Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = advanced emergency braking system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5983 KiB  
Article
Fuzzy Logic Control for Adaptive Braking Systems in Proximity Sensor Applications
by Adnan Shaout and Luis Castaneda-Trejo
Electronics 2025, 14(14), 2858; https://doi.org/10.3390/electronics14142858 - 17 Jul 2025
Viewed by 288
Abstract
This paper details the design and implementation of a fuzzy logic control system for an advanced driver-assistance system (ADAS) that adjusts brake force based on proximity sensing, vehicle speed, and road conditions. By employing a cost-effective ultrasonic sensor (HC-SR04) and an STM32 microcontroller, [...] Read more.
This paper details the design and implementation of a fuzzy logic control system for an advanced driver-assistance system (ADAS) that adjusts brake force based on proximity sensing, vehicle speed, and road conditions. By employing a cost-effective ultrasonic sensor (HC-SR04) and an STM32 microcontroller, the system facilitates real-time adjustments to braking force, enhancing both vehicle safety and driver comfort. The fuzzy logic controller processes three inputs to deliver a smooth and adaptive brake response, thus addressing the shortcomings of traditional binary systems that can lead to abrupt and unsafe braking actions. The effectiveness of the system is validated through several test cases, demonstrating improved responsiveness and safety across various driving scenarios. This paper presents a cost-effective model for a straightforward braking system using fuzzy logic, laying the groundwork for the development of more advanced systems in emerging technologies. Full article
Show Figures

Figure 1

34 pages, 1638 KiB  
Review
Recent Advances in Bidirectional Converters and Regenerative Braking Systems in Electric Vehicles
by Hamid Naseem and Jul-Ki Seok
Actuators 2025, 14(7), 347; https://doi.org/10.3390/act14070347 - 14 Jul 2025
Viewed by 613
Abstract
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy [...] Read more.
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy recovery, battery longevity, and vehicle-to-grid integration. Bidirectional converters support two-way energy flow, enabling efficient regenerative braking and advanced charging capabilities. The integration of wide-bandgap semiconductors, such as silicon carbide and gallium nitride, further enhances power density and thermal performance. The paper evaluates various converter topologies, including single-stage and multi-stage architectures, and assesses their suitability for high-voltage EV platforms. Intelligent control strategies, including fuzzy logic, neural networks, and sliding mode control, are discussed for optimizing braking force and maximizing energy recuperation. In addition, the paper explores the influence of regenerative braking on battery degradation and presents hybrid energy storage systems and AI-based methods as mitigation strategies. Special emphasis is placed on the integration of RBSs in advanced electric vehicle platforms, including autonomous systems. The review concludes by identifying current challenges, emerging trends, and key design considerations to inform future research and practical implementation in electric vehicle energy systems. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

37 pages, 2546 KiB  
Article
Advancing Aviation Safety Through Predictive Maintenance: A Machine Learning Approach for Carbon Brake Wear Severity Classification
by Patsy Jammal, Olivia Pinon Fischer, Dimitri N. Mavris and Gregory Wagner
Aerospace 2025, 12(7), 602; https://doi.org/10.3390/aerospace12070602 - 1 Jul 2025
Viewed by 411
Abstract
Braking systems are essential to aircraft safety and operational efficiency; however, the variability of carbon brake wear, driven by the intricate interplay of operational and environmental factors, presents challenges for effective maintenance planning. This effort leverages machine learning classifiers to predict wear severity [...] Read more.
Braking systems are essential to aircraft safety and operational efficiency; however, the variability of carbon brake wear, driven by the intricate interplay of operational and environmental factors, presents challenges for effective maintenance planning. This effort leverages machine learning classifiers to predict wear severity using operational data from an airline’s wide-body fleet equipped with wear pin sensors that measure the percentage of carbon pad remaining on each brake. Aircraft-specific metrics from flight data are augmented with weather and airport parameters from FlightAware® to better capture the operational environment. Through a systematic benchmarking of multiple classifiers, combined with structured hyperparameter tuning and uncertainty quantification, LGBM and Decision Tree models emerge as top performers, achieving predictive accuracies of up to 98.92%. The inclusion of environmental variables substantially improves model performance, with relative humidity and wind direction identified as key predictors. While machine learning has been extensively applied to predictive maintenance contexts, this work advances the field of brake wear prediction by integrating a comprehensive dataset that incorporates operational, environmental, and airport-specific features. In doing so, it addresses a notable gap in the existing literature regarding the impact of contextual variables on brake wear prediction. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

