co-milling, followed by comprehensive physicochemical and aerodynamic characterization. Results: RIF-MOX COAMS could be prepared in all molar ratios tested, whereas RIF-ETH failed to result in COAMS for therapeutically relevant molar ratios. Spray drying and ball milling successfully produced stable RIF-MOX formulations, with spray drying showing superior behavior in terms of morphology (narrow particle size distribution; lower Sauter mean diameter), aerosolization performance (fine particle fraction above 74% for RIF and MOX), and dissolution. Conclusions: This study demonstrated that PBPK modeling and ML are useful tools to develop COAMS for pulmonary delivery of active pharmaceutical ingredients (APIs) routinely applied through the oral route. It was also observed that COAMS may be less effective when the therapeutic lung dose ratio significantly deviates from the predicted 1:1 molar ratio. This suggests the need for alternative delivery strategies in such cases. Full article
(This article belongs to the Special Issue New Platform for Tuberculosis Treatment)
Show Figures

Graphical abstract

19 pages, 2211 KB  
Article
Design and Implementation of Decoupling Controllers for Vertical Suspension System of Magnetic Suspension and Balance System
by Xu Zhou, Wentao Xia, Fengshan Dou and Zhiqiang Long
Actuators 2025, 14(10), 501; https://doi.org/10.3390/act14100501 - 16 Oct 2025
Viewed by 203
Abstract
The Magnetic Suspension Balance System (MSBS) serves as a core apparatus for interference-free aerodynamic testing in wind tunnels, where its high-precision levitation control performance directly determines the reliability of aerodynamic force measurements. This paper addresses the strong coupling issues induced by rigid-body motion [...] Read more.
The Magnetic Suspension Balance System (MSBS) serves as a core apparatus for interference-free aerodynamic testing in wind tunnels, where its high-precision levitation control performance directly determines the reliability of aerodynamic force measurements. This paper addresses the strong coupling issues induced by rigid-body motion in the MSBS vertical suspension system and proposes a decoupling control framework integrating classical decoupling methods with geometric feature transformation. First, a nonlinear dynamic model of the six-degree-of-freedom MSBS is established. Through linearization analysis of the vertical suspension system, the intrinsic mechanism of displacement-pitch coupling is revealed. Building upon this foundation, a state feedback decoupling controller is designed to achieve decoupling among dynamic channels. Simulation results demonstrate favorable control performance under ideal linear conditions. To further overcome its dependency on model parameters, a decoupling strategy based on geometric feature transformation is proposed, which significantly enhances system robustness in nonlinear operating conditions through state-space reconstruction. Finally, the effectiveness of the proposed method in vertical suspension control is validated through both numerical simulations and a physical MSBS experimental platform. Full article
(This article belongs to the Special Issue Advanced Theory and Application of Magnetic Actuators—3rd Edition)
Show Figures

Figure 1

16 pages, 1850 KB  
Article
Rapid Optimal Matching Design of Heterogeneous Propeller Propulsion Systems for High-Altitude Unmanned Airships
by Miao Zhang, Xiangyu Wang, Zhiwei Zhang, Bo Wang, Junjie Cheng and Jian Zhang
Drones 2025, 9(10), 718; https://doi.org/10.3390/drones9100718 - 16 Oct 2025
Viewed by 236
Abstract
In order to enhance the wind-resistance capability and achieve a lightweight design of high-altitude unmanned airships, this study proposes a rapid optimization method for a heterogeneous propeller propulsion system. This system integrates contra-rotating and ducted propellers to exploit their respective aerodynamic advantages. First, [...] Read more.
In order to enhance the wind-resistance capability and achieve a lightweight design of high-altitude unmanned airships, this study proposes a rapid optimization method for a heterogeneous propeller propulsion system. This system integrates contra-rotating and ducted propellers to exploit their respective aerodynamic advantages. First, surrogate models of the contra-rotating propeller, contra-rotating motor, ducted propeller, and ducted motor were constructed using an optimal Latin hypercube sampling method based on the max–min criterion. Then, within the optimization framework, propeller–motor matching principles and energy balance constraints were incorporated to minimize the total weight of the propulsion and energy systems. A case study on a conventional high-altitude unmanned airship demonstrates that, under the same wind-resistance capability, the adoption of the heterogeneous propeller electric propulsion system reduces the total propulsion-and-energy system weight by 24.94%. This method integrates the advantages of contra-rotating and ducted propellers, thereby overcoming the limitations of conventional propulsion architectures. It provides a new approach for designing lightweight, efficient, and long-endurance propulsion systems for near-space high-altitude platforms. Full article
(This article belongs to the Special Issue Design and Flight Control of Low-Speed Near-Space Unmanned Systems)
Show Figures

