Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = advanced transportation information system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2266 KiB  
Review
Uncovering Plastic Pollution: A Scoping Review of Urban Waterways, Technologies, and Interdisciplinary Approaches
by Peter Cleveland, Donna Cleveland, Ann Morrison, Khoi Hoang Dinh, An Nguyen Pham Hai, Luca Freitas Ribeiro and Khanh Tran Duy
Sustainability 2025, 17(15), 7009; https://doi.org/10.3390/su17157009 (registering DOI) - 1 Aug 2025
Viewed by 35
Abstract
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, [...] Read more.
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, addressed, and reconceptualized. Drawing from the literature across environmental science, technology, and social studies, we identify four interconnected areas of focus: urban pollution pathways, innovations in monitoring and methods, community-based interventions, and interdisciplinary perspectives. Our analysis combines qualitative synthesis with visual mapping techniques, including keyword co-occurrence networks, to explore how real-time tools, such as IoT sensors, multi-sensor systems, and geospatial technologies, are transforming the ways plastic waste is tracked and analyzed. The review also considers the growing use of novel theoretical frameworks, such as post-phenomenology and ecological materialism, to better understand the role of plastics as both pollutants and ecological agents. Despite progress, the literature reveals persistent gaps in longitudinal studies, regional representation, and policy translation, particularly across the Global South. We emphasize the value of participatory models and community-led research in bridging these gaps and advancing more inclusive and responsive solutions. These insights inform the development of plastic tracker technologies currently being piloted in Vietnam and contribute to broader sustainability goals, including SDG 6 (Clean Water and Sanitation), SDG 12 (Responsible Consumption and Production), and SDG 14 (Life Below Water). Full article
Show Figures

Figure 1

16 pages, 1873 KiB  
Systematic Review
A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration
by Ayda Zaroujtaghi, Omid Mansourihanis, Mohammad Tayarani, Fatemeh Mansouri, Moein Hemmati and Ali Soltani
Future Transp. 2025, 5(3), 97; https://doi.org/10.3390/futuretransp5030097 (registering DOI) - 1 Aug 2025
Viewed by 67
Abstract
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data [...] Read more.
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data models, methodologies, and outcomes from 2004 to 2024. This study addresses this gap through a longitudinal analysis of GIS-based transportation research from 2004 to 2024, adhering to PRISMA guidelines. By conducting a mixed-methods analysis of 241 peer-reviewed articles, this study delineates major trends, such as increased emphasis on sustainability, equity, stakeholder involvement, and the incorporation of advanced technologies. Prominent domains include land use–transportation coordination, accessibility, artificial intelligence, real-time monitoring, and policy evaluation. Expanded data sources, such as real-time sensor feeds and 3D models, alongside sophisticated modeling techniques, enable evidence-based, multifaceted decision-making. However, challenges like data limitations, ethical concerns, and the need for specialized expertise persist, particularly in developing regions. Future geospatial innovations should prioritize the responsible adoption of emerging technologies, inclusive capacity building, and environmental justice to foster equitable and efficient transportation systems. This review highlights GIS’s evolution from a supplementary tool to a cornerstone of data-driven, sustainable urban mobility planning, offering insights for researchers, practitioners, and policymakers to advance transportation strategies that align with equity and sustainability goals. Full article
Show Figures

Figure 1

17 pages, 3966 KiB  
Article
Beyond the Detour: Modeling Traffic System Shocks After the Francis Scott Key Bridge Failure
by Daeyeol Chang, Niyeyesh Meimandi Nejad, Mansoureh Jeihani and Mansha Swami
Sustainability 2025, 17(15), 6916; https://doi.org/10.3390/su17156916 - 30 Jul 2025
Viewed by 230
Abstract
This research examines the traffic disruptions resulting from the collapse of the Francis Scott Key Bridge in Baltimore, utilizing advanced econometric methods and real-time ClearGuide data. Employing Fixed Effects (FEs), Mixed Effects (MEs), Difference-in-Differences (DiDs), and stratified regression models, the study uniquely examines [...] Read more.
This research examines the traffic disruptions resulting from the collapse of the Francis Scott Key Bridge in Baltimore, utilizing advanced econometric methods and real-time ClearGuide data. Employing Fixed Effects (FEs), Mixed Effects (MEs), Difference-in-Differences (DiDs), and stratified regression models, the study uniquely examines the impacts of congestion across Immediate, Fall, and Winter periods, distinctly separating AM and PM peak patterns. Significant findings include severe PM peak congestion, up to four times greater than AM peak congestion, particularly on critical corridors such as the Harbor Tunnel Thruway northbound and MD-295 northbound. Initial route-level impacts were heterogeneous, gradually becoming uniform as the network adapted. The causal DiD analysis provides strong evidence that increased congestion is causally linked to proximity to the collapse. It is anticipated that incorporating the suggested framework will yield insightful information for stakeholders and decision-makers, such as targeted freight restriction, peak-hour dynamic pricing, corridor-specific signal adjustments, and investments in real-time traffic monitoring systems to strengthen transportation network resilience. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