25 pages, 5401 KiB  
Article
Coupled Electro-Thermal FEM with Geometric Symmetry Constraints for Modular Battery Pack Design
by Yingshuai Liu, Chenxing Liu, Jianwei Tan and Guangdong Tian
Symmetry 2025, 17(6), 865; https://doi.org/10.3390/sym17060865 - 3 Jun 2025
Cited by 1 | Viewed by 436
Abstract
This study investigates the structural integrity and dynamic behavior of symmetry-optimized battery pack systems for new energy vehicles through advanced finite element analysis. It examines symmetry-optimized battery pack systems with mechanically stable and thermally adaptive potentials. Leveraging geometric symmetry principles, a high-fidelity three-dimensional [...] Read more.
This study investigates the structural integrity and dynamic behavior of symmetry-optimized battery pack systems for new energy vehicles through advanced finite element analysis. It examines symmetry-optimized battery pack systems with mechanically stable and thermally adaptive potentials. Leveraging geometric symmetry principles, a high-fidelity three-dimensional (3D) model was constructed in SolidWorks 2023 and subjected to symmetry-constrained static analysis on ANSYS Workbench 2021 R1 platform. The structural performance was systematically evaluated under three critical asymmetric loading scenarios: emergency left/right turns and braking conditions, with particular attention to symmetric stress distribution patterns. The numerical results confirmed the initial design’s compliance with mechanical requirements while revealing symmetric deformation characteristics in dominant mode shapes. Building upon symmetry-enhanced topology configuration, a novel lightweight strategy was implemented by substituting Q235 steel with ZL104 aluminum alloy. While mechanical symmetry has been widely studied, thermal gradients in battery packs can induce asymmetric expansions. For example, uneven cooling may cause localized warping in aluminum alloy shells. This multiphysics effect must be integrated into symmetry constraints to ensure true stability. Symmetric material distribution optimization reduced the mass by 19% while maintaining structural stability, as validated through comparative static and modal analyses. Notably, the symmetric eigenfrequency arrangement in optimized modules effectively avoids common vehicle excitation bands (8–12 Hz/25–35 Hz), demonstrating significant resonance risk reduction through frequency redistribution. This research establishes a symmetry-driven design paradigm that systematically coordinates structural efficiency with dynamic reliability, providing critical insights for developing next-generation battery systems with balanced performance characteristics. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

11 pages, 1427 KiB  
Article
Double-Regulated Active Cruise Control for a Car Model with Nonlinear Powertrain Design
by Szymon Kozłowski, Kinga Szost, Bogumił Chiliński and Adrian Połaniecki
Electronics 2025, 14(11), 2257; https://doi.org/10.3390/electronics14112257 - 31 May 2025
Viewed by 399
Abstract
The need for autonomous vehicles has started rising rapidly. Many autonomous technologies, such as Cruise Control, the self-parking system, and the emergency braking system, are implemented in contemporary cars. These systems do not make the car fully autonomous; however, they allow people to [...] Read more.
The need for autonomous vehicles has started rising rapidly. Many autonomous technologies, such as Cruise Control, the self-parking system, and the emergency braking system, are implemented in contemporary cars. These systems do not make the car fully autonomous; however, they allow people to get used to the idea of self-driving cars. Due to a surge of interest in autonomous systems, the development of these technologies has begun. This paper presents a model of Adaptive Cruise Control with a control system, which consists of two PID regulators. Using two PID regulators provides the possibility of more advanced regulation characteristics than using the classical one-PID regulation system. One of them regulates the powertrain model, the other the braking system model. The simulations are carried out using a vehicle dynamic system, whose thrust is determined by a real engine maximum torque curve that is approximated by combinations of polynomial functions. Due to the non-linearity, caused by the motor’s curve and the use of two regulators, the PID tuning algorithm has been created. The algorithm provides satisfying results, followed by a marginal difference between the requested safe distance and actual distance value. The Active Cruise Control system has been tested using normalized driving cycles, which simulate the real behaviour of a car. The simulation results prove double-PID-regulated ACC’s accuracy and speed of response in different states of motion. Full article
(This article belongs to the Special Issue Autonomous Vehicles Technological Trends, 2nd Edition)
Show Figures

