Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,767)

Search Parameters:
Keywords = advanced energy systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
125 pages, 50190 KiB  
Review
Sulfurized Polyacrylonitrile for Rechargeable Batteries: A Comprehensive Review
by Mufeng Wei
Batteries 2025, 11(8), 290; https://doi.org/10.3390/batteries11080290 (registering DOI) - 1 Aug 2025
Abstract
This paper presents a comprehensive review of research on sulfurized polyacrylonitrile (SPAN) for rechargeable batteries which was firstly reported by Jiulin Wang in July 2002. Spanning over two decades (2002–2025), this review cites over 600 publications, covering various aspects of SPAN-based battery systems. [...] Read more.
This paper presents a comprehensive review of research on sulfurized polyacrylonitrile (SPAN) for rechargeable batteries which was firstly reported by Jiulin Wang in July 2002. Spanning over two decades (2002–2025), this review cites over 600 publications, covering various aspects of SPAN-based battery systems. These include SPAN chemical structure, structural evolution during synthesis, redox reaction mechanism, synthetic conditions, cathode, electrolyte, binder, current collector, separator, anode, SPAN as additive, SPAN as anode, and high-energy SPAN cathodes. As this field continues to advance rapidly and garners significant interest, this review aims to provide researchers with a thorough and in-depth overview of the progress made over the past 23 years. Additionally, it highlights emerging trends and outlines future directions for SPAN research and its practical applications in energy storage technologies. Full article
Show Figures

Figure 1

36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 (registering DOI) - 1 Aug 2025
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 (registering DOI) - 1 Aug 2025
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

35 pages, 2730 KiB  
Review
Deep Learning and NLP-Based Trend Analysis in Actuators and Power Electronics
by Woojun Jung and Keuntae Cho
Actuators 2025, 14(8), 379; https://doi.org/10.3390/act14080379 (registering DOI) - 1 Aug 2025
Abstract
Actuators and power electronics are fundamental components of modern control systems, enabling high-precision functionality, enhanced energy efficiency, and sophisticated automation. This study investigates evolving research trends and thematic developments in these areas spanning the last two decades (2005–2024). This study analyzed 1840 peer-reviewed [...] Read more.
Actuators and power electronics are fundamental components of modern control systems, enabling high-precision functionality, enhanced energy efficiency, and sophisticated automation. This study investigates evolving research trends and thematic developments in these areas spanning the last two decades (2005–2024). This study analyzed 1840 peer-reviewed abstracts obtained from the Web of Science database using BERTopic modeling, which integrates transformer-based sentence embeddings with UMAP for dimensionality reduction and HDBSCAN for clustering. The approach also employed class-based TF-IDF calculations, intertopic distance visualization, and hierarchical clustering to clarify topic structures. The analysis revealed a steady increase in research publications, with a marked surge post-2015. From 2005 to 2014, investigations were mainly focused on established areas including piezoelectric actuators, adaptive control, and hydraulic systems. In contrast, the 2015–2024 period saw broader diversification into new topics such as advanced materials, robotic mechanisms, resilient systems, and networked actuator control through communication protocols. The structural topic analysis indicated a shift from a unified to a more differentiated and specialized spectrum of research themes. This study offers a rigorous, data-driven outlook on the increasing complexity and diversity of actuator and power electronics research. The findings are pertinent for researchers, engineers, and policymakers aiming to advance state-of-the-art, sustainable industrial technologies. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

