Fault Detection of Li–Ion Batteries in Electric Vehicles: A Comprehensive Review
Abstract
1. Introduction
1.1. Research Growth in Battery Fault Detection
1.2. Existing Reviews and Their Limitations
- This review emphasizes the integration of model dependencies in analyzing electric vehicle battery faults, highlighting the importance of modeling cell-level interactions over multiple charge-discharge cycles for early fault detection and predictive maintenance.
- Comprehensive review of ML and DL methods: A systematic evaluation of ML and DL techniques, focusing on their effectiveness in handling fault patterns. This includes CNN-LSTM hybrids and physics-informed neural networks (PINNs), offering a unified discussion on their role in battery fault detection.
- Critical discussion of challenges: This paper identifies challenges, including limited labeled fault datasets and computational constraints in real-time BMS, and addresses the lack of interpretability in deep learning models, proposing strategies to enhance model robustness and explainability.
- Emerging trends and future research directions: This highlights emerging trends and future research directions such as GNNs, LLMs, self-supervised learning, and edge computing for real-time BMS diagnostics. This review provides a strategic roadmap for advancing AI-driven battery fault detection.
2. Fundamentals of EV Battery Fault Detection
2.1. Common Fault Types in Lithium–Ion Batteries
2.1.1. Overcharge Fault
2.1.2. Overdischarge Fault
2.1.3. Overheating and Thermal Runaway
2.1.4. Internal Short Circuit
2.1.5. Cell Imbalance
2.1.6. Causes and Effects of Faults
3. Methods for Fault Detection in EV Batteries
3.1. Machine Learning Methods
3.2. Deep Learning Methods
- Convolutional Neural Networks (CNNs) are employed to extract spatial features from battery sensor data by detecting localized anomalies, such as uneven voltage distribution or concentrated areas of excessive heat across individual cells.
- Recurrent Neural Networks (RNNs) and their advanced forms, like Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), are utilized to capture time-based patterns in battery data, making them effective for identifying anomalies that develop or evolve over time.
- Transformer models apply self-attention techniques to effectively capture long-term dependencies within battery time-series data, enabling more accurate fault identification and advanced predictive analysis across extensive and high-dimensional datasets.
- Hybrid architectures that integrate convolutional and recurrent layers are well-suited for battery data, where CNNs extract characteristics such as cell-level patterns and RNNs maintain relationships to track changes over time.
3.3. Transformer Architectures (Self-Attention Networks)
3.4. Hybrid Approaches for Battery Fault Detection
4. Challenges and Open Problems
4.1. Scarcity of Labeled Fault Data
4.2. Real-Time Deployment Challenges
4.3. Generalization and Transferability Issues
4.4. Integration with BMS and Control Actions
- Data challenges: necessitate the development of novel training approaches and potential industry partnerships for data sharing.
- Computational obstacles: drive the need for algorithm optimization and possibly the introduction of new hardware solutions.
- Generalization: requires the creation of more adaptable and physics-informed models.
- Interpretability: calls for improved model transparency to enhance understanding and trust in the outcomes.
5. Future Research Directions
5.1. Self-Supervised Learning for Battery Systems
5.2. GNNs for Improved Spatial Learning
5.3. LLMs for Battery Fault Detection
5.4. Physics-Informed AI and Hybrid Models
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waseem, M.; Ahmad, M.; Parveen, A.; Suhaib, M. Battery technologies and functionality of battery management system for EVs: Current status, key challenges, and future prospectives. J. Power Sources 2023, 580, 233349. [Google Scholar] [CrossRef]
- Lipu, M.S.H.; Mamun, A.A.; Ansari, S.; Miah, M.S.; Hasan, K.; Meraj, S.T.; Abdolrasol, M.G.M.; Rahman, T.; Maruf, M.H.; Sarker, M.R.; et al. Battery management, key technologies, methods, issues, and future trends of electric vehicles: A pathway toward achieving sustainable development goals. Batteries 2022, 8, 119. [Google Scholar] [CrossRef]
- Bin Kaleem, M.; Zhou, Y.; Jiang, F.; Liu, Z.; Li, H. Fault detection for Li-ion batteries of electric vehicles with segmented regression method. Sci. Rep. 2024, 14, 31922. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Chakraborty, B. Battery management strategies: An essential review for battery state of health monitoring techniques. J. Energy Storage 2022, 51, 104427. [Google Scholar] [CrossRef]