Figure 1

31 pages, 6246 KiB  
Article
A Comprehensive Performance Evaluation Method Based on Dynamic Weight Analytic Hierarchy Process for In-Loop Automatic Emergency Braking System in Intelligent Connected Vehicles
by Dongying Liu, Wanyou Huang, Ruixia Chu, Yanyan Fan, Wenjun Fu, Xiangchen Tang, Zhenyu Li, Xiaoyue Jin, Hongtao Zhang and Yan Wang
Machines 2025, 13(6), 458; https://doi.org/10.3390/machines13060458 - 26 May 2025
Viewed by 514
Abstract
In the field of active safety technology for intelligent connected vehicles (ICVs), the reliability and safety of the Automatic Emergency Braking (AEB) system is recognized as critical to driving safety. However, existing evaluation methods have been constrained by the inadequacy of static weight [...] Read more.
In the field of active safety technology for intelligent connected vehicles (ICVs), the reliability and safety of the Automatic Emergency Braking (AEB) system is recognized as critical to driving safety. However, existing evaluation methods have been constrained by the inadequacy of static weight assessments in adapting to diverse driving conditions, as well as by the disconnect between conventional evaluation frameworks and experimental validation. To address these limitations, a comprehensive Vehicle-in-the-Loop (VIL) evaluation system based on the dynamic weight analytic hierarchy process (DWAHP) was proposed in this study. A two-tier dynamic weighting architecture was established. At the criterion level, a bivariate variable–weight function, incorporating the vehicle speed and road surface adhesion coefficient, was developed to enable the dynamic coupling modeling of road environment parameters. At the scheme level, a five-dimensional indicator system—integrating braking distance, collision speed, and other key metrics—was constructed to support an adaptive evaluation model under multi-condition scenarios. By establishing a dynamic mapping between weight functions and driving condition parameters, the DWAHP methodology effectively overcame the limitations associated with fixed-weight mechanisms in varying operating conditions. Based on this framework, a dedicated AEB system performance test platform was designed and developed. Validation was conducted using both VIL simulations and real-world road tests, with a Volvo S90L as the test vehicle. The experimental results demonstrated high consistency between VIL and real-world road evaluations across three dimensions: safety (deviation: 0.1833/9.5%), reliability (deviation: 0.2478/13.1%), and riding comfort (deviation: 0.05/2.7%), with an overall comprehensive score deviation of 0.0707 (relative deviation: 0.51%). This study not only verified the technical advantages of the dynamic weight model in adapting to complex driving environments and analyzing multi-parameter coupling effects but also established a systematic methodological framework for evaluating AEB system performance via VIL. The findings provide a robust foundation for the testing and assessment of AEB system, offer a structured approach to advancing the performance evaluation of advanced driver assistance systems (ADASs), facilitate the safe and reliable validation of ICVs’ commercial applications, and ultimately contribute to enhancing road traffic safety. Full article
Show Figures

Figure 1

38 pages, 4152 KiB  
Review
A Review of Seatbelt Technologies and Their Role in Vehicle Safety
by Adrian Soica and Carmen Gheorghe
Appl. Sci. 2025, 15(10), 5303; https://doi.org/10.3390/app15105303 - 9 May 2025
Viewed by 1348
Abstract
Seatbelts are critical components of vehicle safety, continuously evolving through technological advancements and regulatory updates. Traditionally designed to secure occupants during collisions, seatbelt innovations, such as retractors, pretensioners, and load limiters, have significantly enhanced comfort and effectiveness. With the advent of autonomous vehicles, [...] Read more.
Seatbelts are critical components of vehicle safety, continuously evolving through technological advancements and regulatory updates. Traditionally designed to secure occupants during collisions, seatbelt innovations, such as retractors, pretensioners, and load limiters, have significantly enhanced comfort and effectiveness. With the advent of autonomous vehicles, seatbelt systems must adapt to new safety challenges, including real-time tension adjustment through active seatbelt systems. These systems, integrated with active safety technologies like automatic emergency braking, offer a more comprehensive safety solution. Furthermore, seatbelt technology must address the diverse needs of different passenger categories. Quantitative data highlight the role of seatbelts for various passenger categories. Children are 55% more likely to be injured by rear structure intrusion and 27% more likely to suffer from compression into the front seat during rear impacts. Pregnant women generally experience milder injuries but are more prone to abdominal injuries. Older adults, who account for 17% of crash fatalities, are more likely to suffer thoracic injuries and fractures due to increased bone fragility. This review explores the integration of traditional and modern seatbelt systems, focusing on passenger-specific adaptations and the future role of seatbelts in autonomous vehicles. This study is based on a thorough literature review, analyzing data from the Web of Science, Scopus, and SAE databases, where available, to assess the contributions and impact of these innovations. Full article
Show Figures