42 pages, 4490 KiB  
Review
Continuous Monitoring with AI-Enhanced BioMEMS Sensors: A Focus on Sustainable Energy Harvesting and Predictive Analytics
by Mingchen Cai, Hao Sun, Tianyue Yang, Hongxin Hu, Xubing Li and Yuan Jia
Micromachines 2025, 16(8), 902; https://doi.org/10.3390/mi16080902 (registering DOI) - 31 Jul 2025
Abstract
Continuous monitoring of environmental and physiological parameters is essential for early diagnostics, real-time decision making, and intelligent system adaptation. Recent advancements in bio-microelectromechanical systems (BioMEMS) sensors have significantly enhanced our ability to track key metrics in real time. However, continuous monitoring demands sustainable [...] Read more.
Continuous monitoring of environmental and physiological parameters is essential for early diagnostics, real-time decision making, and intelligent system adaptation. Recent advancements in bio-microelectromechanical systems (BioMEMS) sensors have significantly enhanced our ability to track key metrics in real time. However, continuous monitoring demands sustainable energy supply solutions, especially for on-site energy replenishment in areas with limited resources. Artificial intelligence (AI), particularly large language models, offers new avenues for interpreting the vast amounts of data generated by these sensors. Despite this potential, fully integrated systems that combine self-powered BioMEMS sensing with AI-based analytics remain in the early stages of development. This review first examines the evolution of BioMEMS sensors, focusing on advances in sensing materials, micro/nano-scale architectures, and fabrication techniques that enable high sensitivity, flexibility, and biocompatibility for continuous monitoring applications. We then examine recent advances in energy harvesting technologies, such as piezoelectric nanogenerators, triboelectric nanogenerators and moisture electricity generators, which enable self-powered BioMEMS sensors to operate continuously and reducereliance on traditional batteries. Finally, we discuss the role of AI in BioMEMS sensing, particularly in predictive analytics, to analyze continuous monitoring data, identify patterns, trends, and anomalies, and transform this data into actionable insights. This comprehensive analysis aims to provide a roadmap for future continuous BioMEMS sensing, revealing the potential unlocked by combining materials science, energy harvesting, and artificial intelligence. Full article
Show Figures

Figure 1

19 pages, 1020 KiB  
Article
Optimizing Power Sharing and Demand Reduction in Distributed Energy Resources for Apartments Through Tenant Incentivization
by Janak Nambiar, Samson Yu, Jag Makam and Hieu Trinh
Energies 2025, 18(15), 4073; https://doi.org/10.3390/en18154073 (registering DOI) - 31 Jul 2025
Abstract
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to [...] Read more.
The increasing demand for electricity in multi-tenanted residential areas has placed unforeseen strain on sub-transformers, particularly in dense urban environments. This strain compromises overall grid performance and challenges utilities with shifting and rising peak demand periods. This study presents a novel approach to enhance the operation of a virtual power plant (VPP) comprising a microgrid (MG) integrated with renewable energy sources (RESs) and energy storage systems (ESSs). By employing an advanced monitoring and control system, the proposed topology enables efficient energy management and demand-side control within apartment complexes. The system supports controlled electricity distribution, reducing the likelihood of unpredictable demand spikes and alleviating stress on local infrastructure during peak periods. Additionally, the model capitalizes on the large number of tenancies to distribute electricity effectively, leveraging locally available RESs and ESSs behind the sub-transformer. The proposed research provides a systematic framework for managing electricity demand and optimizing resource utilization, contributing to grid reliability and a transition toward a more sustainable, decentralized energy system. Full article
13 pages, 373 KiB  
Article
Impact Assessment of Rural Electrification Through Photovoltaic Kits on Household Expenditures and Income: The Case of Morocco
by Abdellah Oulakhmis, Rachid Hasnaoui and Youness Boudrik
Economies 2025, 13(8), 224; https://doi.org/10.3390/economies13080224 (registering DOI) - 31 Jul 2025
Abstract
This study evaluates the socio-economic impact of rural electrification through photovoltaic (PV) systems in Morocco. As part of the country’s broader energy transition strategy, decentralized renewable energy solutions like PV kits have been deployed to improve energy access in isolated rural areas. Using [...] Read more.
This study evaluates the socio-economic impact of rural electrification through photovoltaic (PV) systems in Morocco. As part of the country’s broader energy transition strategy, decentralized renewable energy solutions like PV kits have been deployed to improve energy access in isolated rural areas. Using quasi-experimental econometric techniques, specifically propensity score matching (PSM) and estimation of the Average Treatment Effect on the Treated (ATT), the study measures changes in household income, expenditures, and economic activities resulting from PV electrification. The results indicate significant positive effects on household income, electricity spending, and productivity in agriculture and livestock. These findings highlight the critical role of decentralized renewable energy in advancing rural development and poverty reduction. Policy recommendations include expanding PV access with complementary support measures such as microfinance and technical training. Full article
Show Figures