Figure 1

21 pages, 5782 KB  
Article
Sand Ingestion Behavior of Helicopter Engines During Hover in Ground Effect
by Qiang Li, Linghua Dong, Changxin Song and Weidong Yang
Aerospace 2025, 12(10), 927; https://doi.org/10.3390/aerospace12100927 - 15 Oct 2025
Viewed by 251
Abstract
Sand ingestion exerts significant effects on the performance of helicopter engines, and it is imperative to investigate this phenomenon. In this study, the mechanisms of engine sand ingestion during helicopter hover in ground effect are analyzed. Firstly, a coupled computational model is established [...] Read more.
Sand ingestion exerts significant effects on the performance of helicopter engines, and it is imperative to investigate this phenomenon. In this study, the mechanisms of engine sand ingestion during helicopter hover in ground effect are analyzed. Firstly, a coupled computational model is established based on computational fluid dynamics (CFD) and the discrete element method (DEM). The aerodynamic calculation accuracy of this model is validated by comparing the pressure coefficient and tip vortex with wind tunnel test results. Subsequently, based on this method, a systematic simulation is carried out to investigate the flow field dynamics and sand cloud distribution for the helicopter at different ground-effect heights (GEHs, h). Simulation results indicate that helicopter engines can potentially directly ingest sand particles from the ground at low GEHs. When h > 2R (where R is the rotor radius), the height of sand clouds is insufficient for helicopter engines to ingest sand. Finally, guided by the simulation conclusions, a rotor test bench is designed to conduct research on sand ingestion by helicopter engines. It aims to further study how GEH and engine intake flowrate (Q) affect sand ingestion amount and distribution across the inlet cross-section. Experimental results demonstrate that the sand ingestion amount exhibits a nonlinear decreasing trend with the increasing GEH and a positive correlation with Q. At h = 0.5R, the engine directly ingests sand particles from the ground sand field, leading to a significant increase in sand ingestion. The increase reaches 11 times that at other GEHs. For the right-handed rotor in this study, the sand ingestion of the right engine is significantly higher than that of the left engine. Furthermore, for the cross-sectional position of the engine inlet in this study, over 60% of sand particles are ingested through the upper region. The research can provide scientific guidance for the design of particle separators and is of great significance for helicopter engine sand prevention. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

9 pages, 2371 KB  
Proceeding Paper
Advanced Tolerance Optimization for Freeform Geometries Using Particle Swarm Optimization: A Case Study on Aeronautical Turbine Blades
by Oubrek Mohamed, Bellat Abdelouahad, Salih Abdelouahab and Jalid Abdelilah
Eng. Proc. 2025, 112(1), 20; https://doi.org/10.3390/engproc2025112020 - 14 Oct 2025
Viewed by 181
Abstract
This study introduces a novel approach to optimizing geometric tolerances on freeform surfaces, specifically turbine blades, by leveraging a global tolerance framework. Unlike traditional methods that rely on multiple local tolerances, this research proposes a unified model to streamline design complexity while maintaining [...] Read more.
This study introduces a novel approach to optimizing geometric tolerances on freeform surfaces, specifically turbine blades, by leveraging a global tolerance framework. Unlike traditional methods that rely on multiple local tolerances, this research proposes a unified model to streamline design complexity while maintaining functional integrity and cost efficiency. A turbine blade, reconstructed from 3D-scanned point cloud data, serves as the basis for this investigation. The reconstructed geometry was analyzed to define deviation distributions, followed by the application of a global tolerance model. Using genetic algorithms, the tolerances were optimized to balance manufacturing costs and performance penalties. Results demonstrate a substantial simplification in quality control processes, with a reduction in manufacturing costs by up to 20%, while preserving aerodynamic and structural performance. The study highlights the potential of global tolerance strategies to transform tolerance allocation in industries such as aerospace and energy, where freeform surfaces are prevalent. The integration of optimization techniques and advanced surface analysis offers a forward-looking perspective on enhancing manufacturing precision and efficiency. Full article
Show Figures