Figure 1

22 pages, 1364 KiB  
Article
Development of Tools for the Automatic Processing of Advanced Driver Assistance System Test Data
by Pasquale Licci, Nicola Ivan Giannoccaro, Davide Palermo, Matteo Dollorenzo, Salvatore Lomartire and Vincenzo Dodde
Machines 2024, 12(12), 896; https://doi.org/10.3390/machines12120896 - 6 Dec 2024
Viewed by 975
Abstract
Advanced driver assistance system (ADAS) technologies are key to improving road safety and promoting innovation in the automotive sector. The approval and analysis of ADAS systems, especially automatic emergency braking (AEB) tests, require complex procedures and in-depth data management. This work presents innovative [...] Read more.
Advanced driver assistance system (ADAS) technologies are key to improving road safety and promoting innovation in the automotive sector. The approval and analysis of ADAS systems, especially automatic emergency braking (AEB) tests, require complex procedures and in-depth data management. This work presents innovative tools developed to facilitate the post-processing of ADAS AEB test data, created in collaboration with Nardò Technical Center. The tool, called Autonomous Code Generation Intelligence (ACGI), introduces an intuitive and intelligent user interface that helps analyze and interpret ADAS test approval regulations. ACGI automates the generation of code sections within a data analytics framework, streamlining the compliance process and significantly reducing the time and programming skills required. This tool allows engineers to focus on high-value tasks, improving overall process efficiency. To achieve this objective, the tool encodes the DAART code framework (Data Analysis and Automated Report Tool) which allows users to carry out real post-processing of the tests conducted on the track. The results demonstrate that both tools simplify and automate critical steps in the ADAS automatic emergency braking test data analysis process. In fact, the tool not only improves the accuracy and efficiency of the analyses but also offers a high degree of customization, making it a flexible and adaptable tool to meet the specific needs of users. In future developments, ACGI could be extended to cover additional ADAS tests and could be equipped with artificial intelligence to suggest configurations based on new regulations. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

16 pages, 7502 KiB  
Article
Optimization and Structural Analysis of Automotive Battery Packs Using ANSYS
by Yingshuai Liu, Chenxing Liu, Jianwei Tan, Yunli He, Feng Li and Tengfei Zhang
Symmetry 2024, 16(11), 1464; https://doi.org/10.3390/sym16111464 - 4 Nov 2024
Cited by 2 | Viewed by 3755
Abstract
The development of new energy vehicles, particularly electric vehicles, is robust, with the power battery pack being a core component of the battery system, playing a vital role in the vehicle’s range and safety. This study takes the battery pack of an electric [...] Read more.
The development of new energy vehicles, particularly electric vehicles, is robust, with the power battery pack being a core component of the battery system, playing a vital role in the vehicle’s range and safety. This study takes the battery pack of an electric vehicle as a subject, employing advanced three-dimensional modeling technology to conduct static and dynamic analyses. Through weight reduction and structural optimization, an innovative power battery pack design scheme is proposed, aiming to achieve a more efficient and lighter electric vehicle power system. The main research tasks are as follows: Firstly, we designed the main load-bearing components of a certain electric vehicle’s power battery pack and established a three-dimensional (3D) model. Then, the model was simplified according to the actual stress conditions of the power battery pack of the electric vehicle and imported into finite element analysis (FEA) software. Next, based on the fundamental principles of the finite element method (FEM), we conducted static analyses under three conditions: bumpy road sharp left turn, bumpy road sharp right turn, and bumpy road emergency braking. The analysis results indicate that the strength of the battery pack meets the allowable requirements, suggesting that the lower housing design has significant redundancy, providing guidance for subsequent optimization. Finally, through modal analysis, we extracted the first six modes of the power battery box, with the first mode frequency being 33.69 Hz. This suggests that the battery pack may experience resonance during actual operation. Based on the static and modal analysis results, we proposed a structural optimization and lightweight design solution for a certain electric vehicle battery pack and compared it with the pre-optimization data. Full article
Show Figures