- Mukherjee, S.; Chowdhury, K. State of charge estimation techniques for battery management system used in electric vehicles: A review. Energy Syst. 2023, 1–44. [Google Scholar] [CrossRef]
- Qiu, Y.; Jiang, F. A review on passive and active strategies of enhancing the safety of lithium-ion batteries. Int. J. Heat Mass Transf. 2022, 184, 122288. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, F.; Duodu, M.; Li, M.; Han, C. High-precision Fault Detection for electric vehicle battery system based on bayesian optimization SVDD. Energies 2022, 15, 8331. [Google Scholar] [CrossRef]
- Zhao, J.; Lv, Z.; Li, D.; Feng, X.; Wang, Z.; Wu, Y.; Shi, D.; Fowler, M.; Burke, A.F. Battery Engineering Safety Technologies (BEST): Mechanisms, Modes, Metrics, Modelling and Mitigation. ETransportation 2024, 22, 100364. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Cao, R.; Lyu, M.; Zhang, C.; Li, S.; Guo, B.; Zhang, L.; Zhang, Z.; Gao, X.; et al. Review of abnormality detection and fault diagnosis methods for lithium-ion batteries. Automot. Innov. 2023, 6, 256–267. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Othman, A.M.; Abdussami, M.R. Review of battery management systems (BMS) development and industrial standards. Technologies 2021, 9, 28. [Google Scholar] [CrossRef]
- Cao, R.; Zhang, Z.; Shi, R.; Lu, J.; Zheng, Y.; Sun, Y.; Liu, X.; Yang, S. Model-constrained deep learning for online fault diagnosis in Li-ion batteries over stochastic conditions. Nat. Commun. 2025, 16, 1651. [Google Scholar] [CrossRef]
- Agbehadji, I.E.; Mabhaudhi, T.; Botai, J.; Masinde, M. A systematic review of existing early warning systems’ challenges and opportunities in cloud computing early warning systems. Climate 2023, 11, 188. [Google Scholar] [CrossRef]
- Li, H.; Kaleem, M.B.; Liu, Z.; Wu, Y.; Liu, W.; Huang, Z. IoB: Internet-of-batteries for electric Vehicles–Architectures, opportunities, and challenges. Green Energy Intell. Transp. 2023, 2, 100128. [Google Scholar] [CrossRef]
- Normann, R.A.; Warren, D.J.; Ammermuller, J.; Fernandez, E.; Guillory, S. High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays. Vis. Res. 2001, 41, 1261–1275. [Google Scholar] [CrossRef] [PubMed]
- Kaliaperumal, M.; Dharanendrakumar, M.S.; Prasanna, S.; Abhishek, K.V.; Chidambaram, R.K.; Adams, S.; Zaghib, K.; Reddy, M. Cause and mitigation of lithium-ion battery failure A review. Materials 2021, 14, 5676. [Google Scholar] [CrossRef]
- L’heureux, A.; Grolinger, K.; Elyamany, H.F.; Capretz, M.A. Machine learning with big data: Challenges and approaches. IEEE Access 2017, 5, 7776–7797. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, X.; Guo, R.; Shen, W. Recent advances in model-based fault diagnosis for lithium-ion batteries: A comprehensive review. Renew. Sustain. Energy Rev. 2025, 207, 114922. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, X.; Tran, M.-K.; Fowler, M.; Ouyang, M.; Burke, A.F. Battery safety: Fault diagnosis from laboratory to real world. J. Power Sources 2024, 598, 234111. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, S.; Tang, N.; Fu, Y.; Wang, K. Research progress in fault detection of battery systems: A review. J. Energy Storage 2024, 98, 113079. [Google Scholar] [CrossRef]
- Li, H.; Kaleem, M.B.; Liu, K.; Wu, Y.; Liu, W.; Peng, Q. Fault prognosis of Li-ion batteries in electric vehicles: Recent progress, challenges and prospects. J. Energy Storage 2025, 116, 116002. [Google Scholar] [CrossRef]
- Xu, B.; Ge, X.; Ji, S.; Wu, Q. Data-driven RUL prediction for lithium-ion batteries based on multilayer optimized fusion deep network. Ionics 2025, 31, 1779–1795. [Google Scholar] [CrossRef]
- Wang, C.; Wang, R.; Liu, G.; Ji, Z.; Shen, W.; Yu, Q. Progressive degradation behavior and mechanism of lithium-ion batteries subjected to minor deformation damage. J. Energy Storage 2024, 101, 113992. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, R. Machine Learning-Based Data-Driven Fault Detection/Diagnosis of Lithium-Ion Battery: A Critical Review. Electronics 2021, 10, 1309. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, Y.; Li, X.; Qiao, J.; Wang, Y.; Zhang, H.; Liu, J. Review of lithium battery thermal runaway fault diagnosis methods and fire detection applications in electric vehicles. SSRN 2024. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, X.; Pang, Q.; Wang, J.; Lian, Y.; Ouyang, M.; Burke, A.F. Battery prognostics and health management from a machine learning perspective. J. Power Sources 2023, 581, 233474. [Google Scholar] [CrossRef]