Figure 1

18 pages, 6506 KiB  
Article
Realizing the Role of Hydrogen Energy in Ports: Evidence from Ningbo Zhoushan Port
by Xiaohui Zhong, Yuxin Li, Daogui Tang, Hamidreza Arasteh and Josep M. Guerrero
Energies 2025, 18(15), 4069; https://doi.org/10.3390/en18154069 (registering DOI) - 31 Jul 2025
Abstract
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port [...] Read more.
The maritime sector’s transition to sustainable energy is critical for achieving global carbon neutrality, with container terminals representing a key focus due to their high energy consumption and emissions. This study explores the potential of hydrogen energy as a decarbonization solution for port operations, using the Chuanshan Port Area of Ningbo Zhoushan Port (CPANZP) as a case study. Through a comprehensive analysis of hydrogen production, storage, refueling, and consumption technologies, we demonstrate the feasibility and benefits of integrating hydrogen systems into port infrastructure. Our findings highlight the successful deployment of a hybrid “wind-solar-hydrogen-storage” energy system at CPANZP, which achieves 49.67% renewable energy contribution and an annual reduction of 22,000 tons in carbon emissions. Key advancements include alkaline water electrolysis with 64.48% efficiency, multi-tier hydrogen storage systems, and fuel cell applications for vehicles and power generation. Despite these achievements, challenges such as high production costs, infrastructure scalability, and data integration gaps persist. The study underscores the importance of policy support, technological innovation, and international collaboration to overcome these barriers and accelerate the adoption of hydrogen energy in ports worldwide. This research provides actionable insights for port operators and policymakers aiming to balance operational efficiency with sustainability goals. Full article
Show Figures

Figure 1

37 pages, 7777 KiB  
Review
Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects
by Haifeng Huang, Shuhao Zhang, Yizhe Wang, Yipu Guo, Chao Zhang and Fulin Qu
Materials 2025, 18(15), 3601; https://doi.org/10.3390/ma18153601 (registering DOI) - 31 Jul 2025
Abstract
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material [...] Read more.
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material strategies, and performance metrics remains insufficient. In this review, CBB systems are categorized into two representative configurations: probe-type galvanic cells and layered monolithic structures. Their structural characteristics and electrochemical behaviors are critically compared. Strategies to enhance performance include improving ionic conductivity through alkaline pore solutions, facilitating electron transport using carbon-based conductive networks, and incorporating redox-active materials such as zinc–manganese dioxide and nickel–iron couples. Early CBB prototypes demonstrated limited energy densities due to high internal resistance and inefficient utilization of active components. Recent advancements in electrode architecture, including nickel-coated carbon fiber meshes and three-dimensional nickel foam scaffolds, have achieved stable rechargeability across multiple cycles with energy densities surpassing 11 Wh/m2. These findings demonstrate the practical potential of CBBs for both energy storage and additional functionalities, such as strain sensing enabled by conductive cement matrices. This review establishes a critical basis for future development of CBBs as multifunctional structural components in infrastructure applications. Full article
Show Figures

Figure 1

13 pages, 13107 KiB  
Article
Ceramic Isolated High-Torque Permanent Magnet Coupling for Deep-Sea Applications
by Liying Sun, Xiaohui Gao and Yongguang Liu
J. Mar. Sci. Eng. 2025, 13(8), 1474; https://doi.org/10.3390/jmse13081474 - 31 Jul 2025
Abstract
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This [...] Read more.
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This study presents a novel permanent magnet coupling featuring a ceramic isolation sleeve engineered for deep-sea cryogenic ammonia submersible pumps. The ceramic sleeve eliminates eddy current losses and provides exceptional corrosion resistance in acidic/alkaline environments. To withstand 3.5 MPa hydrostatic pressure, a 6-mm-thick sleeve necessitates a 10 mm operational air gap, challenging magnetic circuit efficiency. To address this limitation, an improved 3D magnetic equivalent circuit (MEC) model was developed that explicitly accounts for flux leakage and axial end-effects, enabling the accurate characterization of large air gap fields. Leveraging this model, a Taguchi method-based optimization framework was implemented by balancing key parameters to maximize the torque density. This co-design strategy achieved a 21% increase in torque density, enabling higher torque transfer per unit volume. Experimental validation demonstrated a maximum torque of 920 Nm, with stable performance under simulated deep-sea conditions. This design establishes a new paradigm for high-power leak-free transmission in corrosive, high-pressure marine environments, advancing applications from deep-sea propulsion to offshore energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