Figure 1

21 pages, 4077 KiB  
Article
Analysis of Advanced Driver-Assistance Systems for Safe and Comfortable Driving of Motor Vehicles
by Tomasz Neumann
Sensors 2024, 24(19), 6223; https://doi.org/10.3390/s24196223 - 26 Sep 2024
Cited by 11 | Viewed by 9224
Abstract
This paper aims to thoroughly examine and compare advanced driver-assistance systems (ADASs) in the context of their impact on safety and driving comfort. It also sought to determine the level of acceptance and trust drivers have in these systems. The first chapter of [...] Read more.
This paper aims to thoroughly examine and compare advanced driver-assistance systems (ADASs) in the context of their impact on safety and driving comfort. It also sought to determine the level of acceptance and trust drivers have in these systems. The first chapter of this document describes the sensory detectors used in ADASs, including radars, cameras, LiDAR, and ultrasonics. The subsequent chapter presents the most popular driver assistance systems, including adaptive cruise control (ACC), blind spot detection (BSD), lane keeping systems (LDW/LKS), intelligent headlamp control (IHC), and emergency brake assist (EBA). A key element of this work is the evaluation of the effectiveness of these systems in terms of safety and driving comfort, employing a survey conducted among drivers. Data analysis illustrates how these systems are perceived and identified areas requiring improvements. Overall, the paper shows drivers’ positive reception of ADASs, with most respondents confirming that these technologies increase their sense of safety and driving comfort. These systems prove to be particularly helpful in avoiding accidents and hazardous situations. However, there is a need for their further development, especially in terms of increasing their precision, reducing false alarms, and improving the user interface. ADASs significantly contribute to enhancing safety and driving comfort. Yet, they are still in development and require continuous optimization and driver education to fully harness their potential. Technological advancements are expected to make these systems even more effective and user-friendly. Full article
Show Figures

Figure 1

30 pages, 31803 KiB  
Article
An NMPC-Based Integrated Longitudinal and Lateral Vehicle Stability Control Based on the Double-Layer Torque Distribution
by Xu Bai, Yinhang Wang, Mingchen Jia, Xinchen Tan, Liqing Zhou, Liang Chu and Di Zhao
Sensors 2024, 24(13), 4137; https://doi.org/10.3390/s24134137 - 26 Jun 2024
Cited by 1 | Viewed by 2061
Abstract
With the ongoing promotion and adoption of electric vehicles, intelligent and connected technologies have been continuously advancing. Electrical control systems implemented in electric vehicles have emerged as a critical research direction. Various drive-by-wire chassis systems, including drive-by-wire driving and braking systems and steer-by-wire [...] Read more.
With the ongoing promotion and adoption of electric vehicles, intelligent and connected technologies have been continuously advancing. Electrical control systems implemented in electric vehicles have emerged as a critical research direction. Various drive-by-wire chassis systems, including drive-by-wire driving and braking systems and steer-by-wire systems, are extensively employed in vehicles. Concurrently, unavoidable issues such as conflicting control system objectives and execution system interference emerge, positioning integrated chassis control as an effective solution to these challenges. This paper proposes a model predictive control-based longitudinal dynamics integrated chassis control system for pure electric commercial vehicles equipped with electro–mechanical brake (EMB) systems, centralized drive, and distributed braking. This system integrates acceleration slip regulation (ASR), a braking force distribution system, an anti-lock braking system (ABS), and a direct yaw moment control system (DYC). This paper first analyzes and models the key components of the vehicle. Then, based on model predictive control (MPC), it develops a controller model for integrated stability with double-layer torque distribution. The required driving and braking torque for each wheel are calculated according to the actual and desired motion states of the vehicle and applied to the corresponding actuators. Finally, the effectiveness of this strategy is verified through simulation results from Matlab/Simulink. The simulation shows that the braking deceleration of the braking condition is increased by 32% on average, and the braking distance is reduced by 15%. The driving condition can enter the smooth driving faster, and the time is reduced by 1.5 s~5 s. The lateral stability parameters are also very much improved compared with the uncontrolled vehicles. Full article
(This article belongs to the Special Issue Integrated Control and Sensing Technology for Electric Vehicles)
Show Figures