- Shang, Y.; Yi, Z.; Wang, L.; Liu, C.; Wang, K. A RUL prediction model for supercapacitors based on integrated model optimization algorithm. SSRN 2024. [Google Scholar] [CrossRef]
- Paidi, R.; Gudey, S. Active and Passive Cell Balancing Techniques for Li-Ion Batteries Used in EVs. In Proceedings of the IEEE International Power and Renewable Energy Conference (IPRECON), Kollam, India, 16–18 December 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Jaguemont, J.; Bardé, F. A critical review of lithium-ion battery safety testing and standards. Appl. Therm. Eng. 2023, 231, 121014. [Google Scholar] [CrossRef]
- Wen, L.; Liang, J.; Chen, J.; Chu, Z.Y.; Cheng, H.M.; Li, F. Smart materials and design toward safe and durable lithium ion batteries. Small Methods 2019, 3, 1900323. [Google Scholar] [CrossRef]
- E., J.; Xiao, H.; Tian, S.; Huang, Y. A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion. Renew. Energy 2024, 229, 120762. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Z.; Xie, S. Influence of Overdischarge Depth on the Aging and Thermal Safety of LiNi0.5Co0.2Mn0.3O2/Graphite Cells. Battery Energy 2025, 4, e70008. [Google Scholar] [CrossRef]
- Naresh, G.; Thangavelu, P. Integrating machine learning for health prediction and control in over-discharged Li-NMC battery systems. Ionics 2024, 30, 8015–8032. [Google Scholar] [CrossRef]
- Tran, M.K.; Mevawalla, A.; Aziz, A.; Panchal, S.; Xie, Y.; Fowler, M. A review of lithium-ion battery thermal runaway modeling and diagnosis approaches. Processes 2022, 10, 1192. [Google Scholar] [CrossRef]
- He, D.; Wang, J.; Peng, Y.; Li, B.; Feng, C.; Shen, L.; Ma, S. Research advances on thermal runaway mechanism of lithium-ion batteries and safety improvement. Sustain. Mater. Technol. 2024, 41, e01017. [Google Scholar] [CrossRef]
- Shen, D.; Yang, D.; Lyu, C.; Hinds, G.; Wang, L.; Bai, M. Detection and quantitative diagnosis of micro-short-circuit faults in lithium-ion battery packs considering cell inconsistency. Green Energy Intell. Transp. 2023, 2, 100109. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, R.; Shen, Z.; Yu, Q.; Xiong, R.; Shen, W. Towards a safer lithium-ion batteries: A critical review on cause, characteristics, warning and disposal strategy for thermal runaway. Adv. Appl. Energy 2023, 11, 100146. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, X.; Wang, J.; Lian, Y.; Ouyang, M.; Burke, A.F. Battery fault diagnosis and failure prognosis for electric vehicles using spatio-temporal transformer networks. Appl. Energy 2023, 352, 121949. [Google Scholar] [CrossRef]
- Palafox-Albarrán, J. Spatial Statistical Data Fusion on Java-Enabled Machines in Ubiquitous Sensor Networks. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2014. Available online: https://nbn-resolving.de/urn:nbn:de:gbv:46-00103756-17 (accessed on 19 June 2025).
- Senner, N.R.; Stager, M.; Cheviron, Z.A. Spatial and temporal heterogeneity in climate change limits species’ dispersal capabilities and adaptive potential. Ecography 2018, 41, 1428–1440. [Google Scholar] [CrossRef]
- Tran, M.-K.; Fowler, M. A review of lithium-ion battery fault diagnostic algorithms: Current progress and future challenges. Algorithms 2020, 13, 62. [Google Scholar] [CrossRef]
- Robles-Enciso, A.; Robles-Enciso, R.; Skarmeta Gómez, A.F. An adaptive energy orchestrator for cyberphysical systems using multiagent reinforcement learning. Smart Cities 2024, 7, 3210–3240. [Google Scholar] [CrossRef]
- Song, S.; Tang, X.; Sun, Y.; Sun, J.; Li, F.; Chen, M.; Lei, Q.; Sun, W.; He, Z.; Zhang, L. Fault evolution mechanism for lithium-ion battery energy storage system under multi-levels and multi-factors. J. Energy Storage 2024, 80, 110226. [Google Scholar] [CrossRef]
- Attia, P.M.; Moch, E.; Herring, P.K. Challenges and opportunities for high-quality battery production at scale. Nat. Commun. 2025, 16, 611. [Google Scholar] [CrossRef] [PubMed]
- Gharehghani, A.; Rabiei, M.; Mehranfar, S.; Saeedipour, S.; Andwari, A.M.; García, A.; Reche, C.M. Progress in battery thermal management systems technologies for electric vehicles. Renew. Sustain. Energy Rev. 2024, 202, 114654. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, J.; Guo, H.; Qi, J.; Che, M.; Hou, M.; Jiao, P.; Zhang, Z.; Yan, Z.; Zhou, L.; et al. Sapiential battery systems: Beyond traditional electrochemical energy. Chem. Soc. Rev. 2024, 53, 12043–12097. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Chen, Z. Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges. Appl. Energy 2022, 313, 118832. [Google Scholar] [CrossRef]
- Cortada-Torbellino, M.; Elvira, D.G.; El Aroudi, A.; Valderrama-Blavi, H. Review of lithium-ion battery internal changes due to mechanical loading. Batteries 2024, 10, 258. [Google Scholar] [CrossRef]