21 pages, 2585 KiB  
Review
Advances of Articulated Tug–Barge Transport in Enhancing Shipping Efficiency
by Plamen Yanakiev, Yordan Garbatov and Petar Georgiev
J. Mar. Sci. Eng. 2025, 13(8), 1451; https://doi.org/10.3390/jmse13081451 - 29 Jul 2025
Viewed by 106
Abstract
Articulated Tugs and Barges (ATBs) are increasingly recognised for their effectiveness in transporting chemicals, petroleum, bulk goods, and containers, primarily due to their exceptional flexibility and fuel efficiency. Recent projections indicate that the ATB market is on track for significant growth, which is [...] Read more.
Articulated Tugs and Barges (ATBs) are increasingly recognised for their effectiveness in transporting chemicals, petroleum, bulk goods, and containers, primarily due to their exceptional flexibility and fuel efficiency. Recent projections indicate that the ATB market is on track for significant growth, which is expected to lead to an increase in the annual growth rate from 2025 to 2032. This study aims to analyse the current advancements in ATB technology and provide insights into the ATB fleet and the systems that connect tugboats and barges. Furthermore, it highlights the advantages of this transportation system, especially regarding its role in enhancing energy efficiency within the maritime transport sector. Currently, there is limited information available in the public domain about ATBs compared to other commercial vessels. The analysis reveals that much of the required information for modern ATB design is not accessible outside specialised design companies. The study also focuses on conceptual design aspects, which include the main dimensions, articulated connections, propulsion systems, and machinery, concluding with an evaluation of economic viability. Special emphasis is placed on defining the main dimensions, which is a critical part of the complex design process. In this context, the ratios of length to beam (L/B), beam to draft (B/D), beam to depth (B/T), draft to depth (T/D), and power to the number of tugs cubed (Pw/N3) are established as design control parameters in the conceptual design phase. This aspect underscores the novelty of the present study. Additionally, the economic viability is analysed in terms of both CAPEX (capital expenditures) and OPEX (operational expenditures). While CAPEX does not significantly differ between the methods used in different types of commercial ships, OPEX should account for the unique characteristics of ATB vessels. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 11221 KiB  
Article
A Mass Abatement Scalable System Through Managed Aquifer Recharge: Increased Efficiency in Extracting Mass from Polluted Aquifers
by Mario Alberto Garcia Torres, Alexandra Suhogusoff and Luiz Carlos Ferrari
Water 2025, 17(15), 2237; https://doi.org/10.3390/w17152237 - 27 Jul 2025
Viewed by 254
Abstract
A mass abatement scalable system through managed aquifer recharge (MAR-MASS) improves mass extraction from groundwater with a variable-density flow. This method is superior to conventional injection systems because it promotes uniform mass displacement, reduces density gradients, and increases mass extraction efficiency over time. [...] Read more.
A mass abatement scalable system through managed aquifer recharge (MAR-MASS) improves mass extraction from groundwater with a variable-density flow. This method is superior to conventional injection systems because it promotes uniform mass displacement, reduces density gradients, and increases mass extraction efficiency over time. Simulations of various scenarios involving hydrogeologic variables, including hydraulic conductivity, vertical anisotropy, specific yield, mechanical dispersion, molecular diffusion, and mass concentration in aquifers, have identified critical variables and parameters influencing mass transport interactions to optimize the system. MAR-MASS is adaptable across hydrogeologic conditions in aquifers that are 25–75 m thick, comprising unconsolidated materials with hydraulic conductivities between 5 and 100 m/d. It is effective in scenarios near coastal areas or in aquifers with variable-density flows within the continent, with mass concentrations of salts or solutes ranging from 3.5 to 35 kg/m3. This system employs a modular approach that offers scalable and adaptable solutions for mass extraction at specific locations. The integration of programming tools, such as Python 3.13.2, along with technological strategies utilizing parallelization techniques and high-performance computing, has facilitated the development and validation of MAR-MASS in mass extraction with remarkable efficiency. This study confirmed the utility of these tools for performing calculations, analyzing information, and managing databases in hydrogeologic models. Combining these technologies is critical for achieving precise and efficient results that would not be achievable without them, emphasizing the importance of an advanced technological approach in high-level hydrogeologic research. By enhancing groundwater quality within a comparatively short time frame, expanding freshwater availability, and supporting sustainable aquifer recharge practices, MAR-MASS is essential for improving water resource management. Full article
Show Figures