Figure 1

17 pages, 7700 KiB  
Article
Proactive Braking Control System for Collision Avoidance during Right Turns with Occluded Vision at an Intersection
by Sota Aoki, Yohei Fujinami, Pongsathorn Raksincharoensak and Roman Henze
Appl. Sci. 2024, 14(6), 2661; https://doi.org/10.3390/app14062661 - 21 Mar 2024
Viewed by 1789
Abstract
This paper describes the development of an Advanced Driver Assistance System (ADAS) which will allow drivers to avoid collisions with an oncoming vehicle from an occluded area when turning right at intersections in left-hand traffic. Connected vehicles, in coordination with infrastructure, represent one [...] Read more.
This paper describes the development of an Advanced Driver Assistance System (ADAS) which will allow drivers to avoid collisions with an oncoming vehicle from an occluded area when turning right at intersections in left-hand traffic. Connected vehicles, in coordination with infrastructure, represent one of the commercialized ADAS technologies for collision avoidance. However, the coverage of the ADAS will be limited to designated intersections only, as communication equipment needs to be installed in both the vehicle and infrastructure to enable the assistance. This paper proposes an ADAS using on-board sensors, independent of infrastructure facilities, to control the vehicle velocity to avoid collisions. Most current intersection assistance, by using an Autonomous Emergency Braking System (AEBS), allows the driver to avoid a collision with oncoming vehicles when there is clear vision without occlusion. However, many accidents occur when the vehicle detects the oncoming vehicle too late because of occlusion in the intersection, such as a vehicle in the opposite lane. This system calculates the hazardous speed criteria of the ego vehicle, which might result in a high risk of collision when darting out occurs, and provides speed control assistance to allow the driver to escape from the hazardous speed region. The simulation results reveal that the proposed system effectively reduces the possibility of collisions compared to conventional AEBS. Full article
(This article belongs to the Special Issue Vehicle Technology and Its Applications)
Show Figures

Figure 1

18 pages, 6550 KiB  
Article
Driver Injury from Vehicle Side Impacts When Automatic Emergency Braking and Active Seat Belts Are Used
by Min Li, Daowen Zhang, Qi Liu and Tianshu Zhang
Sensors 2023, 23(13), 5821; https://doi.org/10.3390/s23135821 - 22 Jun 2023
Cited by 4 | Viewed by 3014
Abstract
As an advanced driver assistance system, automatic emergency braking (AEB) can effectively reduce accidents by using high-precision and high-coverage sensors. In particular, it has a significant advantage in reducing front-end collisions and rear-end accidents. Unfortunately, avoiding side collisions is a challenging problem for [...] Read more.
As an advanced driver assistance system, automatic emergency braking (AEB) can effectively reduce accidents by using high-precision and high-coverage sensors. In particular, it has a significant advantage in reducing front-end collisions and rear-end accidents. Unfortunately, avoiding side collisions is a challenging problem for AEB. To tackle these challenges, we propose active seat belt pretensioning on driver injury in vehicles equipped with AEB in unavoidable side crashes. Firstly, records of impact cases from China’s National Automobile Accident In-Depth Investigation System were used to investigate a scenario in which a vehicle is impacted by an oncoming car after the vehicle’s AEB system is triggered. The scenario was created using PreScan software. Then, the simulated vehicles in the side impact were devised using a finite element model of the Toyota Yaris and a moving barrier. These were constructed in HyperMesh software along with models of the driver’s side seatbelt, side airbag, and side curtain airbag. Moreover, the models were verified, and driver out-of-position instances and injuries were evaluated in simulations with different AEB intensities up to 0.7 g for three typical side impact angles. Last but not least, the optimal combination of seatbelt pretensioning and the timing thereof for minimizing driver injury at each side impact angle was identified using orthogonal tests; immediate (at 0 ms) pretensioning at 80 N was applied. Our experiments show that our active seatbelt with the above parameters reduced the weighted injury criterion by 5.94%, 22.05%, and 20.37% at impact angles of 90°, 105°, and 120°, respectively, compared to that of a conventional seatbelt. The results of the experiment can be used as a reference to appropriately set the collision parameters of active seat belts for vehicles with AEB. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