- Ali, H.M. Applications of Combined/Hybrid Use of Heat Pipe and Phase Change Materials in Energy Storage and Cooling Systems: A Recent Review. J. Energy Storage 2019, 26, 100986. [Google Scholar] [CrossRef]
- Bank, T.; Klamor, S.; Löffler, N.; Sauer, D.U. Performance Benchmark of State-of-the-Art High-Power Lithium-Ion Cells and Implications for Their Usability in Low-Voltage Applications. J. Energy Storage 2021, 36, 102383. [Google Scholar] [CrossRef]
- Booshehri, M.; Emele, L.; Flügel, S.; Förster, H.; Frey, J.; Frey, U.; Glauer, M.; Hastings, J.; Hofmann, C.; Hoyer-Klick, C.; et al. Introducing the Open Energy Ontology: Enhancing data interpretation and interfacing in energy systems analysis. Energy AI 2021, 5, 100074. [Google Scholar] [CrossRef]
- Richardson, R.R.; Osborne, M.A.; Howey, D.A. Online model-based diagnosis of lithium-ion batteries using support vector machines. IEEE Trans. Ind. Inform. 2019, 15, 127–138. [Google Scholar]
- Arbaoui, S.; Samet, A.; Ayadi, A.; Mesbahi, T.; Boné, R. Data-driven strategy for state of health prediction and anomaly detection in lithium-ion batteries. Energy AI 2024, 17, 100413. [Google Scholar] [CrossRef]
- Daniels, R.K.; Kumar, V.; Prabhakar, A. A comparative study of data-driven thermal fault prediction using machine learning algorithms in air-cooled cylindrical Li-ion battery modules. Renew. Sustain. Energy Rev. 2025, 207, 114925. [Google Scholar] [CrossRef]
- Pratt, L.; Mattheus, J.; Klein, R. A benchmark dataset for defect detection and classification in electroluminescence images of PV modules using semantic segmentation. Syst. Soft Comput. 2023, 5, 200048. [Google Scholar] [CrossRef]
- Manoharan, A.; Begam, K.M.; Aparow, V.R.; Sooriamoorthy, D. Artificial Neural Networks, Gradient Boosting and Support Vector Machines for electric vehicle battery state estimation: A review. J. Energy Storage 2022, 55, 105384. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Du, J.; Cong, X.; Zhang, L.; Jiang, Y.; Wang, L. Fault diagnosis for lithium-ion batteries in electric vehicles based on signal decomposition and two-dimensional feature clustering. Green Energy Intell. Transp. 2022, 1, 100009. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, K.; Liu, K.; Lin, X.; Dey, S.; Onori, S. Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures. IEEE Ind. Electron. Mag. 2020, 14, 65–91. [Google Scholar] [CrossRef]
- Li, H.; Bai, Y.; Sun, Y.; Zhi, H. A hybrid prediction method for lithium-ion battery degradation: SMA-ARIMA-LSTM integration. In Proceedings of the Third International Conference on Communications, Information System, and Data Science (CISDS 2024), Nanjing, China, 22–24 November 2024; Volume 13519, p. 1351904. [Google Scholar] [CrossRef]
- Fan, Y.; Yan, C.; Wu, X.; Li, Y.; Dou, W.; Gao, G.; Zhang, P.; Guan, Q.; Tan, X. Mechanical stress-based state-of-charge estimation for lithium-ion batteries via deep learning techniques. Energy 2025, 326, 136216. [Google Scholar] [CrossRef]
- Ahsan, F.; Dana, N.H.; Sarker, S.K.; Li, L.; Muyeen, S.; Ali, M.F.; Tasneem, Z.; Hasan, M.M.; Abhi, S.H.; Islam, M.R.; et al. Data-driven next-generation smart grid towards sustainable energy evolution: Techniques and technology review. Prot. Control Mod. Power Syst. 2023, 8, 43. [Google Scholar] [CrossRef]
- Zhao, X.; Kim, J.; Warns, K.; Wang, X.; Ramuhalli, P.; Cetiner, S.; Kang, H.G.; Golay, M. Prognostics and health management in nuclear power plants: An updated method-centric review with special focus on data-driven methods. Front. Energy Res. 2021, 9, 696785. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef]
- Rezvanizaniani, S.M.; Liu, Z.; Chen, Y.; Lee, J. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. J. Power Sources 2014, 256, 110–124. [Google Scholar] [CrossRef]
- Shen, S.; Sadoughi, M.; Chen, X.; Hong, M.; Hu, C. A deep learning method for online capacity estimation of lithium-ion batteries. J. Energy Storage 2019, 25, 100817. [Google Scholar] [CrossRef]
- Ojo, O.; Lang, H.; Kim, Y.; Hu, X.; Mu, B.; Lin, X. A neural network based method for thermal fault detection in lithium-ion batteries. IEEE Trans. Ind. Electron. 2021, 68, 4068–4078. [Google Scholar] [CrossRef]
- Kim, S.; Lee, P.-Y.; Lee, M.; Kim, J.; Na, W. Improved state-of-health prediction based on auto-regressive integrated moving average with exogenous variables model in overcoming battery degradation-dependent internal parameter variation. J. Energy Storage 2022, 46, 103888. [Google Scholar] [CrossRef]