Figure 1

33 pages, 4841 KiB  
Article
Research on Task Allocation in Four-Way Shuttle Storage and Retrieval Systems Based on Deep Reinforcement Learning
by Zhongwei Zhang, Jingrui Wang, Jie Jin, Zhaoyun Wu, Lihui Wu, Tao Peng and Peng Li
Sustainability 2025, 17(15), 6772; https://doi.org/10.3390/su17156772 - 25 Jul 2025
Viewed by 316
Abstract
The four-way shuttle storage and retrieval system (FWSS/RS) is an advanced automated warehousing solution for achieving green and intelligent logistics, and task allocation is crucial to its logistics efficiency. However, current research on task allocation in three-dimensional storage environments is mostly conducted in [...] Read more.
The four-way shuttle storage and retrieval system (FWSS/RS) is an advanced automated warehousing solution for achieving green and intelligent logistics, and task allocation is crucial to its logistics efficiency. However, current research on task allocation in three-dimensional storage environments is mostly conducted in the single-operation mode that handles inbound or outbound tasks individually, with limited attention paid to the more prevalent composite operation mode where inbound and outbound tasks coexist. To bridge this gap, this study investigates the task allocation problem in an FWSS/RS under the composite operation mode, and deep reinforcement learning (DRL) is introduced to solve it. Initially, the FWSS/RS operational workflows and equipment motion characteristics are analyzed, and a task allocation model with the total task completion time as the optimization objective is established. Furthermore, the task allocation problem is transformed into a partially observable Markov decision process corresponding to reinforcement learning. Each shuttle is regarded as an independent agent that receives localized observations, including shuttle position information and task completion status, as inputs, and a deep neural network is employed to fit value functions to output action selections. Correspondingly, all agents are trained within an independent deep Q-network (IDQN) framework that facilitates collaborative learning through experience sharing while maintaining decentralized decision-making based on individual observations. Moreover, to validate the efficiency and effectiveness of the proposed model and method, experiments were conducted across various problem scales and transport resource configurations. The experimental results demonstrate that the DRL-based approach outperforms conventional task allocation methods, including the auction algorithm and the genetic algorithm. Specifically, the proposed IDQN-based method reduces the task completion time by up to 12.88% compared to the auction algorithm, and up to 8.64% compared to the genetic algorithm across multiple scenarios. Moreover, task-related factors are found to have a more significant impact on the optimization objectives of task allocation than transport resource-related factors. Full article
Show Figures