59 pages, 2417 KiB  
Review
A Critical Review on the Battery System Reliability of Drone Systems
by Tianren Zhao, Yanhui Zhang, Minghao Wang, Wei Feng, Shengxian Cao and Gong Wang
Drones 2025, 9(8), 539; https://doi.org/10.3390/drones9080539 (registering DOI) - 31 Jul 2025
Abstract
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements [...] Read more.
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements in UAV battery reliability, covering definitions and metrics, modeling approaches, state estimation, fault diagnosis, and battery management system (BMS) technologies. Based on international standards, reliability encompasses performance stability, environmental adaptability, and safety redundancy, encompassing metrics such as the capacity retention rate, mean time between failures (MTBF), and thermal runaway warning time. Modeling methods for reliability include mathematical, data-driven, and hybrid models, which are evaluated for accuracy and efficiency under dynamic conditions. State estimation focuses on five key battery parameters and compares neural network, regression, and optimization algorithms in complex flight scenarios. Fault diagnosis involves feature extraction, time-series modeling, and probabilistic inference, with multimodal fusion strategies being proposed for faults like overcharge and thermal runaway. BMS technologies include state monitoring, protection, and optimization, and balancing strategies and the potential of intelligent algorithms are being explored. Challenges in this field include non-unified standards, limited model generalization, and complexity in diagnosing concurrent faults. Future research should prioritize multi-physics-coupled modeling, AI-driven predictive techniques, and cybersecurity to enhance the reliability and intelligence of battery systems in order to support the sustainable development of unmanned systems. Full article
Show Figures

Figure 1

18 pages, 5712 KiB  
Article
A Fractional Fourier Transform-Based Channel Estimation and Equalization Algorithm for Mud Pulse Telemetry
by Jingchen Zhang, Zitong Sha, Lei Wan, Yishan Su, Jiang Zhu and Fengzhong Qu
J. Mar. Sci. Eng. 2025, 13(8), 1468; https://doi.org/10.3390/jmse13081468 - 31 Jul 2025
Abstract
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, [...] Read more.
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, this work proposes a fractional Fourier transform (FrFT)-based channel estimation and equalization method. Leveraging the energy aggregation of linear frequency-modulated signals in the fractional Fourier domain, the time delay and attenuation parameters of the multipath channel can be estimated accurately. Furthermore, a fractional Fourier domain equalizer is proposed to pre-filter the frequency-selective fading channel using fractionally spaced decision feedback equalization. The effectiveness of the proposed method is evaluated through a simulation analysis and field experiments. The simulation results demonstrate that this method can significantly reduce multipath effects, effectively control the impact of noise, and facilitate subsequent demodulation. The field experiment results indicate that the demodulation of real data achieves advanced data rate communication (over 12 bit/s) and a low bit error rate (below 0.5%), which meets engineering requirements in a 3000 m drilling system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3206 KiB  
Article
Inverse Punicines: Isomers of Punicine and Their Application in LiAlO2, Melilite and CaSiO3 Separation
by Maximilian H. Fischer, Ali Zgheib, Iliass El Hraoui, Alena Schnickmann, Thomas Schirmer, Gunnar Jeschke and Andreas Schmidt
Separations 2025, 12(8), 202; https://doi.org/10.3390/separations12080202 - 30 Jul 2025
Abstract
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. [...] Read more.
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. These amphoteric molecules were synthesized via a straightforward four-step route and structurally tuned for hydrophobization by alkylation. Their performance as collectors was evaluated in microflotation experiments of lithium aluminate (LiAlO2) and silicate matrix minerals such as melilite and calcium silicate. Characterization techniques including ultraviolet-visible (UV-Vis), nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy as well as contact angle, zeta potential (ζ potential) and microflotation experiments revealed strong pH- and structure-dependent interactions with mineral surfaces. Notably, N-alkylated inverse Punicine derivatives showed high flotation yields for LiAlO2 at pH of 11, with a derivative possessing a dodecyl group attached to the nitrogen as collector achieving up to 86% recovery (collector conc. 0.06 mmol/L). Preliminary separation tests showed Li upgrading from 5.27% to 6.95%. Radical formation and light-response behavior were confirmed by ESR and flotation tests under different illumination conditions. These results demonstrate the potential of inverse Punicines as tunable, sustainable flotation reagents for advanced lithium recycling from complex slag systems. Full article
(This article belongs to the Special Issue Application of Green Flotation Technology in Mineral Processing)
Show Figures