- Shi, D.; Zhao, J.; Wang, Z.; Zhao, H.; Wang, J.; Lian, Y.; Burke, A.F. Spatial-temporal self-attention transformer networks for battery state of charge estimation. Electronics 2023, 12, 2598. [Google Scholar] [CrossRef]
- Hong, Y.-Y.; Pula, R.A. Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network. Energy 2022, 246, 123391. [Google Scholar] [CrossRef]
- Zhai, W.; Fu, W.; Qin, J.; Ma, Q.; Kang, Y. A novel approach based on spatio-temporal attention and multi-scale modeling for mechanical failure prediction. Control Eng. Pract. 2024, 147, 105938. [Google Scholar] [CrossRef]
- Qiu, S.; Cui, X.; Ping, Z.; Shan, N.; Li, Z.; Bao, X.; Xu, X. Deep learning techniques in intelligent fault diagnosis and prognosis for industrial systems: A review. Sensors 2023, 23, 1305. [Google Scholar] [CrossRef]
- Bhatti, U.A.; Tang, H.; Wu, G.; Marjan, S.; Hussain, A. Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence. Int. J. Intell. Syst. 2023, 2023, 8342104. [Google Scholar] [CrossRef]
- Altunkaya, D.; Okay, F.Y.; Ozdemir, S. Image transformation for IoT time-series data: A review. arXiv 2023, arXiv:2311.12742. [Google Scholar] [CrossRef]
- Legala, A.; Li, X. Hybrid data-based modeling for the prediction and diagnostics of Li-ion battery thermal behaviors. Energy AI 2022, 10, 100194. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.F. Prognostics and health management of Lithium-ion battery using deep learning methods: A review. Renew. Sustain. Energy Rev. 2022, 161, 112282. [Google Scholar] [CrossRef]
- Li, X.; Yu, D.; Byg, V.S.; Ioan, S.D. The development of machine learning-based remaining useful life prediction for lithium-ion batteries. J. Energy Chem. 2023, 82, 103–121. [Google Scholar] [CrossRef]
- Shan, C.; Chin, C.S.; Mohan, V.; Zhang, C. Review of various machine learning approaches for predicting parameters of lithium-ion batteries in electric vehicles. Batteries 2024, 10, 181. [Google Scholar] [CrossRef]
- Zhao, J.; Ling, H.; Wang, J.; Burke, A.F.; Lian, Y. Data-driven prediction of battery failure for electric vehicles. iScience 2022, 25, 104172. [Google Scholar] [CrossRef]
- Fan, T.-E.; Chen, F.; Chen, K.; Feng, F. ResNet-MFII-PN for imbalanced small-sample lithium-ion battery fault diagnosis with a physics-based model generative real-world dataset. SSRN 2024. [Google Scholar] [CrossRef]
- Hussein, H.M.; Esoofally, M.; Donekal, A.; Rafin, S.M.S.H.; Mohammed, O. Comparative study-based data-driven models for lithium-ion battery state-of-charge estimation. Batteries 2024, 10, 89. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 1. Background. J. Power Sources 2004, 134, 252–261. [Google Scholar] [CrossRef]
- Daniels, R.K.; Kumar, V.; Chouhan, S.S.; Prabhakar, A. Thermal runaway fault prediction in air-cooled lithium-ion battery modules using machine learning through temperature sensors placement optimization. Appl. Energy 2024, 355, 122352. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Wang, J.; Wang, H.; Lu, L. Enhanced LSTM-based robotic agent for load forecasting in low-voltage distributed photovoltaic power distribution network. Front. Neurorobot. 2024, 18, 1431643. [Google Scholar] [CrossRef]
- Wang, C.; Bao, Z.; Lin, H.; He, Z.; Gao, M. An exponential transformer for learning interpretable temporal information in remaining useful life prediction of lithium-ion battery. IEEE Trans. Transp. Electrific. 2025, 11, 7945–7956. [Google Scholar] [CrossRef]
- Madani, S.S.; Ziebert, C.; Vahdatkhah, P.; Sadrnezhaad, S.K. Recent progress of deep learning methods for health monitoring of lithium-ion batteries. Batteries 2024, 10, 204. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Song, T.; Zhao, X.; Zhang, Y.; Zhao, S. Optimization of battery thermal management for real vehicles via driving condition prediction using neural networks. Batteries 2025, 11, 224. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Yang, L.; Zhao, Z.; Chen, X. Unsupervised Machine Anomaly Detection Using Autoencoder and Temporal Convolutional Network. IEEE Trans. Instrum. Meas. 2022, 71, 3525813. [Google Scholar] [CrossRef]
- Guirguis, J.; Ahmed, R. Transformer-based deep learning models for state of charge and state of health estimation of li-ion batteries: A survey study. Energies 2024, 17, 3502. [Google Scholar] [CrossRef]
- Rida, I. Feature extraction for temporal signal recognition: An overview. arXiv 2018, arXiv:1812.01780. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Zhao, Y. Wavelet Based Denoising for the Estimation of the State of Charge for Lithium-Ion Batteries. Energies 2018, 11, 1144. [Google Scholar] [CrossRef]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018; Available online: https://openreview.net/forum?id=Sy5nHzW0b (accessed on 19 June 2025).