Figure 1

21 pages, 730 KiB  
Article
A Multimodal Artificial Intelligence Framework for Intelligent Geospatial Data Validation and Correction
by Lars Skaug and Mehrdad Nojoumian
Inventions 2025, 10(4), 59; https://doi.org/10.3390/inventions10040059 - 22 Jul 2025
Viewed by 260
Abstract
Accurate geospatial data are essential for intelligent transportation systems and automated reporting applications, as location precision directly impacts safety analysis and decision-making. GPS devices are now routinely employed by law enforcement officers when filing vehicle crash reports, yet our investigation reveals that significant [...] Read more.
Accurate geospatial data are essential for intelligent transportation systems and automated reporting applications, as location precision directly impacts safety analysis and decision-making. GPS devices are now routinely employed by law enforcement officers when filing vehicle crash reports, yet our investigation reveals that significant data quality issues persist. The high apparent precision of GPS coordinates belies their actual accuracy as we find that approximately 20% of crash sites need correction—results consistent with existing research. To address this challenge, we present a novel credibility scoring and correction algorithm that leverages a state-of-the-art multimodal large language model (LLM) capable of integrated visual and textual reasoning. Our framework synthesizes information from structured coordinates, crash diagrams, and narrative text, employing advanced artificial intelligence techniques for comprehensive geospatial validation. In addition to the LLM, our system incorporates open geospatial data from Overture Maps, an emerging collaborative mapping initiative, to enhance the spatial accuracy and robustness of the validation process. This solution was developed as part of research leading to a patent for autonomous vehicle routing systems that require high-precision crash location data. Applied to a dataset of 5000 crash reports, our approach systematically identifies records with location discrepancies requiring correction. By uniting the latest developments in multimodal AI and open geospatial data, our solution establishes a foundation for intelligent data validation in electronic reporting systems, with broad implications for automated infrastructure management and autonomous vehicle applications. Full article
Show Figures

Figure 1

18 pages, 849 KiB  
Article
Decision Optimization of Manufacturing Supply Chain Based on Resilience
by Feng Lyu, Jiajie Zhang, Fen Liu and Huili Chu
Sustainability 2025, 17(14), 6519; https://doi.org/10.3390/su17146519 - 16 Jul 2025
Viewed by 319
Abstract
Manufacturing serves as a vital indicator of a nation’s economic strength, technological advancement, and comprehensive competitiveness. In the context of the VUCA (Volatility, Uncertainty, Complexity, Ambiguity) business environment and globalization, uncertain market demand has intensified supply chain disruption risks, necessitating resilience strategies to [...] Read more.
Manufacturing serves as a vital indicator of a nation’s economic strength, technological advancement, and comprehensive competitiveness. In the context of the VUCA (Volatility, Uncertainty, Complexity, Ambiguity) business environment and globalization, uncertain market demand has intensified supply chain disruption risks, necessitating resilience strategies to enhance supply chain stability. This study proposes five resilience strategies—establishing an information sharing system, multi-sourcing, alternative suppliers, safety stock, and alternative transportation plans—while integrating sustainability requirements. A multi-objective mixed-integer optimization model was developed to balance cost efficiency, resilience, and environmental sustainability. Comparative analysis reveals that the resilience-embedded model outperforms traditional approaches in both cost control and risk mitigation capabilities. The impact of parameter variations on the model results was examined through sensitivity analysis. The findings demonstrate that the proposed optimization model effectively enhances supply chain resilience—mitigating cost fluctuations while maintaining robust demand fulfillment under uncertainties. Full article
(This article belongs to the Special Issue Decision-Making in Sustainable Management)
Show Figures

Figure 1

23 pages, 1388 KiB  
Article
Machine Learning-Based State-of-Health Estimation of Battery Management Systems Using Experimental and Simulation Data
by Anas Al-Rahamneh, Irene Izco, Adrian Serrano-Hernandez and Javier Faulin
Mathematics 2025, 13(14), 2247; https://doi.org/10.3390/math13142247 - 11 Jul 2025
Viewed by 471
Abstract
In pursuit of zero-emission targets, increasing sustainability concerns have prompted urban centers to adopt more environmentally friendly modes of transportation, notably through the deployment of electric vehicles (EVs). A prominent manifestation of this shift is the transition from conventional fuel-powered buses to electric [...] Read more.
In pursuit of zero-emission targets, increasing sustainability concerns have prompted urban centers to adopt more environmentally friendly modes of transportation, notably through the deployment of electric vehicles (EVs). A prominent manifestation of this shift is the transition from conventional fuel-powered buses to electric buses (e-buses), which, despite their environmental benefits, introduce significant operational challenges—chief among them, the management of battery systems, the most critical and complex component of e-buses. The development of efficient and reliable Battery Management Systems (BMSs) is thus central to ensuring battery longevity, operational safety, and overall vehicle performance. This study examines the potential of intelligent BMSs to improve battery health diagnostics, extend service life, and optimize system performance through the integration of simulation, real-time analytics, and advanced deep learning techniques. Particular emphasis is placed on the estimation of battery state of health (SoH), a key metric for predictive maintenance and operational planning. Two widely recognized deep learning models—Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM)—are evaluated for their efficacy in predicting SoH. These models are embedded within a unified framework that combines synthetic data generated by a physics-informed battery simulation model with empirical measurements obtained from real-world battery aging datasets. The proposed approach demonstrates a viable pathway for enhancing SoH prediction by leveraging both simulation-based data augmentation and deep learning. Experimental evaluations confirm the effectiveness of the framework in handling diverse data inputs, thereby supporting more robust and scalable battery management solutions for next-generation electric urban transportation systems. Full article
(This article belongs to the Special Issue Operations Research and Intelligent Computing for System Optimization)
Show Figures