Figure 1

12 pages, 1854 KB  
Article
Flow Stabilization and Velocity Uniformity in a Göttingen-Type Closed-Circuit Subsonic Wind Tunnel with an Expanded Test Section
by Justas Šereika, Paulius Vilkinis, Agnė Bertašienė and Edgaras Misiulis
Appl. Sci. 2025, 15(20), 11021; https://doi.org/10.3390/app152011021 - 14 Oct 2025
Viewed by 210
Abstract
Flow stabilization and velocity uniformity in a Göttingen-type closed-circuit subsonic aerodynamic wind tunnel with an expanded test section are investigated in this study. Both experimental and numerical approaches were employed. The experiments were performed by using Laser Doppler Anemometry, Pitot tubes, and thermal [...] Read more.
Flow stabilization and velocity uniformity in a Göttingen-type closed-circuit subsonic aerodynamic wind tunnel with an expanded test section are investigated in this study. Both experimental and numerical approaches were employed. The experiments were performed by using Laser Doppler Anemometry, Pitot tubes, and thermal anemometry. For numerical simulations, Reynolds-averaged Navier–Stokes simulations with a standard k-ε turbulence model were employed to evaluate flow characteristics in the velocity range of 0.05–20 m/s. The study shows that a properly contoured contraction nozzle suppresses inlet turbulence and ensures stable Reynolds-independent core flow. The contraction nozzle significantly accelerates and redistributes the flow, allowing rapid hydrodynamic stabilization and ensuring velocity measurements with high repeatability. These characteristics are inherent in a benchmark facility. Additionally, the study shows that the outlet-to-inlet diameter has the most prominent role in longitudinal velocity distribution in the test section. An optimal ratio of 1.10 was identified, stabilizing the pressure distribution and providing the most uniform longitudinal velocity profile. These findings offer geometry-dependent design guidelines for achieving high-quality measurements in Göttingen-type wind tunnels with expanded test sections and support accurate velocity measurement instrument calibration and aerodynamic testing. Full article
Show Figures

Figure 1

22 pages, 6581 KB  
Article
Near-Field Aerodynamic Noise of Subway Trains: Comparative Mechanisms in Open Tracks vs. Confined Tunnels
by Xiao-Ming Tan, Zi-Xi Long, Cun-Rui Xiang, Xiao-Hong Zhang, Bao-Jun Fu, Xu-Long He and Yuan-Sheng Chen
Symmetry 2025, 17(10), 1724; https://doi.org/10.3390/sym17101724 - 13 Oct 2025
Viewed by 166
Abstract
As the operational speeds of subway trains in China incrementally increase to 160 km/h, the enclosed nature of tunnel environments poses significant challenges by restricting free airflow. This limitation leads to intense airflow disturbances and turbulence phenomena within tunnels, consequently exacerbating aerodynamic noise [...] Read more.
As the operational speeds of subway trains in China incrementally increase to 160 km/h, the enclosed nature of tunnel environments poses significant challenges by restricting free airflow. This limitation leads to intense airflow disturbances and turbulence phenomena within tunnels, consequently exacerbating aerodynamic noise issues. This study utilizes compressible Large Eddy Simulation (LES) and acoustic finite element methods to construct a computational model of aerodynamic noise for subway trains within tunnels. It employs this model to compare and analyze the near-field noise characteristics of subway trains traveling at 120 km/h on open tracks versus in infinitely long tunnels. The findings indicate that the distribution of sound pressure levels on the surfaces of trains within tunnels is comparatively uniform, overall being 15 dB higher than those on open tracks. The presence of a high blockage ratio in tunnels intensifies the cavity flow between two air conditioning units, making it the region with the highest sound pressure level. The surface sound pressure spectrum within the tunnel shows greater similarity across different segments, with low-frequency sound pressure levels notably enhanced and high-frequency levels attenuating more rapidly compared to open tracks. It is recommended that in tunnels with high blockage ratios, the positioning of subway train air conditioning should not be too high, overly concentrated, submerged, or without the use of sound-absorbing materials. Such adjustments can effectively reduce the sound pressure levels in these areas, thereby enhancing the acoustic performance of the train within the tunnel. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

19 pages, 6709 KB  
Article
Experimental and Dynamic Modeling of a Variable-Pitch VAWT Using a Neural Network and the DMST Model
by Luz M. Sanchez-Rivera, Jorge Díaz-Salgado, Oliver M. Huerta-Chávez and Jesús García-Barrera
Appl. Sci. 2025, 15(20), 10989; https://doi.org/10.3390/app152010989 - 13 Oct 2025
Viewed by 216
Abstract
The mathematical modeling and experimental validation of a non-conventional vertical-axis wind turbine (VAWT) with a variable-pitch angle are presented, employing the Double-Multiple Streamtube (DMST) method to simulate aerodynamic performance. The aerodynamic coefficients required by the model are obtained through a data-driven approach using [...] Read more.
The mathematical modeling and experimental validation of a non-conventional vertical-axis wind turbine (VAWT) with a variable-pitch angle are presented, employing the Double-Multiple Streamtube (DMST) method to simulate aerodynamic performance. The aerodynamic coefficients required by the model are obtained through a data-driven approach using a multi-input, two-output multilayer perceptron artificial neural network (MLP–ANN). The model is validated through numerical simulations under two distinct wind input profiles. An experimental evaluation with a prototype replicates the step input. It shows strong agreement with the simulations, particularly in the angular velocity response, which fluctuates between 35 and 55 RPM, with an average value in the range of 40–45 RPM. This hybrid methodology enhances the modeling fidelity of VAWTs and provides a scalable framework for real-time aerodynamic analysis and control. Full article
(This article belongs to the Special Issue Advanced Wind Turbine Control and Optimization)
Show Figures

Figure 1

Back to TopTop