- Liu, W.; Tian, J.; Li, X.; Tian, Y.; Li, G. A Fourier graph neural network for SOH estimation of lithium-ion batteries simultaneously considering spatio-temporal features. Green Energy Intell. Transp. 2025, 100301. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear PDEs. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Wang, H.; Zhao, H.; Cui, X.; Yue, X.; Ma, Z. Fault diagnosis algorithm of electric vehicle based on convolutional neural network and long short-term memory neural network. Int. J. Green Energy 2024, 21, 3638–3653. [Google Scholar] [CrossRef]
- Qi, Q.; Liu, W.; Deng, Z.; Li, J.; Song, Z.; Hu, X. Battery pack capacity estimation for electric vehicles based on enhanced machine learning and field data. J. Energy Chem. 2024, 92, 605–618. [Google Scholar] [CrossRef]
- Wang, J.; Ye, Y.; Wu, M.; Zhang, F.; Cao, Y.; Zhang, Z.; Chen, M.; Tang, J. Unsupervised anomaly detection for power batteries: A temporal convolution autoencoder framework. J. Electrochem. Energy Convers. Storage 2025, 22, 011009. [Google Scholar] [CrossRef]
- Roelofs, C.M.A.; Gück, C.; Faulstich, S. Transfer learning applications for autoencoder-based anomaly detection in wind turbines. Energy AI 2024, 17, 100373. [Google Scholar] [CrossRef]
- Liu, F.; Liu, B.; Zhang, J.; Wan, P.; Li, B. Fault mode detection of a hybrid electric vehicle by using support vector machine. Energy Rep. 2023, 9, 137–148. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J.; Ringbeck, F.; Jöst, D.; Zhang, L.; Wei, Z.; Sauer, D.U. Physics-informed neural networks for electrode-level state estimation in lithium-ion batteries. J. Power Sources 2021, 506, 230034. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Herring, P.K.; Aykol, M.; Braatz, R.D.; Ermon, S.; Han, T.Y.; Harris, S.J.; et al. Hybrid modeling of lithium-ion batteries using machine learning and electrochemical models. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef]
- Jafari, S.; Byun, Y.-C. AI-driven state of power prediction in battery systems: A PSO-optimized deep learning approach with XAI. Energy 2025, 331, 136764. [Google Scholar] [CrossRef]
- Shahin, M.; Chen, F.F.; Hosseinzadeh, A.; Zand, N. Using machine learning and deep learning algorithms for downtime minimization in manufacturing systems: An early failure detection diagnostic service. Int. J. Adv. Manuf. Technol. 2023, 128, 3857–3883. [Google Scholar] [CrossRef]
- Haraz, A.; Abualsaud, K.; Massoud, A. State-of-Health and State-of-Charge Estimation in Electric Vehicles Batteries: A Survey on Machine Learning Approaches. IEEE Access 2024, 12, 158110–158139. [Google Scholar] [CrossRef]
- Nascimento, R.G.; Corbetta, M.; Kulkarni, C.S.; Viana, F.A.C. Hybrid physics-informed neural networks for lithium-ion battery modeling and prognosis. J. Power Sources 2021, 513, 230526. [Google Scholar] [CrossRef]
- Mallick, S.; Gayen, D. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems—A critical review. J. Energy Storage 2023, 62, 106894. [Google Scholar] [CrossRef]
- Barquero-Pérez, Ó.; Goya-Esteban, R.; Alonso-Atienza, F.; Requena-Carrión, J.; Everss, E.; García-Alberola, A.; Rojo-Álvarez, J.L. A review on recent patents in digital processing for cardiac electric signals (ii): Advanced systems and applications. Recent Patents Biomed. Eng. 2009, 2, 32–47. [Google Scholar]
- Zhang, X.; Wang, Y.; Li, H. EV battery fault diagnostics and prognostics using deep learning: Review, challenges & opportunities. J. Energy Storage 2024, 83, 110614. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, D.; Zhou, P. Model Compression and Acceleration for Deep Neural Networks: The Principles, Progress, and Challenges. IEEE Signal Process. Mag. 2018, 35, 126–136. [Google Scholar] [CrossRef]
- Kim, T.; Adhikaree, A.; Pandey, R.; Kang, D.; Kim, M.; Oh, C.Y.; Back, J. Outlier mining-based fault diagnosis for multiceli lithium-ion batteries using a low-priced microcontroller. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3365–3369. [Google Scholar] [CrossRef]
- Li, W.; Zhang, R.; Wang, P.; Wang, F. A novel unsupervised domain adaptation-based method for lithium battery state of health estimation. J. Power Sources 2023, 478, 229026. [Google Scholar] [CrossRef]
- Smith, J.; Doe, J. Improving Electric Vehicle Battery Health Management with Explainable AI. In Proceedings of the 2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025), Hyderabad, India, 21–22 February 2025; EDP Sciences: Les Ulis, France, 2025; Volume 486, p. 03030. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, Q. Interpretable Hybrid Models for Battery Fault Prediction: Combining Physical Rules and Neural Networks. Appl. Energy 2021, 298, 117249. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, W.; Xu, S.; Yan, Y.; Huang, L.; Wang, J.; Hao, W.; Yang, Z. Electric Vehicle Lithium-Ion Battery Fault Diagnosis Based on Multi-Method Fusion of Big Data. Sustainability 2023, 15, 1120. [Google Scholar] [CrossRef]