Figure 1

27 pages, 2276 KiB  
Review
Fault Detection of Li–Ion Batteries in Electric Vehicles: A Comprehensive Review
by Heng Li, Hamza Shaukat, Ren Zhu, Muaaz Bin Kaleem and Yue Wu
Sustainability 2025, 17(14), 6322; https://doi.org/10.3390/su17146322 - 10 Jul 2025
Viewed by 725
Abstract
Lithium–ion (Li–ion) batteries are fundamental for advancing intelligent and sustainable transportation, particularly in electric vehicles, due to their long lifespan, high energy density, and strong power efficiency. Ensuring the safety and reliability of EV batteries remains a critical challenge, as undetected faults can [...] Read more.
Lithium–ion (Li–ion) batteries are fundamental for advancing intelligent and sustainable transportation, particularly in electric vehicles, due to their long lifespan, high energy density, and strong power efficiency. Ensuring the safety and reliability of EV batteries remains a critical challenge, as undetected faults can lead to hazardous failures or gradual performance degradation. While numerous studies have addressed battery fault detection, most existing reviews adopt isolated perspectives, often overlooking interdisciplinary and intelligent approaches. This paper presents a comprehensive review of advanced battery fault detection using modern machine learning, deep learning, and hybrid methods. It also discusses the pressing challenges in the field, including limited fault data, real-time processing constraints, model adaptability across battery types, and the need for explainable AI. Furthermore, emerging AI approaches such as transformers, graph neural networks, physics-informed models, edge computing, and large language models present new opportunities for intelligent and scalable battery fault detection. Looking ahead, these frameworks, combined with AI-driven strategies, can enhance diagnostic precision, extend battery life, and strengthen safety while enabling proactive fault prevention and building trust in EV systems. Full article
Show Figures

Figure 1

18 pages, 3657 KiB  
Article
Vehicle Trajectory Data Augmentation Using Data Features and Road Map
by Jianfeng Hou, Wei Song, Yu Zhang and Shengmou Yang
Electronics 2025, 14(14), 2755; https://doi.org/10.3390/electronics14142755 - 9 Jul 2025
Viewed by 323
Abstract
With the advancement of intelligent transportation systems, vehicle trajectory data have become a key component in areas like traffic flow prediction, route planning, and traffic management. However, high-quality, publicly available trajectory datasets are scarce due to concerns over privacy, copyright, and data collection [...] Read more.
With the advancement of intelligent transportation systems, vehicle trajectory data have become a key component in areas like traffic flow prediction, route planning, and traffic management. However, high-quality, publicly available trajectory datasets are scarce due to concerns over privacy, copyright, and data collection costs. The lack of data creates challenges for training machine learning models and optimizing algorithms. To address this, we propose a new method for generating synthetic vehicle trajectory data, leveraging traffic flow characteristics and road maps. The approach begins by estimating hourly traffic volumes, then it uses the Poisson distribution modeling to assign departure times to synthetic trajectories. Origin and destination (OD) distributions are determined by analyzing historical data, allowing for the assignment of OD pairs to each synthetic trajectory. Path planning is then applied using a road map to generate a travel route. Finally, trajectory points, including positions and timestamps, are calculated based on road segment lengths and recommended speeds, with noise added to enhance realism. This method offers flexibility to incorporate additional information based on specific application needs, providing valuable opportunities for machine learning in intelligent transportation systems. Full article
(This article belongs to the Special Issue Big Data and AI Applications)
Show Figures