12 pages, 772 KiB  
Article
Performance Assessment in a “Lane Departure” Scenario of Impending Collision for an ADAS Logic Based on Injury Risk Minimisation
by Michelangelo-Santo Gulino, Dario Vangi and Krzysztof Damaziak
Designs 2023, 7(3), 59; https://doi.org/10.3390/designs7030059 - 25 Apr 2023
Cited by 1 | Viewed by 1619
Abstract
The current prioritisation of road safety enhancement in the automotive sector is leading toward the near future implementation of Advanced Driver Assistance Systems (ADASs), aiming at the simultaneous intervention of braking and steering for impact avoidance in case of an impending collision. However, [...] Read more.
The current prioritisation of road safety enhancement in the automotive sector is leading toward the near future implementation of Advanced Driver Assistance Systems (ADASs), aiming at the simultaneous intervention of braking and steering for impact avoidance in case of an impending collision. However, it is partially unclear how new technologies for controlling the steering will actually behave in the case of inevitable collision states; the need consequently emerges to propose and tune efficient ADAS strategies to handle the complexity of critical road scenarios. An adaptive intervention logic on braking and steering for highly automated vehicles is applied in the context of a “lane departure”, two-vehicle critical road scenario; the ADAS implementing the logic activates to minimise the injury risk for the ego vehicle’s occupants at each time step, adapting to the eventual scenario evolution consequent to actions by other road users. The performance of the adaptive logic is investigated by a software-in-the-loop approach, varying the mutual position of the involved vehicles at the beginning of the criticality and comparing the injury risk outcomes of the eventual impacts with those connected to the Autonomous Emergency Braking (AEB). The results highlight a twofold benefit from the adaptive logic application in terms of road safety: (1) it decreases the frequency of impacts compared to the AEB function; (2) in inevitable collision states, it decreases injury risk for the vehicles’ occupants down to 40% compared to the AEB. This latter condition is achieved thanks to the possibility of reaching highly eccentric impact conditions (low impact forces and occupants’ injury risk as a consequence). The obtained highlights expand the literature regarding the adaptive logic by considering a diverse critical road scenario and investigating how fine variations on the vehicles’ mutual position at the beginning of the criticality reflect on the injury outcomes for different types of intervention logic. Full article
(This article belongs to the Special Issue Design and Application of Intelligent Transportation Systems)
Show Figures

Figure 1

45 pages, 30368 KiB  
Article
Encounter Risk Evaluation with a Forerunner UAV
by Péter Bauer, Antal Hiba, Mihály Nagy, Ernő Simonyi, Gergely István Kuna, Ádám Kisari, István Drotár and Ákos Zarándy
Remote Sens. 2023, 15(6), 1512; https://doi.org/10.3390/rs15061512 - 9 Mar 2023
Cited by 9 | Viewed by 2416
Abstract
Forerunner UAV refers to an unmanned aerial vehicle equipped with a downward-looking camera flying in front of the advancing emergency ground vehicles (EGV) to notify the driver about the hidden dangers (e.g., other vehicles). A feasibility demonstration in an urban environment having a [...] Read more.
Forerunner UAV refers to an unmanned aerial vehicle equipped with a downward-looking camera flying in front of the advancing emergency ground vehicles (EGV) to notify the driver about the hidden dangers (e.g., other vehicles). A feasibility demonstration in an urban environment having a multicopter as the forerunner UAV and two cars as the emergency and dangerous ground vehicles was done in ZalaZONE Proving Ground, Hungary. After the description of system hardware and software components, test scenarios, object detection and tracking, the main contribution of the paper is the development and evaluation of encounter risk decision methods. First, the basic collision risk evaluation applied in the demonstration is summarized, then the detailed development of an improved method is presented. It starts with the comparison of different velocity and acceleration estimation methods. Then, vehicle motion prediction is conducted, considering estimated data and its uncertainty. The prediction time horizon is determined based on actual EGV speed and so braking time. If the predicted trajectories intersect, then the EGV driver is notified about the danger. Some special relations between EGV and the other vehicle are also handled. Tuning and comparison of basic and improved methods is done based on real data from the demonstration. The improved method can notify the driver longer, identify special relations between the vehicles and it is adaptive considering actual EGV speed and EGV braking characteristics; therefore, it is selected for future application. Full article
(This article belongs to the Special Issue Single and Multi-UAS-Based Remote Sensing and Data Fusion)
Show Figures

Graphical abstract

Back to TopTop