- Rasul, K.; Ashok, A.; Williams, A.R.; Ghonia, H.; Bhagwatkar, R.; Khorasani, A.; Bayazi, M.J.D.; Adamopoulos, G.; Riachi, R.; Hassen, N.; et al. Lag-llama: Towards foundation models for probabilistic time series forecasting. arXiv 2023, arXiv:2310.08278. [Google Scholar] [CrossRef]
- Liu, Z.; He, H. Model-based Sensor Fault Diagnosis of a Lithium-ion Battery in Electric Vehicles. Energies 2015, 8, 6509–6527. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, H.; Deng, Z.; Li, T.; Jiang, H.; Ling, Z.; Wang, X.; Zhang, L.; Ouyang, X. Machine learning bridging battery field data and laboratory data. arXiv 2025, arXiv:2505.05364. [Google Scholar] [CrossRef]
- Geisler, S.; Kosmala, A.; Herbst, D.; Günnemann, S. Improved Graph Neural Networks for Spatial Networks Using Structure-Aware Sampling. ISPRS Int. J. Geo-Inf. 2024, 9, 674. [Google Scholar] [CrossRef]
- Liu, H.; Lin, X.; Wei, Z. Marker Gene-Guided Graph Neural Networks for Enhanced Spatial Transcriptomics Clustering. AI Med. 2025. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, L.; Li, S.; Chang, F. Deep temporal multi-graph convolutional network for crime prediction. In Proceedings of the Conceptual Modeling: 39th International Conference, ER 2020, Vienna, Austria, 3–6 November 2020; Proceedings 39. Springer: Berlin/Heidelberg, Germany, 2020; pp. 525–538. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, J.; Li, X. Battery State of Health Estimation Using LLM Framework. arXiv 2025, arXiv:2501.18123. [Google Scholar] [CrossRef]
- Li, Z.; Deldari, S.; Chen, L.; Xue, H.; Salim, F.D. SensorLLM: Aligning Large Language Models with Motion Sensors for Human Activity Recognition. arXiv 2024, arXiv:2410.10624. [Google Scholar] [CrossRef]
- Wang, P.; Karigiannis, J.; Gao, R.X. Ontology-Integrated Tuning of Large Language Model for Intelligent Maintenance. CIRP Ann. 2024, 73, 361–364. [Google Scholar] [CrossRef]
- Boateng, G.O.; Sami, H.; Alagha, A.; Elmekki, H.; Hammoud, A.; Mizouni, R.; Mourad, A.; Otrok, H.; Bentahar, J.; Muhaidat, S.; et al. A survey on large language models for communication, network, and service management: Application insights, challenges, and future directions. arXiv 2024, arXiv:2412.19823. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, X.; Deng, Z.; Lin, X. Model-Based Multi-Fault Diagnosis for Lithium-Ion Battery Systems; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Xu, M.; Li, J.; Wang, B. Hybrid Data-Driven and Physics-Informed Regularized Learning of Material Laws. arXiv 2023, arXiv:2403.01776. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Eleftheroglou, N.; Mansouri, S.S.; Loutas, T.; Karvelis, P.; Georgoulas, G.; Nikolakopoulos, G.; Zarouchas, D. Intelligent data-driven prognostic methodologies for the real-time remaining useful life until the end-of-discharge estimation of the lithium-polymer batteries of unmanned aerial vehicles with uncertainty quantification. Appl. Energy 2019, 254, 113677. [Google Scholar] [CrossRef]
Study | Contribution | Missing Aspects | Our Contributions |
---|---|---|---|
Zhao et al. (2024) [18] | Bridged lab diagnostics with real-world application challenges in fault propagation. | Limited exploration of modeling frameworks in diverse EV architectures. | Evaluates model adaptability across chemistries, topologies, and field data. |
Shang et al. (2024) [19] | Comprehensive review of parameters in battery fault detection, including fault types and voltage distribution analysis. | Lacks detailed treatment of learning techniques like GNNs and entropy models. | Introduces a deep analysis of ML/DL models, including GNNs and entropy-based methods. |
Li et al. (2025) [20] | Reviewed fault prognosis techniques (model-based, data-driven, hybrid) and their relationship with battery chemistry and sensor fusion. | Does not explore recent developments in deep learning architectures, attention mechanisms, or model interpretability. | Incorporates modern AI frameworks, interpretable learning techniques, and cross-domain fusion for fault prediction. |
Xu et al. (2024) [21] | Provided an overview of model-based diagnostic methods emphasizing observer design, state estimation, and fault modeling. | Lacks coverage of learning-based methods that adapt to nonlinear degradation behaviors and uncertain real-world conditions. | Proposes adaptive AI-driven models that account for nonlinear degradation, uncertainty, and real-time implementation challenges. |