Figure 1

33 pages, 1710 KiB  
Systematic Review
Promoting Sustainable Transport: A Systematic Review of Walking and Cycling Adoption Using the COM-B Model
by Hisham Y. Makahleh, Madhar M. Taamneh and Dilum Dissanayake
Future Transp. 2025, 5(3), 79; https://doi.org/10.3390/futuretransp5030079 - 1 Jul 2025
Viewed by 921
Abstract
Walking and cycling, as active modes of transportation, play a vital role in advancing sustainable urban mobility by reducing emissions and improving public health. However, widespread adoption faces challenges such as inadequate infrastructure, safety concerns, socio-cultural barriers, and policy limitations. This study systematically [...] Read more.
Walking and cycling, as active modes of transportation, play a vital role in advancing sustainable urban mobility by reducing emissions and improving public health. However, widespread adoption faces challenges such as inadequate infrastructure, safety concerns, socio-cultural barriers, and policy limitations. This study systematically reviewed 56 peer-reviewed articles from 2004 to 2024, across 30 countries across five continents, employing the Capability, Opportunity and Motivation-Behaviour (COM-B) framework to identify the main drivers of walking and cycling behaviours. Findings highlight that the lack of dedicated infrastructure, inadequate enforcement of road safety measures, personal and traffic safety concerns, and social stigmas collectively hinder active mobility. Strategic interventions such as developing integrated cycling networks, financial incentives, urban planning initiatives, and behavioural change programs have promoted increased engagement in walking and cycling. Enhancing urban mobility further requires investment in pedestrian and cycling infrastructure, improved integration with public transportation, the implementation of traffic-calming measures, and public education campaigns. Post-pandemic initiatives to establish new pedestrian and cycling spaces offer a unique opportunity to establish enduring changes that support active transportation. The study suggests expanding protected cycling lanes and integrating pedestrian pathways with public transit systems to strengthen safety and accessibility. Additionally, leveraging digital tools can enhance mobility planning and coordination. Future research is needed to explore the potential of artificial intelligence in enhancing mobility analysis, supporting the development of climate-resilient infrastructure, and informing transport policies that integrate gender perspectives to better understand long-term behavioural changes. Coordinated policy efforts and targeted investments can lead to more equitable transportation access, support sustainability goals, and alleviate urban traffic congestion. Full article
Show Figures

Figure 1

40 pages, 3259 KiB  
Review
Artificial Intelligence Application in Nonpoint Source Pollution Management: A Status Update
by Almando Morain, Ryan Nedd, Kevin Poole, Lauren Hawkins, Micala Jones, Brian Washington and Aavudai Anandhi
Sustainability 2025, 17(13), 5810; https://doi.org/10.3390/su17135810 - 24 Jun 2025
Viewed by 673
Abstract
Artificial intelligence (AI) has the potential to significantly advance the management of nonpoint source pollution (NPSP), a critical environmental issue characterized by diffuse sources and complex transport mechanisms. This study systematically examines current AI applications addressing NPSP through bibliometric and systematic analyses. A [...] Read more.
Artificial intelligence (AI) has the potential to significantly advance the management of nonpoint source pollution (NPSP), a critical environmental issue characterized by diffuse sources and complex transport mechanisms. This study systematically examines current AI applications addressing NPSP through bibliometric and systematic analyses. A total of 124 studies were included after rigorous identification, screening, and eligibility assessments based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework. Key findings from the bibliometric analysis include publication trends, regional research contributions, author and journal contributions, and core concepts in NPSP. The systematic analysis further provided: (a) a comprehensive synthesis of NPSP characterization, covering pollution sources, key drivers, pollutants, transport pathways, and environmental impacts; (b) identification of emerging AI technologies such as the Internet of Things, unmanned aerial vehicles, and geographic information systems, and their potential applications in NPSP contexts; (c) a detailed classification of AI models used in NPSP assessment, highlighting predictors, predictands, and performance metrics specifically in water quality prediction and monitoring, groundwater vulnerability mapping, and pollutant-specific modeling; and (d) a critical assessment of knowledge gaps categorized into AI model development and validation, data constraints, governance and policy challenges, and system integration, alongside proposed targeted future research directions emphasizing adaptive governance, transparent AI modeling, and interdisciplinary collaboration. The findings from this study provide essential insights for researchers, policymakers, environmental managers, and communities aiming to implement AI-driven strategies to mitigate NPSP. Full article
(This article belongs to the Special Issue AI Application in Sustainable MSWI Process)
Show Figures