Graphical abstract

33 pages, 7374 KiB  
Article
Exploration of Carbon Emission Reduction Pathways for Urban Residential Buildings at the Provincial Level: A Case Study of Jiangsu Province
by Jian Xu, Tao Lei, Milun Yang, Huixuan Xiang, Ronge Miao, Huan Zhou, Ruiqu Ma, Wenlei Ding and Genyu Xu
Buildings 2025, 15(15), 2687; https://doi.org/10.3390/buildings15152687 - 30 Jul 2025
Abstract
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework [...] Read more.
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework for differentiated carbon reduction pathways. The methodology combines spatial autocorrelation analysis, logarithmic mean Divisia index (LMDI) decomposition, system dynamics modeling, and Tapio decoupling analysis to examine urban residential building emissions across three regions from 2016–2022. Results reveal significant spatial clustering of emissions (Moran’s I peaking at 0.735), with energy consumption per unit area as the dominant driver across all regions (contributing 147.61%, 131.82%, and 147.57% respectively). Scenario analysis demonstrates that energy efficiency policies can reduce emissions by 10.1% while maintaining 99.2% of economic performance, enabling carbon peak achievement by 2030. However, less developed northern regions emerge as binding constraints, requiring technology investments. Decoupling analysis identifies region-specific optimal pathways: conventional development for advanced regions, balanced approaches for transitional areas, and subsidies for lagging regions. These findings challenge assumptions about environment-economy trade-offs and provide a replicable framework for designing differentiated climate policies in heterogeneous territories, offering insights for similar regions worldwide navigating the transition to sustainable development. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

40 pages, 7941 KiB  
Article
Synergistic Hierarchical AI Framework for USV Navigation: Closing the Loop Between Swin-Transformer Perception, T-ASTAR Planning, and Energy-Aware TD3 Control
by Haonan Ye, Hongjun Tian, Qingyun Wu, Yihong Xue, Jiayu Xiao, Guijie Liu and Yang Xiong
Sensors 2025, 25(15), 4699; https://doi.org/10.3390/s25154699 - 30 Jul 2025
Viewed by 34
Abstract
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic [...] Read more.
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic AI framework. The framework integrates (1) a novel adaptation of the Swin-Transformer to generate a dense, semantic risk map from raw visual data, enabling the system to interpret ambiguous marine conditions like sun glare and choppy water, enabling real-time environmental understanding crucial for guidance; (2) a Transformer-enhanced A-star (T-ASTAR) algorithm with spatio-temporal attentional guidance to generate globally near-optimal and energy-aware static paths; (3) a domain-adapted TD3 agent featuring a novel energy-aware reward function that optimizes for USV hydrodynamic constraints, making it suitable for long-endurance missions tailored for USVs to perform dynamic local path optimization and real-time obstacle avoidance, forming a key control element; and (4) CUDA acceleration to meet the computational demands of real-time ocean engineering applications. Simulations and real-world data verify the framework’s superiority over benchmarks like A* and RRT, achieving 30% shorter routes, 70% fewer turns, 64.7% fewer dynamic collisions, and a 215-fold speed improvement in map generation via CUDA acceleration. This research underscores the importance of integrating powerful AI components within a hierarchical synergy, encompassing AI-based perception, hierarchical decision planning for guidance, and multi-stage optimal search algorithms for control. The proposed solution significantly advances USV autonomy, addressing critical ocean engineering challenges such as navigation in dynamic environments, object avoidance, and energy-constrained operations for unmanned maritime systems. Full article
Show Figures

Figure 1

Back to TopTop