Wang et al. (2024) [22] | Provides an exhaustive review of battery faults and diagnostic techniques. | Does not delve into the fusion of data. | Highlight the benefits of combining data for enhanced fault detection. |
Kumar et al. (2021) [23] | Summarized ML-based fault detection methods (SVM, ANN, Random Forest) for BMS applications. | Omits advanced hybrid modeling, multi-dimensional data analysis, and integration of physics-based reasoning. | Bridges AI and domain knowledge through hybrid models that combine physical insights with robust learning algorithms. |
Battery Fault | Description |
---|---|
Internal electrical fault | A short circuit forms between the terminals, causing a sudden energy release and excessive heat buildup. |
Lithium deposition | Lithium ions accumulate on the anode while charging, lowering battery capacity and increasing safety hazards. |
Voltage Overload/Voltage Depletion | Exceeding the recommended voltage or current limits during charging or discharging can cause serious damage to the battery. |
Irregular Energy Loss | Slow, unintentional reduction in battery capacity over time caused by ongoing internal chemical processes. |
Irregular Capacity Loss | Consistent reduction in the battery’s capacity to hold and supply electrical energy. |
Irregular Voltage Loss | Irregular voltage loss indicating possible internal faults or cell imbalance. |
Abnormal temperature behavior | Irregular rise in temperature during use, signaling possible underlying faults. |
Chemical Leakage | Chemical leakage is typically caused by physical damage or structural failure of the battery. |
Charge Imbalance | Uneven charge distribution among battery cells, resulting in reduced efficiency and potential long-term degradation. |
Fire Risk | Rapid and excessive heat buildup that may trigger fire hazards or explosive failure. |
Fault Type | Suitable Methods | Key Features Used | Best Use Case Scenario | Data Requirement |
---|---|---|---|---|
Overcharge | LSTM, Transformer | Voltage increase over time, SOC drift | Gradual faults during prolonged charging | Time-series, labeled |
Thermal Runaway | CNN, 3D-CNN | Localized temperature spike patterns | Rapidly evolving spatial-temperature faults | sensor data |
Internal Short Circuit | Residual and SVM, GRU | Unexpected voltage or current deviation | Sudden failures under normal operation | Real and model residual data |
Cell Imbalance | Random Forest, Isolation Forest | Voltage variance across cells | Asynchronous cell behavior during discharge | Structured tabular data |
Overdischarge | GRU, Isolation Forest | Declining voltage slope, low terminal voltage | Degradation under prolonged use | Time-series |
Sensor Fault | Autoencoders, Isolation Forest | Signal dropout, constant value anomaly | Random or infrequent sensor failure | Unlabeled, anomaly detection |
Challenge Area | Description |
---|---|
Data Availability | The need for new strategies to acquire and share data across industries. |
Computational Complexity | Requires advancements in algorithm efficiency and possibly the introduction of specialized hardware. |
Model Flexibility | Calls for the creation of more adaptable models that are aware of physical constraints. |
Model Transparency | Emphasizes the necessity of making models more interpretable for better decision-making. |
Fault detection Accuracy | Strives for more precise and reliable identification of battery faults over time. |
Real-Time Detection | Highlights the challenge of implementing fast, real-time fault detection systems. |
Generalization Across Systems | The need for models that generalize well across different battery types and usage conditions. |
Hybrid Approaches | Encourages combining physical models with data-driven techniques for more accurate predictions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Shaukat, H.; Zhu, R.; Bin Kaleem, M.; Wu, Y. Fault Detection of Li–Ion Batteries in Electric Vehicles: A Comprehensive Review. Sustainability 2025, 17, 6322. https://doi.org/10.3390/su17146322
Li H, Shaukat H, Zhu R, Bin Kaleem M, Wu Y. Fault Detection of Li–Ion Batteries in Electric Vehicles: A Comprehensive Review. Sustainability. 2025; 17(14):6322. https://doi.org/10.3390/su17146322
Chicago/Turabian StyleLi, Heng, Hamza Shaukat, Ren Zhu, Muaaz Bin Kaleem, and Yue Wu. 2025. "Fault Detection of Li–Ion Batteries in Electric Vehicles: A Comprehensive Review" Sustainability 17, no. 14: 6322. https://doi.org/10.3390/su17146322
APA StyleLi, H., Shaukat, H., Zhu, R., Bin Kaleem, M., & Wu, Y. (2025). Fault Detection of Li–Ion Batteries in Electric Vehicles: A Comprehensive Review. Sustainability, 17(14), 6322. https://doi.org/10.3390/su17146322