Figure 1

30 pages, 1097 KiB  
Review
Electric Vehicle Charging Infrastructure: Impacts and Future Challenges of Photovoltaic Integration with Examples from a Tunisian Case
by Nouha Mansouri, Sihem Nasri, Aymen Mnassri, Abderezak Lashab, Juan C. Vasquez, Adnane Cherif and Hegazy Rezk
World Electr. Veh. J. 2025, 16(7), 349; https://doi.org/10.3390/wevj16070349 - 24 Jun 2025
Viewed by 1017
Abstract
The challenges of global warming and other environmental concerns have prompted governments worldwide to transition from fossil-fuel vehicles to low-emission electric vehicles (EVs). The energy crisis, coupled with environmental issues like air pollution and climate change, has been a driving force behind the [...] Read more.
The challenges of global warming and other environmental concerns have prompted governments worldwide to transition from fossil-fuel vehicles to low-emission electric vehicles (EVs). The energy crisis, coupled with environmental issues like air pollution and climate change, has been a driving force behind the development of EVs. In recent years, EVs have emerged as one of the most innovative and vital advancements in clean transportation. According to recent reports, EVs are gradually replacing traditional automobiles, offering benefits such as pollution reduction and the conservation of natural resources. This research focuses on analyzing and reviewing the impact of EV integration on electrical networks, with particular attention to photovoltaic (PV) energy as a sustainable charging solution. It examines both current and anticipated challenges, especially those related to power quality, harmonics, and voltage imbalance. A special emphasis is placed on Tunisia, a country with high solar energy potential and increasing interest in EV deployment. By exploring the technical and infrastructural readiness of Tunisia for PV-based EV charging systems, this paper aims to inform regional strategies and contribute to the broader goal of sustainable energy integration in developing countries as part of future work. Full article
Show Figures

Figure 1

40 pages, 3494 KiB  
Article
Risk-Based Optimization of Multimodal Oil Product Operations Through Simulation and Workflow Modeling
by Catalin Popa, Ovidiu Stefanov, Ionela Goia and Dinu Atodiresei
Logistics 2025, 9(3), 79; https://doi.org/10.3390/logistics9030079 - 20 Jun 2025
Viewed by 574
Abstract
Background: The transportation of petroleum products via multimodal logistics systems is a complex process subject to operational inefficiencies and elevated risk exposure. The efficient and resilient transportation of petroleum products increasingly depends on multimodal logistics systems, where operational risks and process inefficiencies [...] Read more.
Background: The transportation of petroleum products via multimodal logistics systems is a complex process subject to operational inefficiencies and elevated risk exposure. The efficient and resilient transportation of petroleum products increasingly depends on multimodal logistics systems, where operational risks and process inefficiencies can significantly impact safety and performance. This study addresses the research question of how an integrated risk-based and workflow-driven approach can enhance the management of oil products logistics in complex port environments. Methods: A dual methodological framework was applied at the Port of Midia, Romania, combining a probabilistic risk assessment model, quantifying incident probability, infrastructure vulnerability, and exposure, with dynamic business process modeling (BPM) using specialized software. The workflow simulation replicated real-world multimodal oil operations across maritime, rail, road, and inland waterway segments. Results: The analysis identified human error, technical malfunctions, and environmental hazards as key risk factors, with an aggregated major incident probability of 2.39%. BPM simulation highlighted critical bottlenecks in customs processing, inland waterway lock transit, and road tanker dispatch. Process optimizations based on simulation insights achieved a 25% reduction in operational delays. Conclusions: Integrating risk assessment with dynamic workflow modeling provides an effective methodology for improving the resilience, efficiency, and regulatory compliance of multimodal oil logistics operations. This approach offers practical guidance for port operators and contributes to advancing risk-informed logistics management in the petroleum supply chain. Full article
Show Figures

Figure 1

Back to TopTop